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Abstract We consider a nonlinear parametric Dirichlet problem driven by the anisotropic
p-Laplacian with the combined effects of “concave” and “convex” terms. The “superlinear”
nonlinearity need not satisfy the Ambrosetti-Rabinowitz condition. Using variational meth-
ods based on the critical point theory and the Ekeland variational principle, we show that
for small values of the parameter, the problem has at least two nontrivial smooth positive
solutions.
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1 Introduction

Let 2 € RY be a bounded domain with a C2-boundary 3£2. In this paper we study the exis-
tence of multiple positive solutions for the following nonlinear, parametric and anisotropic
Dirichlet elliptic problem:

(P)A [—Ap(z)u(Z) = ku(z)’l(z)—l +f(Z,u(Z)) in 2.

u|a_Q =0, A > 0.

This research has been partially supported by the Ministry of Science and Higher Education of Poland under
Grant no. N201 542438.

L. Gasinski ()

Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Lojasiewicza 6, 30-348,
Krakéw, Poland

e-mail: Leszek.Gasinski@ii.uj.edu.pl

N. S. Papageorgiou

Department of Mathematics, National Technical University, Zografou Campus, 15780, Athens, Greece
e-mail: npapg @math.ntua.gr

@ Springer


https://core.ac.uk/display/81866137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1348 J Glob Optim (2013) 56:1347-1360

Here A ;) denotes the variable p-Laplacian, defined by
Apyu = div (| Vu||PD72)Vu,

with p € C1(2) and p_ = min p > 1. Also g € C(£2) and

i
2
g+ = maxq < p—,
2
A > 0 1is a parameter and f(z, ¢) is a Carathéodory function (i.e., for every { € R, the

function z — f(z, ¢) is measurable and for almost all z € §2, the function { — f(z, ¢)
is continuous). We assume that the potential function

¢
FGo) = /f(z,s)ds
0

exhibits a p4-superlinear growth near 00, where p4 = max p. Since g— < p_ < p4 we

see that in problem (P),, we have the combined effects of a (¢4 — 1)-sublinear (concave)
term and of a (p4 — 1)-superlinear (convex) term. A particular case of our setting is the
following nonlinearity

)\é—q(z)—l + é.r(z)—l i

with g, r € C(2), g4+ <r_ =minr < r, =maxr < p*, where
2 Q

—~x

Np_
= N_,

Problems like (P), were studied in the case of constant exponents g and p, by Ambrosetti
et al. [1] (for p = 2) and by Garcia Azorero et al. [7] (for p > 1) and Guo and Zhang
[14] (for p > 2). In all three works the nonlinearity has the particular form A{q_l + {’_1.
Here we allow the exponents to be variable, the differential operator is anisotropic and the
“convex” term is more general than ¢"~! and need not satisfy the well known Ambrosetti-
Rabinowitz condition, allowing for “superlinear” terms which exhibit slower growth near
F00. Our method of proof combines minimax methods based on the critical point theory,
with the use of the Ekeland variational principle. We show the existence of a A* such that
for all A € (0, 1*) problem (P), admits at least two nontrivial smooth solutions. Also,
analogous results for problems with constant exponents but with nonsmooth potentials were
proved by Gasiniski and Papageorgiou [9-11], Gasinski [8], Kristaly et al. [17] and Teng [18]
(the last three papers deal with the multiplicity of solution) and Filippakis et al. [6] (where
the authors obtained positive solutions). It would be interesting to extend the results of this
paper to problems with a nonsmooth potential (hemivariational inequalities).

Partial differential equations involving variable exponents and nonstandard growth con-
ditions, arise in many physical phenomena and have been used in elasticity, fluid mechanics,
image restoration and in the calculus of variations. A rich bibliography on the theory and
the applications of the subject, can be found in the recent comprehensive survey article of
Harjulehto et al. [15]. In the next section, for the convenience of the reader, we recall the main
mathematical tools which we will use in the analysis of problem (P); and also introduce the
variable exponent Lebesgue and Sobolev spaces.
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2 Mathematical background

Let
L) = {peL™®®): esss—qupp > 1}

For p € L{°(£2), we set
p— = ess-inf p and py = ess-sup p.
2 2
Also let M (£2) be the vector space of all measurable functions u: 2 —> R. As usual, we

identify two measurable functions which differ on a Lebesgue-null set. Then for p € L{°(£2),
we define

LPO2) = {ue M) : /|u|P<Z> dz < 400}
2

We equip L? @ (£2) with the following norm (known in the literature as the Luxemburg norm):

r(2)
lullpy = inf[k>0: /(|?T|) dzél].
2

The variable exponent Sobolev space is defined by
W@ @)y = {ue LP9 Q) 1 |Vullpe) € LPD(2)}
and it is furnished with the norm

lulli,py = lullpe) + 1Vull pe)-

An equivalent norm on W17@ (£) is given by

|lull = inf A>0:/ IVul P(z)+ lul e dz <1j.
A A
2

Also Wol’p(z) (£2) is the || - ||-closure of the set of WP (£2)-functions which have compact
support i.e., {u e Whr(2): u= uy, with K C £2 compact}. Clearly

CcX(2) < Wy @)
If p is globally log-Hdlder continuous, then
WOLP(Z) Q) = WII-H.

For details we refer to Kovacik and Rakosnik [16] and Fan and Zhao [5].

Let X be a Banach space and let X* be its topological dual. By (-, -) we denote the duality
brackets for the pair (X, X*). Let ¢ € C'(X). We say that ¢ satisfies the Cerami condition,
if the following holds:

“Every sequence {x,},>1 € X, such that {go(xn)}n>1 C R is bounded and

(L+ Ixn )¢’ (xs) —> 0 in X* asn — +oo,

admits a strongly convergent subsequence.”

@ Springer
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Using this compactness-type condition, we can state the following theorem, known in the
literature as the “mountain pass theorem”.

Theorem 1 If X is a Banach space, ¢ € C LX) and satisfies the Cerami condition, xg, x| €
X, r >0, |lxo—x1ll >r,

max {(p(xo),go(xl)} < inf {(p(x): lx — xoll :r} = n,

= inf 1)),
¢ = inf max ¢(y ()

where
r ={yec(0,15: X): y(0) =xo, y(1) = x1},
then ¢ > n, and c is a critical value of ¢.

In the sequel we will use the pair (W,"*“ (£2), Wy ?@ (£2)*) and by (-, -) we will denote
the duality brackets for this pair. Suppose that p € C(§2) with 1 < p_ = min p and consider
the map “

A Wy PP 2) — Wyt @)yr = wO2)

(where —i= + — = 1 for all z € £2), defined by

(A, y) = / IVulPO2(Vu, Vyydz Y,y € WP (2). n
2

From Fan and Zhang [4] or Gasiniski and Papageorgiou [13], we have

Proposition 1 The nonlinear map A Wol’p(Z)(.Q) — WP @) defined by (1) is con-
tinuous, strictly monotone (hence maximal monotone) and of type (S)4, i.e., if u, — u
weakly in Wé'p(Z)(.Q) and

lim sup(A(u”), Uy — u) < 0,

n—+00

then
U, — u in Wol’p(z)(.Q).
In what follows, for every r € R, we set
r¥ = max{zr, 0}

and for every p € C'(£2), we set

p— = minp and py = max p.
2 2
By || - || we will denote both the Sobolev norm and the Euclidean norm on RV . It will always
be clear from the context which norm we use. By | - |y we denote the Lebesgue measure on

RV,
Finally let us recall the Ekeland variational principle (see e.g., Gasiriski and Papageorgiou
[12, p. 582, Corollary 4.6.3]).
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Theorem 2 If (V, d) is a complete metric space and 9 : V. —> R = RU{+400} is a function
not identically 400, lower semicontinuous and bounded below, then for every ¢ > 0, we can
find v, € V, such that
(@) U(ve)
() ¥ (ve)

ir‘}f Y+ ¢
P (v) + ed(v, ve) forallv e V.

NN

3 Positive solutions

The hypotheses on the data of problem (P); are the following:
Hy: p e C1(2),q € C(22) and

l <g- < g4+ < p- < pt <N,

Hy: f: 2 xR —> Ris a Carathéodory function, such that f(z,0) =0, f(z,¢) = 0 forall
¢ > 0, almost all z € £2 and

(i) [fe 0| <a@ +cle @7 for almostall z € 2, all ¢ € R, witha € L™(2)4,
¢ > 0andr € C(£2), such that

p+<ry<p* =
(1) if
¢
F(z,¢) = /f(z,S)ds,
0

then
F 8 _

1im
[¢]=+o0 [|¢|P+

uniformly for almost all z € £2 and there exist T € C(£2) with 7(z) € ((r+ —
p,)]%, 1’?"), 7(z) > q(z) forall z € 2 and By > 0, such that

PR f(Z5§)§ _p+F(Z7 ;)
fo < Jmumd 58

uniformly for almost all z € £2;
(iii) we have

f(z,0) _ 0

lim
C_)QJr §P+71

uniformly for almost all z € £2.

Remark 1 Since we are interested in positive solutions and the asymptotic hypotheses Hj (ii)
and (iii) concern only the positive semiaxis, we may (and will) assume that

f(z,¢) = 0 foralmostall z € £2 andall ¢ <O.
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Hypothesis Hj(ii) implies that F(z,-) is py-superlinear near +oco. But f(z,-) need not
satisfy the usual in such cases Ambrosetti-Rabinowitz condition. Recall that the (unilateral)
Ambrosetti-Rabinowitz condition says that there exist ¥ > p and M > 0, such that

0 < 9F(z,¢) € f(z,¢)¢ foralmostall z € £ andall ¢ > M.
This condition implies that
cg“'? < F(z,¢) foralmostall z € £2 andall ¢ > M.

Our hypothesis permits for slower growth of F'(z, -) near 4-oc.

Example 1 The function

fz, 0 = f©©) = CP*’I(ClniJrl{T{) Ve >0

satisfies hypothesis Hj(ii) but not the Ambrosetti-Rabinowitz condition.

In the analysis of problem (P), in addition to the Sobolev space W(;’p (Z)(.Q), we shall
also use the Banach space

Cy(2) = ‘u eCl(2): ulag = 0].
This is an ordered Banach space with order cone
Cy = {ueCi(R2): u(z) >0forallz € 2}.

This cone has a nonempty interior in Cé (£2), given by
0
intCqy = lu € Ct: u(z) >0forall z € £2, a—u(z) < Oforall z € 89].
n

Here n(-) denotes the outward unit normal on 9£2.
We will seek the positive solutions of (P);, as critical points of the energy functional

o1 Wol‘p(Z)(.Q) — R, defined by

00 = [P - [ ot @ de - [ Fleu) dz
J p(@) A q(2)

2
Vu e Wy ')

Hypotheses Hj imply that ¢, € C! (Wol’p(Z) (£2)).

Proposition 2 If hypotheses Hy and Hy hold and ). > 0, then @, satisfies the Cerami con-
dition.

Proof Let {uy}n>1 C Wol’p(Z)(.Q) be a sequence, such that
los(un)| < My Vn > 1, )
for some M; > 0 and

(1 + llnll) 5 (un) —> 0. 3

@ Springer
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From (3), for all y € Wol’p(Z)(.Q), we have

&n
< ——1yll, )
L+ JJunl

‘(A(un),y)—A/(M,T)"(Z)_lydz —/f(z, un)y dz
2 2

with &, \, 0. In (4), we choose y = —u,, € WOI’p(Z)(.Q) and obtain

[1vur9az < e vaz )
2

(recall that f(z, ¢) = 0 for almost all z € £2 and all ¢ < 0). From (5), it follows that

u, — 0 inWw,"9@) (©6)

n

(see Fan and Zhang [4] and Gasinski and Papageorgiou [13]).
Next in (4), we choose y = uj € Wol’p(Z) (£2) and obtain

— / IV} 179 dz + & / 1@ dz + / f@udufds < ey Yn=1. (1)
2 2 2

On the other hand, from (2) and (6), for all » > 1, we have

p 14
L 179 — [ Ly - [rereuha: < pon. @
2 ' o)

Adding (7) and (8) and recalling that % > 1 forall z € £2, we obtain

/[f(z,u,j)u,j—pﬁ(z,u,j)] dz < M2+A/ (% - 1)(u;:')q(Z) dz, 9)
2 2

for all n > 1 and for some M, > 0. By virtue of hypotheses H; (i) and (ii), we can find
B1 € (0, Bp) and ¢; > 0, such that
BN ¢ € fz,cHeT = pF(z,¢T) foralmostall z € £2, all ¢ €R.
(10)

We use (10) in (9) and obtain

ﬂl/(u,f)’@ dz < M3+A/ (—”8 - 1)(»:;)‘1@ dz Vn>1, (11)
q(z
2 2

for some M3 > 0. Since 7(z) > ¢(z) for all z € £2 (see hypothesis Hj(ii)), from (11), it
follows that

the sequence {u; },>1 C L™ (£2) is bounded. (12)

Let ¥y € (r4, p*) (see hypothesis Hj(i)). Also it is clear from hypothesis Hj(ii) that we
can always assume that 7_ < ry < 9. So, we can find ¢ € (0, 1), such that

1 1—1¢ t

r4 T 19()
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Applying the interpolation inequality (see e.g., Gasinski and Papageorgiou [12, p. 905]), we
have

- i
g Wy < Moty e~ Ny Wy, ¥m > 1,

SO
r. (1=t)r. tr.
I < gt 1 s e v > 1
and thus
r tr
Nl < Mallufllys V> 1, (13)

for some M4 > 0 [see (12)]. By virtue of hypothesis H; (i), we have
f(Z,0¢ < @ +¢) V¢ =0, (14)

for some c3. In (4), we choose y = u)} € Wol’p(Z)(.Q). Then, recalling that g1 < p4+ and

using hypothesis Hy and (13), we have
/||W,j||f’<z) dz < A/(u;)q@ dz +/f(z, wHut dz + 3
Q Q Q
.
< ea(l+ w1l =+ lluf 175)
< es(L+lluf |+l 117) Vo> 1,
for some c3, ¢4, ¢c5s > 0. So
s 17~ < co(+ Ny Il 4l 17%) Vi > 1, (15)
for some c¢ > 0 (see Fan and Zhang [4] or Gasinski and Papageorgiou [13]). Note that

Vo(ry — 1)
tr+ = 70 < p—.
0— T—

So, from (15), we infer that

the sequence {u; },>1 C Wol’p(Z) (£2) is bounded
and so

the sequence {u,},>1 C W(}’p(Z)(Q) is bounded
[see (6)]. Passing to a subsequence if necessary, we may assume that

Uy —> u in WyP9@),
hence
uy —> u in L' (£2)

(recall that r; < p* and use the Sobolev embedding theorem for variable exponent spaces;

see Fan and Zhao [5]). In (4), we choose y = u, —u € Wol’p(Z) (£2). Then

(AGun). up —u) — 2 / 1O, — u)dz
2

—/f(z,un)(un—u)dz <e, Vn>1,
2
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with &, \ 0, so

nETm(A(u,,), up —u) = 0
and thus

u, — u in WyP9@Q)

(see Proposition 1). Therefore ¢, satisfies the Cerami condition.

Proposition 3 If hypotheses Hy and H\ hold, then we can find 1.* > 0, such that for ) €
(0, A™), there exists 0 = (L) > 0, such that

inf {@: () : llull = 0} = 1y >0.

Proof By virtue of hypotheses H; (i) and (iii),foragivene > 0, wecanfindc; = ¢7(¢) > 0,
such that

F(z.0) < e@H)P+ 4 ep(cT)Y+! foralmostall z € 2 andall ¢ €R,
SO

F(z,¢) < i(;+)p++ﬂ(§+)r+ for almostall z € 2 andall ¢ €R. (16)
P+ T+

For every u € Wol’p(z)(.Q) with |lu| < 1, we have

@ (1) =/$nwn1’@ dz—A/ﬁ(u*)q“)dz—/F(z,u(z)) dz
.Ql 2 2

EC9
> pfllull"+ — hegllull? — 7||u||p+ —ciollull™
+ +
= (c11 = Aesllull =P+ — ciollull™ ~P*) lu ) P+, a7

for some cg, c9, c19 > 0 and with ¢1; = i(l — ec9) > 0 (for & > 0 small). We consider

p
the function "
E() = Acgt?T Pt + ot TP V> 0.
Since g4+ < py4 < ry,itis clear that
1. ! == 1 t = .
t—1>r(1)1+§( ) t—lr-i{looé:( ) oo

Because & is continuous on (0, +00), we can find #y > 0, such that 0 < £(7g) = %f &. Hence
+

we have
0 = &) = res(q— — p)ig™ " el — pig T
SO
reg(pt — ‘1—)’(1)1:”71 = cio(ry — P+)t(;+7p+71
and thus

_ ()»C8(P+—Q—))’+]"
g = | ———M= .

cro(r+ — p+)

@ Springer
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We consider &(fp). Then clearly we can find A* > 0, such that for all A € (0, A*), we have
&(to) < c11. Then from (17), we infer that

o) > 0 >0 Yue WyPD@), lull = o(h) < 1.

Proposition 4 If hypotheses Hy and Hy hold andu € Cy \ (O} with ||ullp,, ullg,, lull = 1,
then @) (tu) — —oo ast — +o00.

Proof By virtue of hypotheses H; (i) and (ii), for a given ¢ > 0, we can find ¢, > 0, such
that

1
F(z,0) > —(@T)P+ —¢, foralmostall z € §£2 andall ¢ € R. (18)
p+¢€
Then, for t > 1, we have
1P+ P+
F(z,tu(z)) > Fru@rr ¢, foralmostall z € £2
D+e

[see (18)]. Thus

F(z, tu(z P+
( ( )) > u@) _ L for almost all z € £2.
tP+ J tP+

Recalling that ||lu]|,, < 1, we have

F(z,tu(z) 1 c
/()w>—£|m
tP+ p+€ tP+
2
SO

F
liminf/(z’tu(z))dz > L

t—+00 tP+ pie’
2

Since ¢ > 0 was arbitrary, we let ¢ N\ 0 and conclude that

/ F(z, tu())

dz — +00 ast — +oo. (19)
P+

Q
Then

1 1
@3 (110) =/—|\V(zu)””(” dz—x/—(nﬁ)q(z) dz—/F(z,tu)dz
p(2) q(2)
2 2 2
tP- » Ard- q
> —cpllull’~ — ——cuillull’ — | F(z, tu)dz,
P+ q-
2
for some ¢y, 13 > 0. Thus

@i (tu) Sl e - Acis lull 7 — F(Z’m)dz.
1P+ pytP+—P- g_th+—a- 1P+

2

Using also (19), we have

i @;.(tu)
im ———~ = —o00,

t—+oo0 P+

@ Springer
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SO
@) (tu) — —oo ast — +oo.

Now, we have all the necessary tools to state and prove the multiplicity theorem for the
positive solutions of problem (P);.

Theorem 3 If hypotheses Hy and Hi hold, then there exists A\* > 0, such that for all
A € (0, A™), problem (P); has at least two positive smooth solutions ug, U € int C.

Proof Propositions 2, 3 and 4 permit the use of the mountain pass theorem (see Theorem 1).
So, for A € (0, 1*) (see Proposition 3), we can find u( € Wol’p(Z)(.Q), such that

@.(0) = 0 < 1y < @aluo) (20)
and
@ (o) = 0. Q1)
From (20), we see that ug # 0. From (21), we have
Auo) = )™ + Ny (uo), (22)
where
Nr@)() = f(u@) Yue Wy"9@).

On (22) we act with —uy € Wol’p(Z)(.Q) and obtain
/ IVug [|P©) dz = 0
2

(recall that f(z, ¢) = 0 for almost all z € §2 and all ¢ < 0), so u, = 0 and thus
up =0, wug #0.
Then (22) becomes
AGo) = 207" 4+ Nyuo),
sO

—Apyuo(x) = Mo D7 + f(z,u0(2)) in 2,
uplpe =0.

From the nonlinear regularity theory (see e.g., Fan [3] and Gasifiski and Papageorgiou [12]),
we have ug € C \ {0}. Since A uo(z) < 0 for almost all z € §2, invoking the nonlinear
maximum principle of Zhang [19], we infer that ug € int C..

Proposition 3 implies that for every A € (0, A*), we can find 0 = o(A) < 1, such that

0 < inf @, (u). (23)
lull=¢
We will show that
inf u) < 0. 24
HMKQ%\() (24)
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To this end, let u € C4 \ {0} be such that [|u] < 1 andletr € (0,1). As F > 0 (see
hypotheses Hj), we have

1 . 1
@5, (tu) zg/p(Z)HV(tu)Hp()dz—)»g/q(z)(tu)q@ dz—/F(z,tu(z)) dz

2
tP- Atd+
< —cullull’- - /uq(z) dz
pP— q+ A

tP——49+ A
< t‘”( Cl4 — —/uq(z)dz). (25)
pP— q+ PA

Since ¢+ < p—, fort € (0, 1) small enough, from (25), we have

@.(tu) < 0 and tllul < o,

so (24) holds.
Let

19)L = inf Q) — inf<p;L >0
3B, B,

[see (23) and (24)] and let ¢ € (0, ¥,). By virtue of the Ekeland variational principle (see
Theorem 2), we can find u, € By, such that

@i(ue) < infg, +e (26)

o

and
or(ue) < 9.(y) +elly —uell Vy € By. 27
Since ¢ € (0, 9,), from (26), we see that

@) (ug) < inf ;. (28)

BQ
From (23) and (28), it follows that
L,
us € By = {ueWy"?@): Jull <o}
Let
h5 ) = @u(y) +elly — uell.

From (27), we see that u, is a minimizer on EQ of the locally Lipschitz function A5. Since
ug € By, it follows that 0 € 43 (u), where dh (ue) denotes the generalized subdifferential
in the sense of Clarke of the locally Lipschitz functional 5 (see Clarke [2]; Gasiniski and
Papageorgiou [12]). Hence

—ellhll < (¢} ), h) Vhe WP P (9),
SO
lerua)| = e (29)
Lete, = % and let u, = u,, € By, forn > 1. Then

o.(up) — %}f%\ (30)
0
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[see (26)] and
@) — 0 in W PE(@2) 31)
[see (29)]. By virtue of Proposition 2, it follows that
u, — @ in Wy"9@)
(at least for a subsequence). Hence

@) — @) = %ﬁ%\ <0
4
[see (30) and (24)], so u # 0.
Moreover, since ¢; (1) < 0 < ;" < @ (uo) [see (24) and (20)], we see that @ # up.
Because ¢, € C! (Wol’p(Z)(.Q)), from (31), we have

@) =0,
SO
A@) = 2@H1O 4 Np@). (32)
Acting on (32) with =i~ € W, " (2), we obtain iy > 0, % # 0. From (32), we have

—Apyi(z) = MO + f(2,7(z)) in 2,
ilpe = 0.

Nonlinear regularity theory (see e.g., Fan [3] and Gasiriski and Papageorgiou [13]) implies
that @ € C1(£2) and since Apyii(z) < 0 for almost all z € £2, the nonlinear maximum
principle of Zhang [19] implies that & € int C.

Remark 2 If f(z,¢) = ¢" @ forallz € 2, ¢ > 0 with r € C(£2) as in hypothesis H (i),
then Theorem 3 extends to the anisotropic p-Laplacian the work of Garcia Azorero et al. [7]
and Guo and Zhang [14].

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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