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Abstract

Background: It is well known that fish predation alters ecosystem processes by top-down effects. Salmonids are
described as aggressive, visually and size-selective predators. Thus, prey selection by the non-native rainbow trout
was examined on a seasonal basis at two streams: Nant y Fall (NyF) and Cabeza de Vaca (CVA) at Patagonia, a
region where this kind of information is lacking.

Results: The benthos density at NyF was higher than that at CVA, and at both streams, riffles supported higher
macroinvertebrate densities than pools. The diet of trouts from both streams was dominated by aquatic
macroinvertebrates, was diverse, and was varied seasonally. The individuals represented in the stomach contents
were among the largest available at the streams. Diet diversity peaked during spring at NyF and during summer
at CVA, whereas at both streams, the niche width peaked during spring.
Prey selectivity varied seasonally. The selected preys included both aquatic (Gasteropoda, Crustacea, Plecoptera,
Trichoptera, Ephemeroptera, Coleoptera, Diptera, and Odonata) and terrestrial organisms (adult dipterans,
Oligochaeta, Araneae, Homoptera, Hymenoptera, Orthoptera, and Hemiptera). Some infaunal invertebrates like
oligochaetes and some small Coleoptera and Diptera larvae (mainly Chironomidae) were not selected by trouts.

Conclusions: Despite of the overall dominance of trichopteran species, the composition of the diet of the rainbow
trout varied seasonally. This fish positively selected both aquatic and terrestrial organisms. We observed that in both
streams, trouts consumed the larger individuals available in those environments.
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Background
In freshwater environments, fish predation is considered
an important selective force because it can shape the
structure and composition of freshwater communities by
top-down effects determining food web functioning and
dynamics (Newman and Waters 1984; Nakano et al. 1999;
Baxter et al. 2004; Wesner 2012).
It has been suggested that in order to increase fitness,

predators actively choose prey that minimizes energy
spent on capturing and handling while maximizing en-
ergy intake (Stephens and Krebs 1986). Consequently,
understanding on the predator–prey relationships is one
of the most important issues to comprehend the trophic
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interactions and their effects (Macchi et al. 1999). World-
wide, many studies have attempted to determine the
mechanisms of prey selection by salmonids in streams,
linking the composition of diets with available drifting
prey (Allan 1978; Bisson 1978; Ringler 1979; Forrester
et al. 1994; Nakano et al. 1999). Those studies demon-
strated the selection of different prey taxa and size. Zaret
(1980) and Peckarsky (1982) stated that selective pre-
dation on a particular prey size altered the structure of
invertebrate communities. In different works, Sih (1987)
and Wooster (1994) proposed that predators produce a
strong selective force that is concentrated on vulnerable
individuals, and this selection pressure can lead to changes
in the behavior, growth, fecundity, and morphology of sus-
ceptible prey. To enhance recreational fishing, Patagonian
streams have been affected by the introduction of salmo-
nids since the early twentieth century. The rainbow trout
(Oncorhynchus mykiss) has been the most widely distrib-
uted species in the region (Pascual et al. 2002; Baigun and
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Ferriz 2003; Di Prinzio et al. 2009) generating a great
economic resource input. Several studies focused on
rainbow trouts' feeding strategies in Patagonian environ-
ments and analyzed the impact of this species on native
fauna (Modenutti and Balseiro 1994; Pascual et al. 2002;
Buria et al. 2007, 2009, 2010; Albariño and Buria 2011; Di
Prinzio and Casaux 2012; Di Prinzio et al. 2013). However,
the degree of prey selectivity displayed by this fish remains
poorly understood.
Prey selectivity metrics are important measures of

possible impacts on native communities and of changes
to stream environments (Wooster 1994; Osenberg et al.
1996, 1999; Johnson et al. 2006). Therefore, we investigated
in a seasonal basis prey selection by the rainbow trout at
two streams in Patagonia.

Methods
Study area and site selection
The study area is located in the Northwest of the Chubut
Province, Patagonia, Argentina, in the ecotone between
the Subantarctic forest and the Patagonian steppe, and ex-
hibits a marked altitudinal gradient (2,000 to 600 m
above sea level (m.a.s.l.)). Perennial (Austrocedrus chilensis,
Nothofagus dombeyi, and Maitenus boaria) and deciduous
(Nothofagus pumilio and Nothofagus anctarctica) tree spe-
cies constitute the Subantarctic forest. Rivers at the study
area have a pluvionival regime; therefore, discharge pattern
is bimodal, with one peak associated to winter rains (June
to July) and a second one originated by snowmelt in spring
(September to October) (Coronato and del Valle 1988).
The watercourses selected for this study were Nant y
Fall (NyF) and Cabeza de Vaca (CVA) streams (2nd
order streams). The sampled site at NyF (43° 13′ 24″ S,
71° 25′ 17″ W) is located 3.7 km downstream of Rosario
lake (19 km2) in the Futaleufú-Yelcho basin, at an altitude
of 690 m.a.s.l. NyF's sub-basin has 15% of the area dedi-
cated to pastures, 24.8% correspond to lakes, and 60.2%
to the timberland (H. Claveri unpublished information).
Land-use adjacent to the lake and the stream is mainly
pasture, with agricultural and extensive livestock graz-
ing activity.
The sampled site selected at CVA (740 m.a.s.l.) (43°

30′ 02″ S, 71° 20′ 49″ W) is located 25.8 km from the
headwater and belongs to the Carrenleufú basin. CVA's
sub-basin is covered by pastures (29.4%) and timber-
land (65.4%), and 5.2% of the area corresponds to lakes
(H. Claveri unpublished information). Land-use around
the stream is primarily wood extraction.

Environmental characterization and sampling procedure
Sampling sites were visited in early autumn (May), late
winter (September), and late spring (December) of 2005
and during late summer (March) of 2006, under stable
environmental conditions. At each site, substrate size
composition was estimated as percentages of boulders,
cobbles, gravel, pebbles, and sand in the reach, using a
1-m2 grid (n = 3). Digital pictures of the grid were ob-
tained and processed in the laboratory. Water velocity
(ms−1) was measured in mid-channel (thalweg) on three
occasions by timing a float (average of three trials) as it
moved over a distance of 10 m (Gordon et al. 1994).
Average depth (cm) was estimated from five measure-
ments along one transversal profile across the channel
with a calibrated stick. At each site (run-riffle areas),
water temperature (°C) was measured with a mercury
thermometer.
During each sampling, specific conductance (μS20 cm

−1),
pH, and dissolved oxygen (DO, mg O2l

−1) were measured
with a multiparameter probe (Hach sensION 156, Hach
Instruments, Lovedale, CO, USA). For nutrient analyses,
water samples were collected below the water surface
and kept at 4°C prior to analysis and transported to the
laboratory. Total suspended solids (TSS), nitrate + nitrite
nitrogen (NO3 +NO2), ammonia (NH4), and soluble re-
active phosphate (SRP) were analyzed following standard
methods (APHA 1994).

Biological data collection
Fish and macroinvertebrates were sampled seasonally at
the four mentioned dates. Fish were sampled along
reaches of 100 m long employing a portable backpack
electrofishing gear (Coffelt Mark-10 CPS, output 350 V).
The width of the sampling area was coincident with the
stream width. In situ, the individuals caught were pre-
served in cooled containers. At laboratory, fish were
counted, weighted (g), and measured in total length (cm)
and the stomachs were separated and fixed with 90%
alcohol for posterior diet analysis.
Macroinvertebrate samples were obtained using a

Surber sampler (0.09 m2; 250-mm mesh size). Three
samples from riffles (n = 3) and three from pools (n = 3)
were taken at each reach. Samples were fixed in situ with
4% formaldehyde for posterior analysis.
At the laboratory, all the invertebrates represented in

the samples, both in fish stomach contents and in ben-
thos samples, were sorted (using a binocular microscope
at × 5 magnification), identified to the lowest taxono-
mic level possible using available keys (Domínguez and
Fernández 2009) and counted. Individuals from stomach
and benthos samples were identified to the same taxo-
nomic level. Terrestrial invertebrates (including those
adults of aquatic insects with aerial phases) in the stomach
contents were grouped into a single category (terrestrial
items). Algae and vegetal fragments were grouped into a
single category (vegetal items). Inorganic material (i.e., lit-
tle stones) was classified as inorganic items. Total body
length of each individual, excluding antennae and terminal
cerci, was measured to the nearest 0.1 mm using an ocular
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micrometer (Zeiss stereomicroscope Stemi DV4, Zeiss,
Jena, Germany).

Data analysis
In order to calculate the contribution of a food item to
the diet, the dietary coefficient (Q) (Hureau 1970) was
employed. This method reduces the biases associated to
the use of numeric or weight methods, because it is the
product of the percentage by number (%F) and the per-
centage by mass (%M) of each prey type (Q = %F × %M).
According to this index, the prey items were sepa-
rated into the following categories: main preys, Q >
200; secondary preys, 200 >Q > 20; and occasional
preys, Q < 20.
To estimate diet width, the Levins (1968) index was

calculated with 95% confidence limits as follows: B = 1/
Σp2i, i = 1…n, where pi is the proportion of each prey
type i in the diet and equals Ai expressed as fraction
rather than percentage.
Diet diversity was assessed using the Shannon-Wiener

index of diversity (Krebs 1989) according to:

H ¼ −
Xs

i¼l

pi ln pið Þ
Table 1 Physico-chemical parameters, annual mean standard
streams (Patagonia, Argentina)

NyF

Physical parameters Mean ± SD

Water temperature (°C) 10.4 ± 2.7

Wet width (m) 21.1 ± 3.1

Depth (m) 0.2 ± 0.1

Water velocity (ms−1) 0.8 ± 0.2

Discharge (m3 s−1) 4.6 ± 2.4

Substrate composition (%)

Boulder 20

Cobble 25

Pebble 10

Gravel 30

Sand 15

Chemical parameters Mean ± SD

Conductivity (μS cm−1) 114.0 ± 2.7

Dissolved oxygen (mg l−1) 8.8 ± 1.6

pH 7.6 ± 0.4

Turbidity (TNU) 4.2 ± 3.9

Ammonium (μg L−1) 1.05 ± 0.5

Nitrate + nitrite nitrogen (μg L−1) 0.18 ± 0.2

Soluble reactive phosphate (μg L−1) 0.37 ± 0.0

Total suspended solids (mg L−1) 2.74 ± 0.8

During the study period (early autumn, late winter, late spring of 2005, and late sum
where pi is the fraction of items in benthos sample that
are of category i.
Comparisons between proportions of preys in the rain-

bow trout stomach contents and in benthos samples
were carried out using Ivlev's index. Ivlev (1961) electivity
index (Ei) was selected because it handles the situation
where a prey item is represented in the diet but absent
from field samples or where an item occurs in the field
but is absent from the stomach contents. The electivity
index ranges between 1 (the prey is represented in the
stomachs but absent from benthos samples) and −1 (the
prey is absent from the stomach but present in benthos
samples) as it is estimated according to the following
equation:

I ¼ Ei−Bi
Eiþ Bi

where Ei is the percentage by number of taxon i in the
stomach contents and Bi is the percentage by number of
taxon i in benthos samples. Additionally, to identify if
trouts select preys according to their size, the Ivlev's
electivity index was calculated for three size ranges of
each prey species (small, medium, and large size).
deviation, and total range values from NyF and CVA

CVA

Range Mean ± SD Range

7.6 to 13.6 6.5 ± 2.4 4.0 to 9.4

17.5 to 25.0 7.2 ± 2.9 4.6 to 11.0

0.19 to 0.32 0.2 ± 0.0 0.20 to 0.28

0.68 to 1.0 1.1 ± 0.2 0.93 to 1.15

2.71 to 8.0 1.9 ± 0.9 0.92 to 3.08

15

30

15

25

15

Range Mean ± SD Range

112.0 to 118.0 50.0 ± 14.0 38.0 to 63.0

7.7 to 11.1 11.1 ± 1.7 9.7 to 13.0

7.2 to 7.9 7.3 ± 0.1 7.1 to 7.4

2.0 to 10.0 10.0 ± 15.0 0 to 27.0

0.6 to 1.6 0.86 ± 0.7 0 to 1.7

0.1 to 0.3 0.17 ± 0.2 0 to 0.3

0.3 to 0.4 0.53 ± 0.2 0.2 to 0.7

1.7 to 3.6 2.38 ± 1.8 0.7 to 4.4

mer of 2006). SD, standard deviation.
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To identify differences in prey availability and density
between streams, habitats, and seasons, we employed
one-way analysis of variance. Similarly, to identify sea-
sonal changes in the size of macroinvertebrates from the
benthos, we used ANOVA and the post hoc Newman-
Keuls test (Sokal and Rohlf 1995). Prior to analysis data
were tested for normality and homogeneity of variances
using Kolmogorov-Smirnov and Levene's tests, respect-
ively, and log (x + 1)-transformed when appropriate
(Gotelli and Ellison 2005). Mann–Whitney test was
used to verify whether the length distributions between
individuals represented in stomach contents and in ben-
thos samples were different (Sokal and Rohlf 1995).
To compare the size of rainbow trouts between streams,

a Kruskal-Wallis test was applied (Sokal and Rohlf 1995).
In order to summarize the variation among seasons in

the distribution of fish based on their diets, we performed
a Non-Metric Multidimensional Scaling (N-MDS) ordin-
ation technique based on the Bray-Curtis similarity coeffi-
cient using the software Statistica (version 6.0) (Ludwing
and Reynolds 1988; Marshall and Elliott 1997; Clarke and
Warwick 1994). Pearson correlation matrices based on
quantitative data of trout stomach contents were built for
each stream (NyF and CVA). The proximity of points in a
resulting 2-D plot graphic indicates a higher degree of
similarity, whereas more dissimilar points are positioned
further apart.
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Figure 1 Mean invertebrate density (major groups) (±SD, ind m2) by
Nant y Fall (NyF) streams (Patagonia, Argentina) from May 2005 (early autu
Results
Environmental features
At both sites, the substrate was dominated by gravel
cobble (Table 1). The highest value of water temperature
(late summer), wet width (late spring), depth (late spring),
current speed (late spring), and discharge (late spring) was
observed at NyF while the highest value of dissolved oxy-
gen (late summer) and turbidity (late winter) was recorded
at CVA (Table 1). Physicochemical conditions indicated
that waters were circum-neutral and well oxygenated.
Conductivity was significantly higher (Kruskal-Wallis,
p < 0.05) at NyF than at CVA. Both streams presented
similar (Kruskal-Wallis, p > 0.05) low nutrient levels as ex-
pected for low-order streams in mountain areas (Table 1).

Biological features
Macroinvertebrate density was higher at NyF than at
CVA (ANOVA, p < 0.05); nevertheless, the seasonal trend
in benthos density at both streams was similar (ANOVA,
p > 0.05). At both streams, riffles supported higher macro-
invertebrate densities than pools (ANOVA, p < 0.05), be-
ing Diptera at CVA and Trichoptera at NyF the most
abundant groups (Figure 1).
Overall, at both streams, the benthos community was

mainly composed of individuals belonging to small size
classes (Figure 2). However, the size of the individ-
uals changed seasonally (ANOVA, p < 0.05), and at both
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season. At riffles (R) and pools (P) (n = 3) of Cabeza de Vaca (CVA) and
mn) to March 2006 (late summer).



Figure 2 Frequency distribution of size classes. Macroinvertebrates in the environment (bars) and in rainbow trout (Oncorhynchus mykiss)
stomach contents (line) at Nant y Fall (NyF) and Cabeza de Vaca (CVA) streams (Patagonia Argentina) during the study period (early autumn, late
winter, late spring 2005, and late summer 2006).

Table 2 Morphometric measurements annual mean and
total range values, seasonal niche broad, and seasonal
prey diversity

NyF (n = 109) CVA (n = 60)

Biological
parameters

Mean ± SD Range Mean ± SD Range

Fish length (cm) 11.1 ± 7.0 2.6 to 44.2 11.3 ± 4.2 5.2 to 9.6

Fish weight (g) 44.6 ± 157.0 0.1 to 988.7 20.3 ± 21.2 1.6 to 84.7

Diet broad Levin's index

Early autumn 0.032 0.263

Late winter 0.247 0.169

Late spring 0.331 0.588

Late summer 0.037 0.332

Prey diversity Shannon index

Early autumn 1.82 3.37

Late winter 3.44 1.98

Late spring 3.54 1.98

Late summer 1.25 3.46

Of Oncorhynchus mykiss (rainbow trout) from Nant y Fall (NyF) and Cabeza de
Vaca (CVA) streams (Patagonia, Argentina) during the study period (early autumn,
later winter, later spring of 2005, and later summer of 2006).
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streams, the larger individuals were observed during late
spring (Newman-Keuls test, p < 0.05).
A total of 109 and 60 rainbow trouts were caught

throughout the study period at NyF and CVA, respectively.
Trouts from both streams were similar in total length
and mass when comparing mean values (Kruskal-Wallis,
p > 0.05) (Table 2). The high biomass value observed in
NyF (988.7 g) corresponded just to one specimen. The
diet of trouts from both streams was dominated by
aquatic macroinvertebrates (Figure 3) and was diverse,
and distinct preys were dominant in different seasons.
In NyF crustaceans (Hyalella araucana) and trichop-
terans (Parasericostoma ovale and Hudsonema flaminii)
conformed the diet almost the whole year; plecop-
teran preys appeared in the trout diet in spring at CVA
(Figure 3). During early autumn and late summer, trouts
from NyF foraged predominantly on P. ovale (Figure 2)
which was the most abundant species in benthos samples
(Additional file 1). Trouts from CVA preyed predomin-
antly on the most abundant benthos species Brachysetodes
sp., (see Additional file 1) in late spring and summer
(Figure 2). During the remaining seasons, the main



Figure 3 Diet composition (dietary coefficient Q%). Oncorhynchus mykiss at Nant y Fall (NyF) and Cabeza de Vaca (CVA) streams (Patagonia
Argentina) during the study period (early autumn, late winter, late spring 2005, and late summer 2006); n, number of fish stomach analyzed.
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species in the diet were invertebrates scarcely represented
in benthos samples (i.e., H. araucana in late winter at
NyF and Aubertoperla illiesi in late winter at CVA) (see
Additional file 1).
The individuals represented in the stomach contents

(NyF �x = 4.9 ± 2.2 mm; CVA �x = 5.0 ± 2.1 mm) were among
the largest available at the streams (NyF �x = 2.9 ± 2.1 mm;
CVA �x = 2.5 ± 1.4 mm). The prey size consumption at NyF
did not show any evident pattern (Figure 4), whereas trouts
at CVA consumed the larger individuals of all prey species
along the year (Figure 5).
At NyF (H' = 3.54) and CVA (H' = 3.46), diet diversity

peaked during late spring and late summer, respectively,
whereas at both streams, the niche width peaked during
late spring (Table 2).
The Ivlev index indicated that at NyF, the Ephemeroptera

Meridialaris chiloeensis (early autumn and late spring), the
Trichoptera Oxyethira bidentata (early autumn, late
winter, and summer), the Diptera Thienemanniella sp.
(early autumn), the Gasteropoda Biomphalaria peregrina
(late summer), and the fish eggs were positively selected
by rainbow trouts (Table 3). The species positively selected
at CVA were the Plecoptera A. illiesi (early autumn), the
Coleoptera Stethelmis kaszabi (early autumn and late
summer), Muscidae larvae (early autumn, late winter, and
late spring), and the Ephemeroptera Nousia crena (early
autumn) (Table 3). Although present and abundant in
the benthos throughout the year at both streams, some
Oligochaeta (Lumbriculidae spp.), Trichoptera (Smicri-
dea frequens and Neoatopsyche brevispina), Coleoptera
(Luchoelmis cekalovici and Austrolimnius sp.), and Diptera
(Empididae larvae, Parapsectocladius sp., Pseudochi-
ronomus sp., and Ceratopogonidae sp.) species were
scarcely or not selected by trouts (Table 3). Terrestrial
preys like Arachnidae, adult dipterans, Hymenoptera,
Homoptera, Hemiptera, and Isopoda were positively se-
lected by the rainbow trout at both streams (Table 3). At
both streams, trouts selected prey items with body size
ranging from medium to large (Table 4). In this sense,
while at NyF, the larger prey items of Ephemeroptera: N.
crena (early autumn) and Andesiops torrens (later sum-
mer); Plecoptera: N. femina (early autumn), A. illiesi, and
L. jaffuelli (late winter and late spring); Trichoptera:
Brachysetodes sp. (early autumn), Smicridea annulicornis
(early autumn and late summer), and P. ovale (late winter
and late spring); and Diptera: Simuliidae (early autumn
and late winter) were selected, and at CVA, the larger
prey items of Ephemeroptera: N. crena (late summer);
Plecoptera: Antarctoperla michaelseni (early autumn);
Trichoptera: S. annulicornis (early autumn and late sum-
mer), and Diptera: Paratrichocladius (late winter) were
chosen.
The results of the MDS ordination supported data

displayed in Figure 3 (Figure 6). At NyF, most of the
trout captured during autumn and summer (stomachs
dominated by P. ovale) were grouped to the negative



Figure 4 Annual distribution of size classes. The main preys (Q) in rainbow trout stomachs (F, solid line), species availability in benthic samples
at riffles (R, black bars), and pools (P, white bars) at Nant y Fall (NyF) stream (Patagonia Argentina).
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end of dimension 1, whereas those obtained during spring
(stomachs dominated by Penaphlebia chilensis) were posi-
tioned on the lower right quadrant and those captured
on winter (stomach content: fish material, H. flaminii
and H. araucana) were mainly grouped to the positive
Figure 5 Annual distribution of size classes. The main preys (Q) in rainb
samples at riffles (R, black bars) and pools (P, white bars) at Cabeza de Vaca
side of dimension 2 (Figure 6). On the other hand, at
CVA, the MDS ordination reflected that trout captured
during summer was grouped towards the positive side of
dimension 1. Dominant preys at this season were Brachy-
setodes sp. and S. annulicornis (Figure 6).
ow trout stomachs (F, solid line) and species availability in benthic
(CVA) stream (Patagonia Argentina).



Table 3 Selectivity index (Ivlev) of prey in the diet of rainbow trout (Oncorhynchus mykiss)

Early autumn Late winter Late spring Late summer

Order Species NyF CVA NyF CVA NyF CVA NyF CVA

Oligochaeta Lumbriculidae sp.* −1 −1 −1 −1 −1 −1 −1 −1

Gasteropoda Chilina patagonica 0.11 0.91 −1 --- −1 0.95 −1 0.41

Biomphalaria peregrina --- --- --- --- --- --- 1 ---

Crustacea Hyalella araucana 0.75 --- 0.98 --- 0.31 --- 1 ---

Isopoda* --- 1 --- --- --- --- ---

Araneae Arachnidae* --- --- 1 --- 1 --- --- ---

Cladocera Daphnia daphnia --- --- 1 --- --- --- --- ---

Plecoptera Aubertoperla illiesi --- 1 −0.30 0.71 --- −1 --- −1

Limnoperla jaffuelli −1 --- −0.20 −1 0.57 −1 --- ---

Antarctoperla michaelseni −1 0.12 --- −1 −1 −1 −1 0.76

Notoperlopsis femina −0.70 1 −1 --- --- --- −1 −1

Pelurgoperla personata --- 0.95 --- −1 --- −1 --- 0.93

Potamoperla myrmidon --- --- --- --- --- --- --- 1

Udamocercia arumífera --- --- --- --- --- −1 --- 1

Adult* --- --- --- --- 1 --- --- ---

Ephemeroptera Nousia crena 0.41 −1 --- −1 −1 −1 −1 0.85

Meridialaris chiloeensis 1 0.64 −1 0.73 1 --- --- −1

Meridialaris laminata −1 --- 1 --- −1 −1 --- ---

Penaphlebia chilensis −1 −1 −0.30 --- 0.74 −1 −1 1

Penaphlebia flavidula --- --- 1 --- --- --- --- ---

Penaphlebia (A)* --- --- --- --- 1 --- --- ---

Andesiops torrens 0.35 0.78 −1 --- −1 −1 0.34 0.03

Andesiops ardua −0.90 −1 −1 −1 1 −1 −1 −1

Ephemeroptera sp. 1 --- --- --- 1 --- --- ---

Parasericostoma ovale 0.38 0.96 −0.80 −1 −0.70 1 0.48 1

Trichoptera Hudsonema flaminii 0.50 0.72 1 −1 −1 −1 --- 0.89

Brachysetodes sp. −0.30 0.46 −1 −1 −1 0.14 −1 0.94

Triplectides sp. --- −1 1 --- --- −1 --- −1

Oxyethira bidentata 1 --- 1 --- −1 --- 1 ---

Neoatopsyche unispina −1 0.97 −1 −1 1 −1 −1 −1

Neoatopsyche brevispina −1 −1 −1 --- --- --- −1 0.14

Cailloma sp. 1 −1 −1 --- --- --- −1 0.93

Smicridea annulicornis 0.45 0.04 −1 0.90 0.53 0.90 −0.60 0.64

Smicridea frequens −1 −1 −1 --- --- --- −1 ---

Limnephilidae --- --- 1 --- --- --- --- ---

Adult* --- --- --- --- 1 --- --- ---

Stethelmis kaszabi 1 1 −1 --- −1 --- −1 1

Coleoptera Luchoelmis sp. −1 1 −1 −1 −1 −1 −1 −1

Elmidae (L) −1 −1 --- 1 −1 −1 −1 −1

Luchoelmis cekalovici −1 −1 −1 −1 −1 −1 −1 −1

Austrolimnius sp. −1 −1 −1 −1 --- −1 −1 −1

Rhantus signatus --- --- --- --- --- --- 1 ---

Di Prinzio et al. Zoological Studies  (2015) 54:29 Page 8 of 14



Table 3 Selectivity index (Ivlev) of prey in the diet of rainbow trout (Oncorhynchus mykiss)

Tropisternus setiger --- --- --- --- --- --- 1 ---

Staphynilidae (A) * 1 --- --- --- --- --- --- ---

Nitidulidae (A) * --- --- --- --- 1 --- --- ---

Scirtidae (L) --- --- --- --- 1 --- --- ---

Coleoptera sp. * --- 1 0.32 1 --- --- --- ---

Athericidae (L) −1 0.57 0.45 1 −1 −1 −1 ---

Diptera Muscidae (L) --- 1 --- 1 1 --- --- ---

Simuliidae (L) −0.70 −0.20 −0.80 −0.30 1 −1 −1 −0.50

Empididae (L) −1 −1 −1 −1 −1 −1 −1 1

Paratrichocladius sp. −0.30 1 −1 −0.70 0.68 −1 −1 −1

Parapsectocladius sp. −1 --- --- --- −1 −1 −1 −1

Pseudochironomus sp. --- --- --- −1 −1 −1 −1 ---

Thienemanniella sp. 1 −1 --- −1 --- −1 −1 −1

Orthocladius sp. 1 --- −1 --- --- −1 --- ---

Lopescladius sp. --- −1 --- −1 --- 1 --- −1

Ceratopogonidae sp. --- --- −1 −1 −1 −1 --- −1

Pupae sp. 1 1

Adult sp.* 1 1 1 1 1

Odonata Cyanallagma interruptum --- --- 1 --- --- --- --- ---

Homoptera Homoptera sp.* 1 1 1

Hymenoptera Hymenoptera sp.* 1 1 1

Orthoptera Orthoptera sp.* 1

Hemiptera Hemiptera sp.* --- --- --- --- --- --- 1 ---

Fish fragment Eggs 1

From Nant y Fall (NyF) and Cabeza de Vaca (CVA) streams (Patagonia, Argentina) during the study period (early autumn, late winter, late spring of 2005, and late
summer of 2006). Taxa absence at both environment and trout stomach were represented by --- and terrestrial prey (*).
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Discussion
Benthos density and composition varied seasonally and in
a different way at both streams. Whereas at NyF, the high-
est benthos density occurred in early autumn, and at
CVA, it occurred in late summer. This difference between
streams is in line with observations by Miserendino
and Pizzolón (2003, 2004), who documented at other
Patagonian mountain rivers that macroinvertebrate di-
versity and density vary mainly due to environmental
factors such as current speed and water temperature
which differed between both streams. NyF was the most
productive stream in terms of invertebrate density which
results in a higher food availability for trouts. This agrees
with the fact that lake-outlet streams, like NyF, are consid-
ered highly productive environments (Huryn and Wallace
2000; Brand and Miserendino 2012) and that the presence
of patches of native forest upstream of the sampling site
(Brand and Miserendino 2012) may help to buffer negative
impacts on the structure of the invertebrate community
related to the land-use activities there (Sponseller et al.
2001).
Overall, diet composition was dominated by Trichoptera
species. These preys contributed strongly to the diet in
late summer and early autumn in NyF and in late spring
and summer in CVA, decreasing their importance as prey
in the remaining seasons. Despite of the overall domin-
ance of these species, the composition of the diet varied
seasonally as observed in previous studies carried out in
the region (Buria et al. 2009; Di Prinzio and Casaux 2012;
Di Prinzio et al. 2013). Rainbow trouts from both streams
tended to forage on the larger individuals of each prey
species. Similarly, Buria et al. (2007) observed that at other
three Patagonian streams, trouts foraged on the largest
size classes of each prey species. According to Wissing
and Hasler (1971), McCauley et al. (1974), and Rodgers
and Qadri (1977), it seems that certain Trichoptera
species contain more calories per gram than most of
the macroinvertebrate taxa found in streams, and this
could explain for the observed pattern in the diets of the
analyzed specimens.
The diversity and width of the rainbow trout diet

observed in this study is similar to that reported for this



Table 4 Selectivity index (Ivlev) of body size prey (mm) in the diet of rainbow trout (Oncorhynchus mykiss)

Early autumn Late winter

NyF CVA NyF CVA

Size Ivlev Size Ivlev Size Ivlev Size Ivlev

Chilina
patagonica

S 4.87 1 Chilina patagonica S 4.87 1 Hyalella araucana S 2.85 −1 Aubertoperla
illiesi

S 2.05 −1

M 9.74 --- M 9.74 --- M 5.70 −0.89 M 4.10 −0.76

L 14.61 −1 L 14.6 −1 L 8.55 −0.77 L 6.15 −0.09

Hyalella
araucana

S 2.22 1 Antactoperla michaelseni S 3.34 −0.44 Aubertoperla illiesi S 1.78 −1 Meridialaris
chiloeense

S 2.47 −1

M 4.44 −0.37 Antactoperla michaelseni M 6.68 0.59 M 3.56 −0.96 M 4.94 −0.95

L 6.66 1 L 10.02 0.51 L 5.34 0.68 L 7.41 −0.65

Notoperlopsis
femina

S 4.14 −0.75 Pelurgoperla personata S 2.05 −1 Limnoperla
jaffueli

S 2.6 −1 Smicridea
annulicornis

S 3.65 ---

M 8.28 0.43 M 4.10 −0.95 M 4.72 −0.94 M 7.30 −0.82

L 12.42 1 L 6.15 1 L 7.08 0.83 L 10.9 1

Nousia
delicata

S 2.94 −1 Meridialaris chiloeense S 2.67 −1 Penaphlebia
chilensis

S 2.87 −1 Simuliidae S 2.00 −1

M 5.88 0.58 M 5.34 −0.96 M 5.74 −1 M 4.00 −0.91

L 8.82 1 L 8.01 −0.72 L 8.61 −0.14 L 6.00 −0.56

Andesiops
torrens

S 2.05 −0.22 Andesiops torrens S 2.45 --- Parasericostoma
ovale

S 3.42 −1 Paratrichocladius S 1.78 ---

M 4.10 −0.03 M 4.90 --- M 6.84 0.05 M 3.56 ---

L 6.15 1 L 7.35 −0.68 L 10.2 0.71 L 5.34 0.91

Parasericostoma
ovale

S 2.94 −0.95 Parasericostoma ovale S 2.14 --- Athericidae S 4.45 ---

M 5.88 −0.14 M 4.28 --- M 8.90 −0.78

L 8.82 −0.21 L 6.42 −0.92 L 13.3 1

Hudsonema
flaminii

S 1.40 --- Hudsonema flaminii S 2.22 −0.97 Simuliidae S 2.31 ---

M 2.80 −0.60 M 4.44 −0.85 M 4.62 0.83

L 4.20 −0.25 L 6.66 −0.35 L 6.93 1

Brachysetodes sp. S 1.29 --- Brachysetodes sp. S 1.65 −0.61

M 2.58 0.21 M 3.30 −1

L 10.68 1 L 15.2 −1

Simuliidae S 1.84 −0.55 Smicridea annulicornis S 3.65 −1

M 3.68 0.37 M 7.30 −0.88

L 5.52 0.04 L 10.9 0.21

Paratrichocladius S 1.78 --- Athericidae S 4.20 −1

M 3.56 −0.39 M 8.40 −1

L 5.34 4 L 12.6 −0.87

Simuliidae S2.09 −0.96

M 4.18 −0.82

L 6.27 −0.58
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Table 4 Selectivity index (Ivlev) of body size prey (mm) in the diet of rainbow trout (Oncorhynchus mykiss)

Late spring Late summer

NyF CVA NyF CVA

Size Ivlev Size Ivlev Size Ivlev Size Ivlev

Hyalella
araucana

S 1.35 --- Chilina patagonica S 1.34 --- Andesiops
torrens

S 1.80 −1 Chilina
patagonica

S 5.94 ---

M 2.70 −1 M 2.68 --- M 3.60 −0.61 M 11.8 1

L 4.05 1 L 4.02 −0.96 L 5.40 0.63 L 17.8 −1

Limnoperla
jaffueli

S 2.00 --- Brachysetodes sp. S 1.91 −1 Parasericostoma
ovale

S 2.77 −1 Antactoperla
michaelseni

S 1.65 ---

M 4.00 0.57 M 3.82 −0.95 M 5.57 −0.55 M 3.30 −0.44

L 6.00 0.57 L 5.73 −0.65 L 8.31 −0.55 L 4.95 1

Penaphlebia
chilensis

S 4.31 −069 Smicridea annulicornis S 4.47 --- Smicridea
annulicornis

S 1.74 --- Pelurgoperla
personata

S 1.78 ---

M 8.62 −0.67 M 8.94 −0.16 M 3.48 0.85 M 3.56 ---

L 12.9 −1 L 13.4 −0.16 L 5.22 0.85 L 5.34 −0.95

Parasericostoma
ovale

S 3.74 −0.75 Nousia crena S 2.27 −1

M 7.48 0.38 M 4.57 −1

L 11.2 −0.87 L 6.81 0.60

Smicridea annulicornis S 3.67 1 Andesiops torrens S 2.05 ---

M 7.34 --- M 4.10 −1

L 11.0 −1 L 6.15 1

Paratrichocladius sp. S 1.78 --- Hudsonema flaminii S 2.14 −1

M 3.56 −0.92 M 4.28 ---

L 5.34 −0.69 L 6.42 1

Brachysetodes sp. S 2.27 −1

M 4.54 −1

L 6.81 −0.91

Neoatopsyche
brevispina

S 2.89 −1

M 5.78 −1

L 11.0 −0.97

Smicridea annulicornis S 3.69 −1

M 7.38 −0.17

L 11.0 0.13

Simuliidae S 2.22 −1

M 4.44 −1

L 6.66 1

From Nant y Fall (NyF) and Cabeza de Vaca (CVA) streams (Patagonia, Argentina) during the study period. Body size taxa absence was represented by ---. S, small
size; M, medium size; L, large size.
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species in other Patagonian environments (Arismendi
et al. 2012; Di Prinzio et al. 2013) but higher than the
observed in the native catfish Hatcheria macraei (Ferriz
1994, 2012; Barriga et al. 2009; Di Prinzio and Casaux
2012). This fact supports the proposal by Di Prinzio
et al. (2013) indicating that the expansion success of the
rainbow trout in Patagonia could be explained, among
other factors, by their high feeding plasticity, which



Figure 6 Results of the multidimensional ordination of
Oncorhynchus mykiss. Based on stomach content data collected
during the study period (early autumn, late winter, late spring 2005,
and late summer 2006) at Nant y Fall (NyF) and at Cabeza de Vaca
(CVA) streams (Patagonia Argentina). A, autumn; W, winter; SP, spring;
SU, summer.
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depends on different issues (prey-type characteristics,
seasonal changes in resource supply, food-habitat utiliza-
tion, etc.). This allows the trout to exploit temporarily
abundant food resources and switch between specialized
and generalized feeding strategies, buffering changes in
food availability as observed in some streams in Patagonia
(Di Prinzio et al. 2013).
Although prey selectivity varied seasonally, rainbow trout

positively selected both aquatic (Gasteropoda, Crustacea,
Plecoptera, Trichoptera, Ephemeroptera, Coleoptera,
Diptera, and Odonata) and terrestrial organisms (adult
dipteran, Oligochaeta, Araneae, Homoptera, Hymenoptera,
Orthoptera, and Hemiptera), which is in line with other
studies carried out in the area (Buria et al. 2009; Di Prinzio
and Casaux 2012; Di Prinzio et al. 2013). Compared to
CVA, at NyF, rainbow trouts positively selected a higher
number of terrestrial species (Table 3). This difference
between streams in the number of terrestrial prey se-
lected could be explained, to some extent, by the higher
riparian and littoral invertebrate richness registered at
NyF (Miserendino et al. 2011). During late winter, trouts
at NyF positively selected fish eggs. According to the
egg size, these come from the rainbow trout spawning
individuals who evidence that this trout auto-regulate, to
some extent, their populations. On the other hand, some
infaunal invertebrates like Oligochaeta and some small
larvae of Coleoptera and Diptera (mainly Chironomidae)
were not selected by trouts. This could be related, among
other reasons, to the fact that trouts rely predomin-
antly on visual cues to detect prey (Wilzbach et al. 1986;
Angradi and Griffith 1990). For instance, compared drift-
ing preys, McIntosh (2000) observed at New Zealand
streams few oligochaetes in the diet of salmonid species.
The effects of the introduction of freshwater fish spe-

cies are a matter of ongoing debate worldwide (Gozlan
2008, 2009; Leprieur et al. 2009; Gozlan et al. 2010).
Unfortunately, the scarcity of biological data from the
basins before and after the introduction prevents to
clearly visualize which are the consequences and impacts
of these actions. Frequently, introduced rainbow trouts
and prey interaction results are unpredictable because
the introduction is achieved in disturbed environments
as those studied here. Moreover, fish can also have im-
portant effects on different levels of the ecosystems
(Power 1992; Nyström et al. 2001; Townsend 2003). In
this sense, it was observed at several countries, included
Argentina, that fish introductions resulted in the elimin-
ation/reduction/alteration of native populations of both
vertebrates and invertebrates (Flecker and Townsend
1994; Arismendi et al. 2009; McIntosh 2000; Di Prinzio
and Casaux 2012; among others). Despite of the problems
associated to the rainbow trout introduction, this fish is
an emblematic species for sport fishing being this recre-
ative activity an important source of incomes in the re-
gion. For being economically and ecologically sustainable,
the administration of this activity requires an adequate
knowledge on the species biology and on the prey–predator
pattern, so this type of study helps to design mitigation and
conservation guidelines because it encompasses not only
the fish population but also the macroinvertebrate com-
munity and their biological interactions.

Conclusions
Our study reflects a dominance of trichopteran species
in the rainbow trout diet. The fact that certain Trichop-
tera species contain more calories per gram than most
of the macroinvertebrate taxa found in these streams
could explain the observed pattern in the diets of the
trout analyzed. The composition of the diet of the exotic
trout varied seasonally. In both streams, rainbow trouts
consumed the largest preys available in the environment
and positively selected both aquatic and terrestrial
preys.
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