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Clinically relevant intronic splicing enhancer
mutation in myelin proteolipid protein leads to
progressive microglia and astrocyte activation in
white and gray matter regions of the brain
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Abstract

Introduction: Mutations in proteolipid protein (PLP), the most abundant myelin protein in the CNS, cause the
X-linked dysmyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2).
Point mutations, deletion, and duplication of the PLP1 gene cause PMD/SPG2 with varying clinical presentation.
Deletion of an intronic splicing enhancer (ISEdel) within intron 3 of the PLP1 gene is associated with a mild form of
PMD. Clinical and preclinical studies have indicated that mutations in myelin proteins, including PLP, can induce
neuroinflammation, but the temporal and spatial onset of the reactive glia response in a clinically relevant mild
form of PMD has not been defined.

Methods: A PLP-ISEdel knockin mouse was used to examine the behavioral and neuroinflammatory consequences
of a deletion within intron 3 of the PLP gene, at two time points (two and four months old) early in the patho-
logical progression. Mice were characterized functionally using the open field task, elevated plus maze, and nesting
behavior. Quantitative neuropathological analysis was for markers of astrocytes (GFAP), microglia (IBA1, CD68, MHCII)
and axons (APP). The Aperio ScanScope was used to generate a digital, high magnification photomicrograph of
entire brain sections. These digital slides were used to quantify the immunohistochemical staining in ten different
brain regions to assess the regional heterogeneity in the reactive astrocyte and microglial response.

Results: The PLP-ISEdel mice exhibited behavioral deficits in the open field and nesting behavior at two months,
which did not worsen by four months of age. A marker of axonal injury (APP) increased from two months to four
months of age. Striking was the robust reactive astrocyte and microglia response which was also progressive. In the
two-month-old mice, the astrocyte and microglia reactivity was most apparent in white matter rich regions of the
brain. By four months of age the gliosis had become widespread and included both white as well as gray matter
regions of the brain.

Conclusions: Our results indicate, along with other preclinical models of PMD, that an early reactive glia response
occurs following mutations in the PLP gene, which may represent a potentially clinically relevant, oligodendrocyte-
independent therapeutic target for PMD.
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Background

Microglia are distinguished from other glial cells, such
as astrocytes and oligodendrocytes, by the expression
of macrophage-associated markers, such as CD11b.
Through sampling of the microenvironment, microglia
are able to rapidly respond to a disturbance in tissue
homeostasis by moving to the potential threat, often in
numbers [1,2]. In most diseases of the central nervous
system (CNS), an increased expression of macrophage-
associated markers, such as major histocompatibility
complex (MHC) class II, has been associated with an
activation of microglia. Activated microglia in CNS dis-
eases can damage neurons through the production of
neurotoxic substances such as tumor necrosis factor-a
(TNF-a) [3]. However, the presence of activated micro-
glia in a CNS disease can be a consequence of a tissue
disturbance, such as dying cells (neurons or oligoden-
drocytes), and not a cause of the cell death.

Beyond the responsive, immunological effector like
functions, it is now being increasingly recognized that
microglia have a number of important physiological
functions in the healthy CNS. The housekeeping func-
tions of microglia in the healthy CNS include: 1) phago-
cytosis of dying cells and cellular debris (such as
myelin); 2) synaptic interactions and synaptic pruning;
3) regulation of neuronal activity; 4) suppression of
inflammation mediated by inflammatory monocytes; 5)
modulating neurogenesis and oligodendrogenesis (for re-
view see: [4-8]). Moreover, genetic mutations affecting
microglia function are linked to neurological disease
(for review see: [9]); including, both neurodevelopmental
disorders (MECP2 in the case of Rett syndrome [10]),
and neurodegenerative disorders (CD33 and TREM2 in
the case of Alzheimer’s disease [11]) for example.

While still poorly understood, it is believed a hetero-
geneity exists in microglia depending on the region of
the CNS where they are found [8]. The most obvious ex-
ample would be differences in microglia in white matter
versus gray matter regions of the brain. In gray matter,
microglia have been shown to be involved in synaptic
reorganization [12]. In white matter, microglia facilitate
the turnover of myelin [13]. There may also be regional
differences in the reactive responses of microglia that
make some neuron and glia populations particularly vul-
nerable to neuroinflammatory responses [14]. Therefore,
it is important to understand regional heterogeneity in
the microenvironment and in the microglia populations
that may influence the reactive glia response and path-
ology that could result from that response.

Focusing on regional heterogeneity of white matter, re-
cent work has shown that alterations in myelin proteins
including proteolipid protein (PLP) and 2',3’-cyclic-nu-
cleotide 3'-phosphodiesterase (CNP) alone can induce a
robust microglia response [15-29]. PLP is the most
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abundant protein of myelin in the CNS. PLP1 gene en-
codes for two proteins: PLP, and a smaller splice isoform
DM20 that originates from alternative splicing of exon
3B [30]. In the CNS, oligodendrocytes express PLP and
DM20 and regulate the expression of these two integral
membrane myelin proteins in a developmental fashion.
Despite the abundance of PLP in myelin, and the obvi-
ous role in neurological disease, PLP1 knockout (KO)
mice have only subtle changes in myelin integrity
[22,31,32]. However, the PLP1 KO mice do develop a
progressive axonal pathology [22].

In humans, mutations in the PLP1 gene cause
a spectrum of neurological diseases that vary in severity
from the milder spastic paraplegia (SPG2) to the
severe connatal Pelizaeus-Merzbacher disease (PMD)
[33]. Clinically, deletion of an intronic enhancer (ISEdel)
within intron 3 of the PLP1 gene is associated with a
mild form of PMD that presents with progressive neuro-
logical disability [34]. Recently, a knockin (KI) mouse,
PLP-ISEdel, was generated to experimentally define the
function of this mutation [35]. The mutation was found
to reverse the ratio of PLP to DM20 (less PLP and more
DM20), with no change in the total amount of protein
from the PLP1 gene. Importantly, the ISEdel mutation in
PLP leads to myelin abnormalities that become progres-
sively worse with age [35].

The goal of this study was to determine if the PLP-
ISEdel mouse model of a clinically relevant mild form of
PMD, that neither lacks nor overexpresses PLP, would
be sufficient to induce a reactive microglia response, as
seen in more aggressive models of PMD [16,23,24]. In
addition, we sought to determine if there was any re-
gional heterogeneity in the microglia response. To this
end, the temporal and spatial profile of the reactive glia
response (microglia and astrocyte) was measured in the
PLP-ISEdel mouse. The reactive glia response was com-
pared to behavioral changes and axonal injury seen in
the PLP-ISEdel mouse. We found an early increase in
the reactive glia response in the white matter that pro-
gressed to involve gray matter regions of the brain. Our
results, together with other clinical and preclinical
models of PMD, suggest that clinically relevant muta-
tions in PLP1 are associated with a regionally progres-
sive reactive glia response.

Methods

Mice

Experiments were conducted in accordance with the
principles of animal care and experimentation in the
Guide for the Care and Use of Laboratory Animals. The
Institutional Animal Care and Use Committee of the
University of Kentucky approved the use of animals in
this study. The PLP-ISEdel mice were generated as
previously described [35]. The PLP-ISEdel mice were
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backcrossed onto a C57BL/6 ] background and main-
tained as homozygous KI. For controls, aged-matched
C57BL/6 ] mice were obtained from Jackson Laboratory.
All experiments used an approximately 50/50 ratio of
female/male mice.

Open field activity

As previously described [36], mice were placed in an
open field maze (50 cm long x 50 cm wide) for 30 mi-
nutes, with activity recorded using EthoVision XT 8.0
video tracking software (Noldus Information Technol-
ogy, Leesburg, VA, USA). The 50 cm x 50 cm open field
maze was digitally divided into 25 quadrants of equal
size (9 central and 16 peripheral). The nine central
quadrants are collectively referred to as the center zone
and the 16 peripheral quadrants are collectively referred
to as the peripheral zone. Data was scored automatically
for distance traveled (cm), velocity (cm/s), and time
spent in the center zone versus the peripheral zone.

Elevated plus maze

As previously described [36], an elevated plus maze
(San Diego Instruments, San Diego, CA, USA) consist-
ing of four arms (two enclosed arms and two open arms)
elevated 100 cm above the floor was used to assess
anxiety-related behavior. The test began with each
mouse placed in the center of the maze and the amount
of time spent in each arm was recorded automatically by
EthoVision XT 8.0 video tracking software (Noldus In-
formation Technology, Leesburg, VA, USA).

Visible platform water maze

To test the vision of C57BL/6 ] and PLP-ISEdel mice, we
tested mice on only the visible platform component of the
Morris water maze. Briefly, the maze consisted of a com-
mon circular swim area of 100 cm. The pool was filled
with water until the level was approximately 2 cm below a
visible 10 c¢cm circular platform. The platform was placed
approximately 15 cm away from the walls in one quadrant
of the maze. Mice were given 60 seconds to find the visible
platform. After reaching the platform, the mouse was
allowed to remain on it for ten seconds and was then re-
moved, dried, and placed in a warming cage until the initi-
ation of that mouse’s next trial after all ten mice in each
group had been tested. For each subsequent trial, the
mouse was released from a different start quadrant into
the maze and allowed to locate the platform. Platform lo-
cation remained constant throughout testing. Each mouse
underwent three trials. Performance was recorded and
scored using EthoVision XT 8.0 video tracking software
(Noldus Information Technology, Leesburg, VA, USA).
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Nest-building

C57BL/6 ] and PLP-ISEdel mice were moved to single
house cages in the standard home cage, without a nest-
let, at 15:00. A nestlet was added to the cage at 17:00.
On the following day at 09:00, two independent ob-
servers, blind to the experimental conditions, scored the
presence and quality of the nest on a five point scale as
follows: 1 =nestlet not noticeably touched, 2 = nestlet
partially torn up, 3 = mostly shredded but often no iden-
tifiable nest site, 4 =an identifiable but flat nest, and
5 =a (near) perfect nest [37].

Euthanasia and brain tissue harvesting

Mice were euthanized by sodium pentobarbital overdose,
and transcardially perfused with ice-cold PBS for five
minutes, followed by ice-cold 4% paraformaldehyde
(PFA). The brains were rapidly removed and fixed in 4%
paraformaldehyde for 14 to 16 hours, prior to cryopro-
tection in a 30% sucrose/PBS solution.

Immunohistochemistry (IHC)

Using a sliding microtome with a freezing stage, serial
sagittal sections (30 pm) of one entire hemisphere were
collected and the sections were stored in cryoprotectant
at —20°C. Staining procedures were conducted on free-
floating sections using every twelfth section through the
entire hemisphere. Primary and secondary antibodies
were diluted in 3% normal goat serum (NGS: LAMPIRE
Biological Laboratories, Pipersville, PA, USA, catalog
number 7332500) with 0.2% Triton X-100. Endogenous
peroxidase activity was quenched with 3% H,O, in
methanol, prior to the tissue blocking in 10% normal
goat serum with 0.2% Triton X-100. Primary antibodies
used included: rabbit anti-APP (Life Technologies,
Grand Island, NY, USA, catalog number 51-2700;
(1:2,000)); rabbit anti-GFAP (Dako, Carpinteria, CA,
USA, catalog number Z0334; (1:10,000)); rabbit anti-
IBA1 (Wako Chemicals USA, Richmond, VA USA, cata-
log number 019-19741; (1:10,000)); rat anti-MHCII
(I-A/I-E) (BD Biosciences, San Jose, CA, USA, catalog
number 556999; (1:5,000)); rat anti-CD68 (AbD Serotec,
Raleigh, NC, USA catalog number MCA1957T;
(1:5,000)). For the detection of GFAP and IBA1, an HRP
conjugated goat anti-rabbit IgG was used. For all other
primary antibodies, a biotinylated secondary antibody
was amplified in avidin-biotin substrate (ABC kit, Vector
Laboratories, Burlingame, CA, USA). All sections were
developed in 0.5 mg/ml 3,3-diaminobenzidine tetrahy-
drochloride solution (Sigma-Aldrich, St. Louis, MO,
USA, catalog number D5637). The tissue sections were
dehydrated through gradients of ethyl alcohol, and
finally xylene. The sections were then coverslipped
with Permount Mounting Medium (Fisher Scientific,
Pittsburgh, PA, USA).
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Quantitative image analysis of IHC

As previously described [38], the Aperio ScanScope XT
digital slidescanner (Aperio, Vista, CA, USA) was used
to image the entire stained slide at 20x magnification to
create a single high-resolution digital image. The brain
regions were outlined using the Aperio ImageScope soft-
ware (Aperio, Vista, CA, USA). The Aperio positive pixel
count algorithm (version 9) was used to quantify the
amount of specific staining in the region. The number of
positive pixels was normalized to the number of total
pixels (positive and negative) to account for variations in
the size of the region sampled. Color and intensity
thresholds were established to detect the immunostain-
ing as positive pixels and background staining as nega-
tive pixels. Once conditions were established for an
immunohistochemical stain, the entire batch of slides
was analyzed with the same parameters. The resulting
color markup of the analysis was confirmed for each
slide. Personnel blind to the experimental conditions
performed all quantifications.

Statistics

All statistical analyses were performed using GraphPad
Prism Version 6.00, GraphPad software (San Diego,
CA, USA). A two-way ANOVA was used for compari-
sons of age and genotype interactions. Planned compari-
sons between age-matched C57BL/6 ] and PLP-ISEdel
mice were made using an un-paired t-test, with the ex-
ception of the nesting score that used the non-
parametric Mann—Whitney U-test. Each group used an
approximately 50:50 ratio of males to females. Data are
expressed as the mean +* the standard error of the mean
(SEM). Differences between means from experimental
groups were considered significant at the P < 0.05 level.

Results

Behavior impairments are seen in two-month-old
PLP-ISEdel mice

Clinically, deletion of an ISE within intron 3 of the PLP1
gene is associated with a mild form of PMD that pre-
sents with progressive neurological disability [34]. The
PLP-ISEdel KI mouse was generated to experimentally
define the functional consequences of this mutation
[35]. Previously, using the rotorod task, motor deficits of
similar severity were found in the PLP-ISEdel mice at
3-months-old and 6-months-old. To extend these find-
ings, the open field behavioral task was used to assess
ambulatory movement in two independent groups of
2-month-old and 4-month-old wild-type (WT) and
PLP-ISEdel mice. As shown in Figure 1A, total distance
traveled over a 30 minute period was decreased in
PLP-ISEdel mice compared to age matched WT con-
trols. Total distance traveled was found to increase with
age irrespective of genotype. Normalizing the distance
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Figure 1 PLP-ISEdel mice show motor impairments in the open
field task. Mice were placed in an open field maze for 30 minutes
and their activity was recorded and analyzed using video tracking
software. A significant impairment was found in total distanced
traveled (A), and velocity of movement (B). In the 4-month-old
group, an age-related difference in thigmotaxis behavior between
the wild-type (WT) and PLP-ISEdel mice was found (C), which is
shown in a computer-generated trace of the animal’s movements
over 30 minutes (D). (2-month-old WT (n = 15) versus PLP (n = 16); 4-
month-old WT (n=12) versus PLP (n=12).

traveled by age, such that the 2-month-old mice values
were divided by the mean of the 2-month-old WT and
the 4-month-old mice values were divided by the mean
of the 4-month-old WT, a two-way ANOVA found a sig-
nificant interaction of genotype (P=0.0016), but no
interaction was found for age (as there was no difference
between the 2-month-old PLP-ISEdel mice compared to
the 4-month-old PLP-ISEdel mice (2-month-old PLP
0.878 £ 0.028; versus 4-month-old PLP 0.867 + 0.055;
mean + SEM)). Similarly, velocity was found to be
decreased in the PLP-ISEdel mice compared to the age
matched WT mice (Figure 1B). Again normalizing
the velocity by age, a two-way ANOVA found a signifi-
cant interaction of genotype (P =0.0028), but no inter-
action for age (2-month-old PLP 0.877 +0.027; versus
4-month-old PLP 0.878 + 0.06; mean + SEM).

While no progressive deficits were found in the total
distance traveled or the velocity of the movement, a pro-
gressive change was found in the use of the thigmotaxis
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behavior in exploring the open field (Figure 1C).
Figure 1D shows the video tracking of the movement
over the 30-minute period in the open field where
4-month-old PLP-ISEdel mice were found to limit the
exploration of the open field primarily to the edges of
the maze. As the thigmotaxis behavior could reflect an
anxiety-related behavior [39], the 4-month-old WT and
PLP-ISEdel group were tested on the elevated plus maze.
No significant difference was found in the amount
of time spent in the enclosed arms or open arms (closed
arms, 4-month-old WT 198.4 + 13.74; versus 4-month-
old PLP 177.3+10.09; open arms, 4-month-old WT
76.08 + 8.84; versus 4-month-old PLP 77.45+7.87;
mean = SEM(s)). Since we did not find a difference in
anxiety-related behavior by the elevated plus maze test, we
next sought to determine if the PLP-ISEdel mice had a
deficit in visual acuity. Using a visible platform in a water
maze to test 4-month-old WT and PLP-ISEdel mice, no
significant difference was found in the distance traveled to
find the platform (data not shown). The visible platform
water maze task suggests that PLP-ISEdel mice are able to
use vision to facilitate the escape from the water.
Nest-building is a naturalistic mouse behavior, which
with the exception of pregnancy and lactation, which is
largely related to thermoregulation, but with a significant
non-homeostatic component related to exploration and
in the wild for camouflage [40,41]. The nest-building be-
havior was used as a measure of ‘activity of daily living’
to determine if the ISEdel mutation would affect the
mouse’s normal behavior performed in the home cages.
The 2-month-old and 4-month-old C57BL/6 ] mice
made a near perfect nest (5 on the nesting scale) as
shown in Figure 2A. In comparison, the PLP-ISEdel
mice were found to make a lower quality nest that was
flat but identifiable (4 on the nesting scale; Figure 2A).
Quantification of the nesting behavior by two-way ANOVA
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found a significant effect of genotype (P =0.0026), but no
significant effect of age or interaction of age and genotype.

Progressive increase in astrocyte activation is seen in the
white and gray matter regions of the PLP-ISEdel mice

To determine if the PLP-ISEdel mice have a similar
reactive glia response as PLP overexpressing mice
[16,19,23,24,26-29], we measured specific histological
markers of astrocytes and microglia. Glial fibrillary acidic
protein (GFAP) is an astrocyte specific marker, which in
mice is expressed at low levels in most regions of the
brain, but shows a marked increase when the astrocytes
become reactive; for example, to injury. With the Aperio
ScanScope (Aperio, Vista, CA, USA), using a 20x object-
ive, a single digital image was made of the entire sagittal
brain section stained with different glia markers. Figure 3A
shows representative images of the regional distribution of
the GFAP staining at a low digital magnification. In the
WT mice, the majority of GFAP immunohistochemical
staining was associated with blood vessels, as well as the
typical robust GFAP staining in the hippocampus. In the
2-month-old PLP-ISEdel mice, even at low magnification,
a clear increase in GFAP staining was seen in the white
matter rich areas of the brain stem and cerebellum. By
4-months-old, the PLP-ISEdel mice showed a strong GFAP
staining throughout the brain, including in the cortex.

To quantify the amount of GFAP immunohistochemi-
cal staining, regions of interest were outlined corre-
sponding to those shown in Figure 3B. The Aperio
ScanScope allows the entire brain structure to be out-
lined and quantified as a region of interest (ROI), instead
of a single microscopic field in a brain region being used
as a ROI; thereby, this approach eliminates the potential
basis associated with the selection of the ROI. Using the
positive pixel algorithm the amount of staining in the re-
gions were quantified (in the 2-month-old and 4-month-

A: nesting
C57BL/6J

N

B: nesting score
PLP-ISEdel

=il

2mo 4 mo

[ c57BL6J
I PLP-ISEdel

nestmg score

Figure 2 Nesting behavior is impaired in PLP-ISEdel mice. (A) Representative images of the types of nests built by the wild-type (WT) mice
and the PLP-ISEdel mice. (B) At 2-months-old and at 4-months-old, the PLP-ISEdel mice showed a significant impairment in the quality of the nest
built compared to the age-matched WT mice. (2-month-old WT (n = 14) versus PLP (n = 16) *P =0.024; 4-month-old WT (n =10) versus PLP

(n=6) **P=0.0039).
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to 6 per group). Abbreviations: hippocampus (hip); Cpu, striatum (caudate putamen).

old PLP-ISEdel) and expressed as percent of the 2-
month-old WT mice for the region (Table 1). As clearly
seen in the low power photomicrographs, and supported
by the quantitative histopathology, of the ten regions of
the CNS included in the analysis, only the hippocampus
was spared from an increase in GFAP staining in the
4-month-old PLP-ISEdel mice.

Robust microglia activation is seen in white and gray
matter regions of the CNS in the PLP-ISEdel mice

The ionized calcium-binding adapter molecule 1 (IBA1)
is a pan marker of microglia in the brain which is useful

for studying morphological changes in the microglia.
Activated microglia also upregulate the expression of
IBA1; therefore the amount of IBA1 staining can be in-
dicative of microglia activation. As shown by the heat
map in Figure 4, quantification of the IBA1 staining
showed the strongest activation in white matter rich re-
gions of the brain (Table 2). The amount of IBA1 stain-
ing was not significantly increased in the striatum;
however, the most striking morphological changes in
microglia were seen in the striatum. As shown in
Figure 4B, microglia in WT mice were evenly distributed
throughout the striatum. In contrast, microglia were
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Table 1 Summary of quantitative neuropathological analysis of glial fibrillary acidic protein immunohistochemistry

(GFAP IHQ)
Brain region C57BL/6 J PLP-ISEdel Two-way ANOVA

2mo 4mo 2mo 4mo Geno Age Inter
Cerebellum gm 100 + 41 332+83 188 £ 62 1,372 +457 * * *
Cerebellum wm 100+ 17 225+50 369 £ 53 740 £122 e ** ns
Medulla 100+ 30 123+ 64 636+77 1,551 +280 Frrx ** **
Pons 100+ 53 99+ 33 697 + 83 2,111 +337 Frxx *x *xx
Midbrain 100+ 39 47 +20 396+ 62 1331+£106 e Fxxx Fxxx
Thalamus 100+ 26 107 £ 53 644+ 173 2,031 +340 Frrx ** **
Striatum 100 £ 45 66+ 23 87+22 720+ 163 w* o **
Corpus callosum 100+ 14 108+ 19 206 + 21 258 +37 xrxx ns ns
Cortex 100+ 23 190+ 39 136+ 20 800+ 211 ** ** *
Hippocampus 100 £ 25 137+£20 87 £7 153+£18 ns * ns

2-month-old WT mice used as 100%. Mean * SEM for each brain region is indicated. (n =5 to 6 per group). Abbreviations: *P < 0.05, **P < 0.01, ***P < 0.001,
***¥*P < 0.0001; geno = genotype; gm = gray matter; inter = interaction of age and genotype; mo = month-old; ns = not significant; wm = white matter.

found to cluster around white matter tracts in the stri-
atum of the PLP-ISEdel mice. The microglia were also
found to have long processes running parallel to the
white matter tracts (Figure 4C), and on occasion the
microglia would form clusters in areas of the striatum
(Figure 4D).

CD68 is a macrophage marker, predominantly located
in lysosomal membrane, closely related to the family
of lysosomal associated mucin-like membrane proteins
(lamps) [42,43]. In 2-month-old PLP-ISEdel mice, CD68
staining was localized to white matter rich regions of the
brain. By 4-months-old, the CD68 staining was also
found in many gray matter rich regions of the brain
(Figure 4A,B; Table 2).

A third marker of microglia, MHCII, was also in-
creased in the 2-month-old and 4-month-old PLP-
ISEdel mice compared to the WT control (Figure 5).
The increase in MHCII appears to be sensitive to the
early changes in microglia activation in the PLP-ISEdel
mouse, as widespread changes were seen in the white
and gray matter regions of the PLP-ISEdel mouse at
both ages (Table 2). However, as shown in Figure 5D,
the MHCII staining was sparse which likely contributed
to the high variability seen in the PLP-ISEdel mice.

Four-month-old PLP-ISEdel mice have increased markers
of axonal injury

Previously, we reported that axonal degeneration was
not seen in the optic nerve of the PLP-ISEdel mouse up
to six months of age [35]; however, other regions of the
brain were not investigated. Using amyloid precursor
protein (APP) immunohistochemistry as a marker for
axonal injury, we sought to determine if axonal accumu-
lation of APP could be seen in other regions of CNS in
the PLP-ISEdel mice. In 2-month-old WT and 2-month-

old PLP-ISEdel mice, axonal accumulation of APP was
not detected. However, in all of the 4-month-old PLP-
ISEdel mice included in the study, APP* spheroids were
found while APP* spheroids were not detected in the
4-month-old WT mice. Some APP" spheroids were seen
in white matter rich regions of the corpus callosum and
brainstem of the 4-month-old PLP-ISEdel mice. However,
the most robust APP* spheroids were found in the thal-
amus (Figure 6A) followed by the striatum (Figure 6B).

Discussion

PLP is the major myelin protein of the CNS. Point muta-
tions and deletions/duplications of the PLP1 gene are as-
sociated with X-linked dysmyelinating leukodystrophies,
PMD and SPG2 [33]. Duplication of the normal PLP1
gene is associated with approximately 70% of PMD cases
[44,45]. Point mutations in the PLP1 gene are a minority
of the PMD and SPG2 cases, but can cause the entire
spectrum of the PMD and SPG2 clinical manifestations
[46]. Recently, we have identified in a group of PMD
patients that a deletion in the PLP1 intron 3 splicing
enhancer caused a mild form of PMD [34]. The PLP-
ISEdel mouse was generated to investigate the mechan-
ism by which loss of the intron 3 splicing enhancer leads
to the progressive neurological disability, demyelination,
and axonal loss in the PMD patients with this PLP1 gene
mutation [35]. As we previously reported, by electron
microscopy analysis of the optic nerve, myelin in the
PLP-ISEdel mouse forms normally although there are re-
dundant loops of myelin at one month. At three and six
months, myelin compaction is progressively abnormal
suggesting myelin instability; however, changes in the
levels of myelin basic protein and CNP in the optic
nerve were not found [35]. We report here the temporal
and spatial profile of microglia and astrocyte activation
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Figure 4 lonized calcium-binding adapter molecule 1 (IBA1) staining shows increased microglia activation in PLP-ISEdel mice. (A)

Quantification of the IBA1 staining in the outlined regions is shown as a heat map, with the average of the signal of the 2-month-old wild-type
(WT) mice for each brain region used as 100%. Mean + SEM for each brain region is indicated (n =5 to 6 per group). (B) Morphological changes
show microglia activation (magenta arrow) along a white matter tract (indicated by red dashed lines). The microglia exhibited a loss of their

normal uniform spatial distribution, and instead showed a more linear distribution (magenta arrow) (C) or clusters of strongly activated cells (D).

\

in the PLP-ISEdel mouse and the regional heterogeneity
of the glial activation response. We also compared the
temporal onset of the glia activation to behavioral
changes and to a marker of axonal injury (APP). We
found that motor behavior abnormalities were present
at the earliest age investigated (two-months-old). In
addition we found a reactive glia response at 2-months-
old in the PLP-ISEdel mice. While the motor impair-
ments did not worsen in the 4-month-old group of PLP-

ISEdel mice, we did find a widespread increase in
markers of a reactive glia response with age. In addition,
in the 4-month-old PLP-ISEdel mice, a marker of axonal
injury was increased.

The motor deficits in the open field test and the im-
pairment in nesting behavior occurred in the PLP-ISEdel
mice at two months of age. This is in agreement with
our previous report, which found motor impairments
using the accelerating rotarod at three months of age in
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Table 2 Summary of quantitative neuropathological analysis of microglia

Brain region C57BL/6 J PLP-ISEdel Two-way ANOVA
2mo 4mo 2mo 4mo Geno Age Inter
IBA1 IHC
Cerebellum gm 100+ 17 293 +68 82+24 293+ 68 ns ** ns
Cerebellum wm 100+ 35 424+ 181 235+35 1,058 £297 * ** ns
Medulla 100+ 21 324+127 272+ 41 940+ 216 ** x* ns
Pons 100+ 23 237+116 274+ 52 512+55 ** * ns
Midbrain 100+ 35 243+ 71 261+ 26 540+ 131 o * ns
Thalamus 100+ 30 161+55 193+ 14 256+75 ns ns ns
Striatum 100+ 24 323+103 877 33574 ns ** ns
Corpus callosum 100+ 18 195 + 41 152+ 44 294+ 84 ns * ns
Cortex 100+ 14 143+17 81+16 136+22 ns * ns
Hippocampus 100+ 34 200+ 51 76 £4 141+38 ns * ns
CD68 IHC
Cerebellum gm 100 £ 47 500 + 194 375+ 88 1,539 +398 ** ** ns
Cerebellum wm 100 £+ 31 346+ 67 1464 +£127 11,607 £ 214 o Frx e
Medulla 100+ 11 323+35 1571+ 166 7,888 £ 1294 o Frrx Frx
Pons 100+ 20 433£50 1,161 +83 6,121 +1107 o e xx
Midbrain 100 + 21 260+ 26 515+76 2,960 £ 379 o Fx Fxxx
Thalamus 100+ 10 251+19 498 +78 2,075+ 257 e Frrx FrEx
Striatum 100+ 29 218+ 17 157 £42 1,142+ 213 e i **
Corpus callosum 100+ 15 208 +22 690 + 96 2,715+ 285 el i i
Cortex 100+ 25 427 £115 308 +62 1,301 £ 285 o FrEX **
Hippocampus 100+ 45 320+ 24 104+ 16 513+50 ** e **
MHCII IHC
Cerebellum gm 100 + 46 336+63 797 +320 632+ 386 ns ns ns
Cerebellum wm 100£75 296+ 156 493 275 891+223 ns * ns
Medulla 100 + 40 35157 556 + 281 1,551 +280 * * ns
Pons 100£53 437100 1,587 £ 211 963 + 291 e ns *
Midbrain 100 + 33 99+ 22 970 + 250 1,139+185 xrxx ns ns
Thalamus 100+ 36 109 + 25 569 + 200 841 + 251 ** ns ns
Striatum 100+ 25 61+14 326+ 150 790+£318 * ns ns
Corpus callosum 100+ 36 65+ 19 463 +98 2,505+ 1148 ns ns ns
Cortex 100+ 38 197 £ 54 398 £126 474 £ 87 ** ns ns
Hippocampus 100+ 47 738 +232 1,482 + 692 1,677 + 839 ns ns ns

2-month-old WT mice used as 100%. Mean + SEM for each brain region are indicated. (n =5 to 6 per group). Abbreviations: *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001; geno = genotype; gm = gray matter; inter = interaction of age and genotype; mo = months-old; ns = not significant; wm = white matter.

the PLP-ISEdel mice [35]. The motor impairments in
the PLP-ISEdel mice were not progressive between two
months of age and four months of age, supporting our
previous work using the rotarod [35]; however, increas-
ing motor impairments at later stages cannot be ruled
out. This is in contrast to progressive motor impairment
seen in the PLP-null mouse; however, these motor im-
pairments are not evident until after the mice are
16 months of age [22]. In comparison, the recently gen-
erated PLP1dup mice, which have a single duplication of

the PLP1 gene as found in the majority of PMD patients,
have a progressive motor impairment beginning at
approximately four months of age [21]. We found a
progressive, age-related change in the search strategy
used to explore the open field, as the 4-month-old
PLP-ISEdel mice demonstrated increased use of a
thigmotaxis behavior. While the thigmotaxis behavior
did not appear to reflect anxiety or visual deficits, the
possibility that visual deficits influenced the thigmotaxis
behavior should not be excluded.
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Figure 5 CD68 and major histocompatibility complex class Il (MHCII) histopathology is increased in the PLP-ISEdel mice. (A) The heat
map shows CD68 quantification with 2-month-old wild-type (WT) mice used as 100%. Mean + SEM for each brain region is indicated (n=5 to 6
per group). (B) CD68" cells were found in the white and gray matter regions of the cerebellum. (C) Quantification of the MHCII staining in the
outlined regions, expressed as percent of 2-month-old WT as 100%. Mean + SEM for each brain region is indicated (n=5 to 6 per group). (D) A
representative photomicrograph shows MHCII™ cells in the corpus callosum of a 4-month-old PLP-ISEdel mouse.

A major finding in this study is the widespread early
and progressive astrogliosis in white and gray matter re-
gions of the PLP-ISEdel mice. In the 2-month-old mice,
the astrogliosis began in the cerebellum, brain stem and
thalamus. By 4-months-old, the PLP-ISEdel mice showed
increased astrogliosis throughout the brain. Neuropatho-
logical assessments of PMD patients with PLP1 duplica-
tion, deletion, and mutations are in agreement with our
findings. In the reported cases with mutations in PLP1,
astrogliosis was localized to the cerebellum. In the pa-
tient cases with PLP1 duplication, strong astrogliosis
was found in the striatum, thalamus, cerebellum, and
cerebral cortex. It should be noted that the cases
reported with mutations in PLP1 were significantly

younger at time of death (approximately 20-years-old)
than the majority of the reported cases with PLP1
gene duplication (approximately 50-years-old). In one
younger case with PLP1 gene duplication (37 years),
astrogliosis was less pronounced [47]. Therefore, the
astrogliosis in the PLP-ISEdel mice appears to follow a
clinically relevant disease progression.

Our findings of robust microglia activation in the CNS
in both white and gray matter regions of the PLP-ISEdel
mice add to the growing body of literature which sug-
gests that disruptions in PLP protein promote microglia
activation [15-24] (see Table 3). In agreement with our
findings, a similar pattern of microglia activation to the
PLP-ISEdel mice has been reported in PLP1 transgenic



Bachstetter et al. Journal of Neuroinflammation 2013, 10:146
http://www.jneuroinflammation.com/content/10/1/146

-

A: APP (IHC in thalamus)
4mo CSTB_UGJ 4mo PLP-ISEdel

f " -

\

P

) r. %) , .

.-

“100um _ '1népm—" o 26,m I—
B: APP (IHC in striatum)
4mo C57BL/6J 4mo PLP-ISEdel

‘.‘ "

N

: il

100pm e— 100pum m—

Figure 6 Amyloid precursor protein (APP) accumulation is seen
in the 4-month-old PLP-ISEdel mice. (A) In 4-month-old wild-type
(WT) mice, APP staining was localized to the neuronal cell body and
no APP" spheroids were found. In 4-month-old PLP-ISEdel mice,
many APP" spheroids were seen in the thalamus. The black box
shows the region of the higher power image on the right. (B) In the
striatum, APP accumulation was seen in the white matter tracks in
the 4-month-old PLP-ISEdel mice but not in the WT mice. Arrow
indicates the APP* spheroid shown in the higher power image on
the right.

mouse (PLP1tg) [16,19]. Specifically, the number of
IBA1" microglia was significantly increased in the cortex
and striatum of 1-month-old PLP1ltg mice. In the
striatum of the PLP1tg mice, microglia processes were
found to follow axonal paths, as we report here for
the PLP-ISEdel mice. A progressive age-related increase
in the number of IBA1" and CD11b" cells was also
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reported for PLP1tg mice [16,19], supporting the find-
ings of the current study (Table 3).

Recently, two therapeutic approaches have been used
in the PLP1tg mice that have indicated a possible in-
volvement of gliosis and neuroinflammation in the PLP
induced sequelae. Intriguing work from the Martini
laboratory has provided strong evidence for microglia/
macrophages and adaptive immunity (namely CD8"
T cells) in pathological changes in the PLP1tg mice
[19,23,27-29]. By crossing the PLP1tg mice to a recom-
bination activating gene-1 (RAG-1) mice, lacking mature
T- and B-lymphocytes, they were able to reduce the
number of CD11b cells and decrease the pathology in
the PLP1tg mice [19]. A second approach involved feed-
ing PLP1tg mice a diet enriched with cholesterol. The
cholesterol enriched diet was found to rescue motor de-
fects, but did not prevent the hypomyelination. It was
suggested that the positive effects of a cholesterol-
enriched diet in the PLP1tg mice could be mediated by
maintaining health of oligodendrocytes and axons, as
well as reducing gliosis and neuroinflammation [56].

Temporal and regional heterogeneity, which may be
associated with the severity of the pathophysiology of
different mutant PLP mice, has been reported. Interest-
ingly in the PLP1”® mice [53], which have missense mu-
tation in the PLP1 gene, there is a progressive age-
related increase in microglia that was restricted to white
matter regions of the brain [16,17]. In the gray matter of
the PLP1’P mice, microglia density was increased com-
pared to control mice, but there was no change with age
[17]. However, the severe phenotype with short lifespan
(around P30) in the PLP1P may mask more widespread
and progressive microglia activation. For example in the

Table 3 Proteolipid protein (PLP) mutant mouse models show glial activation

Mouse Type of mutation PMD Major pathology Reactive glia response
model
PLP1-null  Targeted KO of PLP and DM20 yes Myelin </ OL # < / motor ||| @ 16mo / Astrocytes 11 / microglia 11 after
[26] [4849]  normal lifespan 12 months [22]
PLP-ISEdel Kl of intronic splicing enhancer yes [34]  Myelin & / OL # «> / motor | / normal Astrocytes 111 / microglia 111
[35] lifespan [current]
PLP1dub Genomic duplication PLP1 locus yes [50] Myelin | / OL # (nr) / motor || / lifespan (nr) Astrocytes 11 / microglia 11 [21]
[21]
PLP1tg [20] Overexpresses native PLP1 Myelin || /OL # || / motor |||/ lethal 2 to  Astrocytes 111 / microglia 111

6 months) [16,19,20]
PLP1-rsh Spontaneous single amino acid yes [52] Myelin || / OL # <>/ motor || / normal Astrocytes 11 / microglia 11 [18]
[51] substitution lifespan
PLP1+p Spontaneous deletion of exon 5 Myelin ||| /OL# |||/ motor ||| / lethal Astrocytes 11 / microglia 11 [16,17]
[53] (around P30)
PLP1-msd ~ Spontaneous mutation of exon 6  yes [55] Myelin |||/ OL# ||| / motor || / lethal Astrocytes 111 / microglia 111 [15]
[54] (around P30)

PLP mutant mice models are sorted by the severity of the pathophysiology, and summarized for type of PLP mutation, if mutation is found in clinical PMD
population, major pathology (myelin/oligodendrocyte death/motor behavior ability/premature mortality) and reactive glia (astrocyte and microglia). Abbreviations:
oligodendrocyte (OL); arrows indicate degree of change = no change <, mild 1 or |, moderate 11 or ||, severe 111 or |||, or not reported (nr). Numbers in

brackets represent relevant references.
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PLP1-null mice, which have the mildest phenotype of
the PLP mutant mice, microglia activation is found to be
increased around one year of age. Interestingly, the in-
crease in microglia activation corresponded with axonal
degeneration but occurred before the motor impairment
was evident [26]. While the regional distribution of
microglia has not yet been reported in the PLPldup
mice, an increase in microglia number was found in re-
gions of axon degeneration [21]. Moreover, microglia in
the PLP1dup mice were found to have internalized de-
generating axons [21].

Previously, we reported [35] that axonal degeneration
was not seen in the optic nerve of the PLP-ISEdel mouse
up to six months of age. However, in the current study
we find markers of axonal injury (APP spheroids) in a
number of brain regions in the CNS of the 4-month-old
PLP-ISEdel mice. One potential explanation for the dif-
ferences in these finding is the low level of microglia
and astrocyte activation in the optic nerve. Previous
works suggest that microglia are slow to respond to
optic nerve injury [57]. However, in the PLPtg mice,
CD11b" cells were found to increase in number in the
optic nerve at younger ages compared to other brain re-
gions investigated [19]. APP accumulation represents a
marker of disrupted anterograde axonal transport. In the
PLP null mouse, APP* swellings were identified in the
optic nerve and cerebral white matter at approximately
2-months-old and were not found to be progressive [58].
In the current study we did not stain for APP or markers
of glia activation in the optic nerve; therefore any com-
parison between our current study and previous work
would be speculation. Interestingly, the regions of the
brain with the most robust APP" spheroids (thalamus
and striatum) were also regions of the brain with strong
microglia response and astrocyte reactivity. However,
several mechanisms may contribute to the axonal degen-
eration. For example, the PLP-ISEdel mouse has im-
paired transport of sirtuin 2 from the oligodendrocyte
cell body to the myelin membrane [59]. The absence of
sirtuin 2, a deacetylase, in the myelin sheath may com-
promise signaling to the axons. In addition to cytokine
secretion, activated microglia may contribute to defects
of axonal integrity through sodium channel activation
and excitoxicity, as has been shown in multiple sclerosis
plaques (for review see [60]). The results presented here
are descriptive observations; however, our findings do
support the notion that regional heterogeneity in the re-
active glia response may lead some areas of the CNS to
be more susceptible to degeneration.

Conclusions

Neuroinflammation has been suggested to be more dam-
aging to axons than alterations in myelin integrity, in-
cluding frank demyelination [58]. Our current finding of
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gliosis, along with other clinical reports of PMD cases
[47], and preclinical models of PMD [16,19,23,24,26-29]
highlight a potentially clinically relevant, oligodendro-
cyte independent response that may contribute to the
disease progression. While more work is clearly neces-
sary, neuroinflammation may represent a viable thera-
peutic target for PMD.
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