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Abstract We study the cluster algebra of the kinematic
configuration space Confn(P3) of an n-particle scattering
amplitude restricted to the special 2D kinematics. We found
that the n-point two-loop MHV remainder function in special
2D kinematics depends on a selection of the X -coordinates
that are part of a special structure of the cluster algebra related
to snake triangulations of polygons. This structure forms a
necklace of hypercube beads in the corresponding Stasheff
polytope. Furthermore at n = 12, the cluster algebra and the
selection of the X -coordinates in special 2D kinematics repli-
cates the cluster algebra and the selection of X -coordinates
of the n = 6 two-loop MHV amplitude in 4D kinematics.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Special 2D kinematics . . . . . . . . . . . . . . . . 2
3 Cluster algebras and Stasheff polytopes . . . . . . . 3
4 Configuration space and its cluster structure . . . . . 4
5 Results for n = 8, 10, and 12 . . . . . . . . . . . . 6

5.1 n = 8 . . . . . . . . . . . . . . . . . . . . . . 6
5.2 n = 10 . . . . . . . . . . . . . . . . . . . . . . 6
5.3 n = 12 . . . . . . . . . . . . . . . . . . . . . . 6

6 General n external particles . . . . . . . . . . . . . 8
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 9
References . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Introduction

N = 4 supersymmetric Yang–Mills in its planar limit is the
present arena for developing new methods of calculating scat-
tering amplitudes of perturbative QCD. Feynman diagrams
revealed itself to be cumbersome and incapable of unveiling
the beautiful symmetries and structures of N = 4 SYM.

a e-mail: marcus-andre.de-carvalho-torres@cea.fr

Among these symmetries, it was realized [1] that N = 4
SYM at tree level is superconformal in Minkowski space
and in the dual space and at any loop order one can calculate
amplitudes by calculating Wilson loops in the dual space,
which led to several results [2–9].

One of the present challenges of N = 4 SYM is that ampli-
tudes at L-loops involve complicated polylogarithm func-
tions of transcendental type 2L. Such functions have several
interrelations and an amplitude can be written in different
forms. Also there are numerous choices for the conformal
cross ratios as arguments.

In [10,11], the authors Golden, Goncharov, Spradlin,
Vergu and Volovich (GGSVV) showed that a judicious choice
of kinematic variables was one of the main ingredients in
a great simplification of the previously calculated two-loop
six-particle MHV remainder function R(2)

n [12–14] and that
this choice is related to the cluster structure that is intrinsic to
the kinematic configuration space Confn(P3) of the external
particles. Its cluster structure selects the appropriate cross
ratios (directly related to X -coordinates in the cluster alge-
bras) to be used in the motivic amplitudes [11] and intrigu-
ingly some cluster algebras define arguments so suitably to
some polylogarithmic functional equations like in the famous
Abel’s pentagon dilogarithm identity and in a recently found
trilogarithm relation [11]. All this shows that the use of clus-
ter coordinates as arguments in remainder functions may be
the appropriate way to simplify the long logarithm expres-
sions. Fortunately, this cluster structure, which belongs to
the kinematic configuration space, has been shown [11] to
be preserved at two-loop order where the polylogarithmic
identities of weight four are less known. Other interesting
properties of the cluster structure of the configuration space,
such as positivity and the fact that the logarithms of their X -
coordinates are canonical Darboux coordinates of a Poisson
space [15], led the authors of [11] to propose that the vari-
ables which should appear in the motivic MHV amplitudes in
SYM theory are cluster X -coordinates of the cluster algebra
of its configuration space.
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The use of the cluster structure of Confn(P3) worked effi-
ciently for n = 6, 7, but for n > 7 the cluster algebra is of
infinite type and we cannot count all of its A-coordinates,
X -coordinates, and clusters. In order to overcome such a
problem, here we focus on the study of finite cluster sub-
algebras for n ≥ 8 by reducing the configuration space to a
certain kinematic limit.

In special 2D kinematics, the cluster sub-algebras are
always finite and in this case the algebra can be related to
a Lie Algebra with a simply laced Dynkin diagram [16].
Also the two-loop MHV remainder function in special 2D
kinematics has been fully calculated at n larger than 7 [17],
and we are able to check the existence of the cluster structure
in amplitudes in this kinematic domain.

The program of research initiated by [11] is a very insti-
gating one and many questions remain to be answered. For
example, at n = 6 and at n = 7 only 3/5 of all clus-
ter X -coordinates of their respective cluster algebra show
up in the two-loop MHV motivic amplitude. Another ques-
tion is that present studies of cluster algebras are done con-
cerning results on two-loop MHV amplitudes only [18], but
possibly some of the cluster structure of the configuration
space is preserved at higher loops and non-MHV ampli-
tudes.

In this regard, a small drawback exists in special 2D kine-
matics concerning its cluster structure. At n = 8, N2MHV
one-loop, NMHV two-loop and MHV three-loop ampli-
tudes (remainder functions) were calculated in [19] and these
results were found to have the symbols, polylogarithm argu-
ments and poles with mixing X -coordinates v and w of its
A1× A1 cluster algebra. The mixing of X -coordinates occurs
in the form of v−w and 1−vw. This structure is believed to
exist in 2D special kinematics for k + l ≥ 3 NkMHV l-loop
amplitudes. Nevertheless, the cluster structure continues to
have a role in the selection of cross ratios (v and w). The dif-
ferent structure of the arrangement of X -coordinates in the
arguments of the polylogarithm expressions in special 2D
kinematics compared with two-loop MHV amplitudes in 4D
kinematics may be connected with the fact that the positivity
condition1 of cluster A-coordinates in special 2D kinematics
and 4D kinematics are not the same, while the amplitude in
special 2D kinematics is a reduction from the amplitude in
4D kinematics.

In addressing the study of a smaller configuration space we
were also able to recognize that not all X -coordinates appear
in the remainder function and we were able to identify their
main characteristics within the cluster structure, through the
use of associated polygon triangulations and Stasheff poly-
topes. We were able to find in special 2D kinematics, at
n = 12, a double copy of the same A3 cluster algebra as
appears in the configuration space of n = 6 in 4D kinemat-

1 Observed by Song He, private communication.

ics and equally the same nine out of 15 (for each copy) of the
X -coordinates appear in the remainder function. These nine
X -coordinates are sorted as X -coordinates of the six snake
clusters of the A3 cluster algebra. We call ‘snake clusters’ the
ones whose associated polygon triangulation has their diago-
nals associated to negative simple roots [20]. Such triangula-
tions have a zig-zag or snake appearance, whence the name.
We notice that snake clusters are part of a structure in their
corresponding Stasheff polytope. We call it the ‘necklace’ of
hypercube beads, or ‘hypercube necklace’. In this structure
(necklace) in the Stasheff polytope, the nearest snake cluster
vertices are opposite vertices of a hypercube that connects
them. All quadrilateral faces (A1 × A1 cluster sub-algebras)
in these hypercubes have its two X -coordinates belonging
to snake clusters. These snake clusters are the two which
correspond to the vertices that connect the hypercube to the
necklace in the Stasheff polytope.

In [11], the authors related obstruction terms in the ampli-
tude expression to quadrilateral faces in the Stasheff poly-
tope. Such terms are obstructions to write the two-loop MHV
motivic amplitude in terms of classical 4-logarithms. In spe-
cial 2D kinematics, such motivic amplitudes are trivial since
the coproduct of a product of logarithms is trivial. Conse-
quently, obstructions cannot be studied here but the cluster
algebra that we study here is present in 4D kinematics where
quadrilateral faces with selected snake cluster X -coordinates
may play such a role.

Our hope is that a similar study of the X -coordinates may
exist for type E6 cluster algebras or its cluster sub-algebras,
which may help justify in the case that n = 7 [11] why
only 3/5 of all X -coordinates of E6 cluster algebra are used
in the amplitude and why the obstruction terms of only 42
quadrilateral faces out of 1,785 quadrilateral faces existent
in an E6 Stasheff polytope are used.

This present work is organized as follows. In Sect. 2, we
present special 2D kinematics [17,21] and cross ratios. In
Sect. 3, we review the elements of the cluster algebra. In
Sect. 4, we reduce the configuration space to special 2D kine-
matics and find its cluster algebra, its cluster coordinates,
and the mutation relations. In Sect. 5, we study the cases for
n = 8, 10, and 12. The cases n = 8 and 10 show the presence
of the cluster structure of the configuration space among the
arguments (cross ratios) of R(2)

n in special 2D kinematics,
while at n = 12, we notice the relevant structure related to a
selection of X -coordinates by the amplitude which is further
studied in the general case of n external particles in Sect. 6.
We conclude in Sect. 7.

2 Special 2D kinematics

A good description of special 2D kinematics is presented in
[17,21] and we review a few aspects below.
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The special two-dimensional kinematics is the condition
when all external particles have their momenta lying in the
same 1+1 dimensions while the internal particles propagate
in 3+1 dimensions. Due to energy-momentum conservation,
the external momenta pi define a polygon in the dual space
xμ,

pμ
i = xμ

i − xμ
i+1. (2.1)

The edges of the polygon, pi , in a zig-zag way invert the
spatial direction, i.e., they switch between light cone direc-
tions x+ and x− [22] and this condition implies that there
must be an even number of external particles.

As a result, the external momenta of particles in the light
cone (+,−) directions are:

pi =
{

(p+
i , 0), i even

(0, p−
i ), i odd

(2.2)

In the language of momentum twistors, it translates into

Zi =
{

(Z1
i , 0, Z3

i , 0) i even
(0, Z2

i , 0, Z4
i ) i odd ,

(2.3)

reducing SL(4) → SL(2)+ × SL(2)− in 2d. The SL(4)

invariant product of four momentum twistors,

〈i jkl〉 = εabcd Za
i Zb

j Zc
k Zd

l , (2.4)

becomes zero, unless there are two odd and two even indices.
In this case the even and odd indices factorize into SL(2)±
invariant terms. For example,

〈1234〉 = 〈13〉〈24〉 = (Z2
1 Z4

3 − Z4
1 Z2

3)(Z1
2 Z3

4 − Z3
2 Z1

4).

(2.5)

Writing the Lorenz invariant square distances of the dual
coordinates in terms of the momentum twistors [23]:

(xi j )
2 = (xi − x j )

2 = 〈i i + 1 j j + 1〉
〈λiλi+1〉〈λ jλ j+1〉 (2.6)

and applying it in a standard basis of cross ratios in four-
dimensional kinematics [17]

ui j = x2
i j+1x2

i+1 j

x2
i j x2

i+1 j+1

=
{

1 i and j with opposite parity
〈i j+2〉〈i+2 j〉
〈i j〉〈i+2 j+2〉 i and j with same parity

(2.7)

Therefore, in 2D kinematics the cross ratios are sepa-
rated into two groups: those that depend only on momen-
tum twistors with even indices and those that depend only on
momentum twistors with odd indices.

In order to keep the notation in agreement with [17], we
rewrite the above 2D cross ratios as

u+
i j := 〈2i + 1, 2 j + 3〉〈2i + 3, 2 j + 1〉

〈2i + 1, 2 j + 1〉〈2i + 3, 2 j + 3〉 ,

u−
i j := 〈2i, 2 j + 2〉〈2i + 2, 2 j〉

〈2i, 2 j〉〈2i + 2, 2 j + 2〉 . (2.8)

Applying a series of Plücker identities

〈i j〉〈kl〉 = 〈ik〉〈 jl〉 + 〈il〉〈k j〉 (2.9)

we can check the Y-system (evaluated at a fixed spectrum
parameter ζ = 0) found in [17,24]:

(1 − u±
i j+1)(1 − u±

i+1 j ) = (1 − 1/u±
i j )(1 − 1/u±

i+1 j+1),

(2.10)

which constitutes two separate sets of equations keeping the
sets of cross ratios u+ and u− independent from each other.

3 Cluster algebras and Stasheff polytopes

The subject of cluster algebras was recently presented in
[11], in a way accessible to physicists and complementing
the standard references [16,20,25,26]. We review here basic
concepts and terms.

We are only interested in the finite type cluster algebras.
Such cluster algebras have a finite set of distinct generators
(cluster variables), grouped in a finite number of clusters
(sets) of equal size and that relate to each other by exchange
relations where one of the cluster variables is replaced by
(mutates to) another cluster variable outside the cluster. These
exchange relations can be codified within each cluster by
associating them with oriented quivers. By the quiver associ-
ated to a cluster we can define X -coordinates related to each
cluster variable in that cluster.

A cluster may contain a subset of frozen variables (or
coefficients) that do not mutate and stay the same in all clus-
ters. The number of cluster variables (not frozen ones) in a
cluster is the rank of the cluster algebra. We call both cluster
variables and cluster coefficients A-coordinates.

Quivers are built with arrows connecting vertices. Such
vertices in a quiver are identified with A-coordinates, while
the arrows define exchange relations among A-coordinates
and the X -coordinates of each vertex in the quiver. Quivers
are such that loops and two-cycles are not allowed. Loops
are arrows that have an origin that is the same as the target
and two-cycles are a pair of arrows with opposite directions
connecting the same two vertices. When a two-cycle appears
after a mutation, the arrows ‘cancel each other’ and disappear.

A mutation of a cluster variable in a cluster, or vertex k
in the corresponding quiver, transforms it to a new quiver
according to the following operations:
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• for every pair of arrows i → k and k → j , add a new
arrow i → j ,

• reverse all arrows that target k or depart from k,
• proceed with all two-cycle cancelation.

There is a theorem [20] that classifies all finite type cluster
algebras according to simply laced Lie algebras. It states that
given a finite type cluster algebra, their clusters have quivers
that are mutations equivalent to a Dynkin diagram of a Lie
algebra, via identification of the principal part of its quiver.
The principal part of a quiver is the quiver without frozen
variables and arrows to or from them.

There can be more than one arrow between two vertices
and a number can be added on top of each arrow for cases of
multiple arrows. A skew symmetric adjacency matrix (bi j )

can be defined from the quiver, where

bi j = #arrows(i → j) − #arrows( j → i) (3.1)

A cluster variable in vertex k, ak , mutates to a′
k according

to the exchange relation:

a′
kak =

∏
i |bki >0

abki
i +

∏
i |bki <0

a−bki
i . (3.2)

In a quiver, for every vertex corresponding to a cluster
variable we define its X -coordinate xi in terms of the A-
coordinates a j ,

xi =
∏
j �=i

a
bi j
j (3.3)

We remark that when a mutation occurs in one vertex
forming a new cluster, the adjacency matrix changes accord-
ingly, and following (3.3) the new cluster will have different
X -coordinates. The X -coordinate of vertex i under muta-
tion, mutates from xi to x−1

i . Throughout the paper, we will
not count a X -coordinate and its inverse as independent X -
coordinates.

A useful construction associated to a finite type cluster
algebra is a generalized associahedron. Such a construction
represents the cluster algebra as a polytope with clusters
being represented by vertices and mutations between clusters
being represented by edges connecting vertices. For a rank
r cluster algebra, each vertex is parametrized by the r X -
coordinates of the represented cluster and from each vertex
departs r edges.

In a type A cluster algebra the generalized associahedron
is called a Stasheff polytope [20]. This will be used from
now on, since we will be always dealing with type A cluster
algebras in special 2D kinematics.

Calling the rank of a Stasheff polytope the rank of the
corresponding cluster algebra, an interesting property of a
Stasheff polytope is that lower rank Stasheff polytopes cor-

responding to cluster sub-algebras can easily be identified in
the polytope.

Rank one A1 and rank two A1 × A1 and A2 cluster alge-
bras are associated to the smallest Stasheff polytopes which
are dimension-one edge and dimension-two quadrilateral and
pentagonal faces, respectively.

4 Configuration space and its cluster structure

A configuration space is the space of parametrization of the
amplitudes. In four dimensions, the configuration space has
dimension (3n − 15) as the space of external n > 4 points
in P

3 (momentum twistors) modulo the action of the con-
formal group PGL4 in P

3. We denote it by Confn(P3). It
can also be interpreted as the quotient of the space of 4 × n
matrices by the conformal group SL(4) and with each col-
umn quotient by C

∗ rescaling. The quotient of the space
of 4 × n matrices by the action of SL(4) and the diago-
nal subgroup C

∗
diag of (C∗)n (which rescales all columns

by the same factor) is the Grassmannian Gr(4, n). There-
fore,

Confn(P3) ∼= Gr(4, n)/(C∗)n−1. (4.1)

In the case of special 2D kinematics, momentum twistors
(2.3) have one degree of freedom each and there are six con-
formal symmetries, which reduces the configuration space to
(n − 6) dimensions.

As reviewed above, the cross ratios u±
i j depend only on

either even or odd momentum twistors and they have sepa-
rate equations, Eqs. (2.10), which leads us to expect that the
configuration space might be divided into two subspaces of
(n/2 − 3) dimensions each.

Momentum twistors contain only two nonzero compo-
nents in special 2D kinematics. Considering their little group
C

∗ each momentum twistor can be seen as a point in P
1. Two

separate (2 × n/2) matrices can be constructed out of n/2
points (even or odd indices only) in P

1. They transform with
the action of the conformal groups (in special 2D kinematics)
SL(2)+ and SL(2)−, respectively. Hence considering these
two matrices modulo SL(2)+ × SL(2)− action and modulo
a diagonal C

∗
diag of each (C∗)n/2, the configuration space is

equivalent to two Grassmannians Gr(2, n/2)+×Gr(2, n/2)−
of even and odd momentum twistors, respectively, each
modulo the action of the remaining little group (C∗)n/2−1

of the momentum twistors. We write it as Confn/2(P
1) ×

Confn/2(P
1) and each copy Confn/2(P

1) has dimension
n/2 − 3.

Our remaining task is to study the cluster algebra of
Gr(2, n/2). The initial quiver [25,26] can be drawn as fol-
lows:

123



Eur. Phys. J. C (2014) 74:2757 Page 5 of 11 2757

〈2, n/2〉 〈2, n/2 − 1〉 . . . 〈24〉 〈23〉

〈34〉〈45〉. . .〈n/2−1, n/2〉〈1, n/2〉

〈12〉

�� ��

��

��
���������������

����������������

���
��

�

��
��������������

(4.2)

Here the numbers i in 〈i...〉 are column positions in a
general Gr(2, n/2) and they correspond to the momentum
twistor position index 2i in the Gr(2, n/2)+ and position
index 2i-1 in the Gr(2, n/2)+ case. For the rest of this sec-
tion we will work on a general Gr(2, n/2), except when men-
tioned otherwise.

This quiver has the form of the An/2−3 Dynkin diagram,
which classifies it as a finite cluster algebra of type An/2−3

[20]. The rank of the Lie algebra corresponds to the num-
ber of cluster variables in a cluster, and it is equal to the
dimensionality of Confn/2(P

1). The positive roots of the Lie
algebra is in bijective correspondence with the non-initial
cluster variables. In Am , there are m(m +1)/2 positive roots.
Another important fact from Am cluster algebras is that the
number of clusters is given by the number of triangulations
of a polygon with (m+3) sides and it is the (m+1)th Catalan
number Cm+1.

In summary, we have for an An/2−3 cluster algebra:

• Its clusters (or quivers) contain n/2 − 3 cluster variables
each.

• The total number of cluster variables is equal the rank
(n/2 − 3) plus the number of positive roots of An/2−3

root system:

(n/2 − 3)n

4
. (4.3)

• The number of clusters is Cn/2−2 = (n−4)!
(n/2−1)!(n/2−2)! .

The X -coordinates of the initial quiver can easily be
worked out from (4.2). For 4 ≤ j < n/2, the X -coordinates
corresponding to A-coordinates 〈2, j〉 is

〈2, j − 1〉〈 j, j + 1〉
〈 j − 1, j〉〈2, j + 1〉 or (for j = n/2)

〈1, n/2〉〈2, n/2 − 1〉
〈12〉〈n/2 − 1, n/2〉 . (4.4)

We identify all cluster coordinates from a An/2−3 cluster
algebra, via a geometric interpretation of the cluster algebra
as triangulations of a polygon [20,26] in the following way.

• A cluster is associated to a triangulation of an n/2-gon,
such that no diagonal crosses any other.

• A-coordinates 〈i j〉 (with i < j) of a cluster correspond
to edges linking vertices i and j of the polygon. They
are frozen variables when they correspond to side edges
( j = i +1) and cluster variables when in correspondence
to diagonals ( j > i + 1) of the polygon triangulation.

• A mutation is associated to changing one diagonal to
another diagonal such that both are diagonals of the same
quadrilateral (Fig. 1).

We can also identify the X -coordinates of a given cluster
by the associated polygon triangulation. For i < k < j < l,
the diagonals of Fig. 1 represent two A-coordinates 〈i j〉 and
〈kl〉; one is a mutation from another. Their X -coordinates are
given by the sides of the quadrilateral ikjl:

xi j = x−1
kl = 〈ik〉〈 jl〉

〈k j〉〈il〉 . (4.5)

In order for A-coordinates 〈i j〉 of a Gr(2, n/2)± cluster
sub-algebra to be associated to the diagonals (and not the
sides) in an n/2-gon whose vertices are all even or all odd
(Fig. 2), it is required that for i < j ,

4 ≤ j − i ≤ n − 4. (4.6)

Fig. 1 Diagonals i j and kl define two possible triangulations for the
quadrilateral ik jl
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Fig. 2 Pentagons corresponding to an A2 × A2 cluster algebra for n =
10 external particles in 2D kinematics. Their ten diagonals correspond
to all cluster variables

5 Results for n = 8, 10, and 12

For such cases we are able to directly compare cluster coor-
dinates with the cross ratios found in the two-loop MHV
remainder functions expressed in [17]. These cases show how
cross ratios fit as X -coordinates. In the third case (n = 12)
we observe a special selection of X -coordinates, which we
will explore further and generalize in the next section.

5.1 n = 8

At n = 8 the A1× A1 cluster algebra is of rank 2 and there are
two clusters for each A1 cluster sub-algebra making a total
of four cluster A-coordinates. Equation (4.4) determines two
initial X -coordinates:

x+ = 〈1, 7〉〈3, 5〉
〈1, 3〉〈5, 7〉 and x− = 〈2, 8〉〈4, 6〉

〈2, 4〉〈6, 8〉 . (5.1)

Using the nomenclature in (2.7) and (2.8), we find that

u15 = u+
24 = x+

1 + x+ = 1

1 + 1
x+

, u26 = u−
13

= x−

1 + x− = 1

1 + 1
x−

, (5.2)

u37 = u+
13 = 1

1 + x+ , u48 = u−
24 = 1

1 + x− ., (5.3)

From the above, x+ and x− are the well-known cross
ratios χ+ and χ− [17,22,27]. The remaining cluster X -
coordinates are their respective cluster mutations (x+)−1 and
(x−)−1. The standard cross ratios ui j are simple transforma-
tions of the cluster X -coordinates, as remarked in [11,18]:

ui = 1

1 + vi
(5.4)

where ui is a cross ratio and vi is a X -coordinate. Such
a transformation preserves the intrinsic positivity of X -
coordinates, essential to keep cross ratios in a good kinematic
domain. See [11] for a discussion of what a good kinematic
domains is.

5.2 n = 10

The corresponding A2 × A2 cluster algebra is of rank 4 and
there are ten cluster variables and ten X -coordinates. Equa-
tion (4.4) determines the four initial X -coordinates:{ 〈3, 7〉〈1, 9〉

〈1, 3〉〈7, 9〉 ,
〈3, 5〉〈7, 9〉
〈3, 9〉〈5, 7〉

}
and

{ 〈4, 8〉〈2, 10〉
〈2, 4〉〈8, 10〉 ,

〈4, 6〉〈8, 10〉
〈4, 10〉〈6, 8〉

}

(5.5)

The remaining X -coordinates can be retrieved by the fol-
lowing transitions of pentagon triangulations (Fig. 3), which
represent cluster transitions by mutating one coordinate at a
time:{ 〈1, 3〉〈7, 9〉

〈3, 7〉〈1, 9〉 ,
〈1, 7〉〈3, 5〉
〈1, 3〉〈5, 7〉

}
,

{ 〈2, 4〉〈8, 10〉
〈4, 8〉〈2, 10〉 ,

〈2, 8〉〈4, 6〉
〈2, 4〉〈6, 8〉

}
{ 〈1, 5〉〈7, 9〉

〈1, 9〉〈5, 7〉 ,
〈1, 3〉〈5, 7〉
〈1, 7〉〈3, 5〉

}
,

{ 〈2, 6〉〈8, 10〉
〈2, 10〉〈6, 8〉 ,

〈2, 4〉〈6, 8〉
〈2, 8〉〈4, 6〉

}
{ 〈1, 9〉〈5, 7〉

〈1, 5〉〈7, 9〉 ,
〈1, 3〉〈5, 9〉
〈1, 9〉〈3, 5〉

}
,

{ 〈2, 10〉〈6, 8〉
〈2, 6〉〈8, 10〉 ,

〈2, 4〉〈6, 10〉
〈2, 10〉〈4, 6〉

}
{ 〈5, 7〉〈3, 9〉

〈3, 5〉〈7, 9〉 ,
〈1, 9〉〈3, 5〉
〈1, 3〉〈5, 9〉

}
,

{ 〈6, 8〉〈4, 10〉
〈4, 6〉〈8, 10〉 ,

〈2, 10〉〈4, 6〉
〈2, 4〉〈6, 10〉

}

(5.6)

Avoiding to choose both x and x−1, our 10 X -coordinates
are:

v1 = 〈13〉〈57〉
〈17〉〈35〉 , v3 = 〈35〉〈79〉

〈39〉〈57〉 , v5 = 〈19〉〈57〉
〈15〉〈79〉 ,

v7 = 〈13〉〈79〉
〈37〉〈19〉 , v9 = 〈19〉〈35〉

〈13〉〈59〉
v2 = 〈24〉〈68〉

〈28〉〈46〉 , v4 = 〈46〉〈8, 10〉
〈4, 10〉〈68〉 , v6 = 〈2, 10〉〈6, 8〉

〈2, 6〉〈8, 10〉 ,

v8 = 〈24〉〈8, 10〉
〈48〉〈2, 10〉 , v10 = 〈2, 10〉〈4, 6〉

〈2, 4〉〈6, 10〉 . (5.7)

Turning back to cross ratios, the condition (4.5) only allows
the nontrivial cross ratios ui,i+4 for i = 1, ..., 10 with indices
taken modulo 10. Denoting ui = ui,i+4 (as in [17]), we
find again that all nontrivial cross ratios are the same simple
functions, see Eq. (5.4), of the cluster X -coordinates.

5.3 n = 12

The A3 × A3 cluster algebra is of rank 6 and there are 18
cluster variables (4.3). Each A3 sub-algebra contains C4 =
14 clusters (number of triangulations of an hexagon), and
it would be cumbersome to show all of them here in order
to calculate their X -coordinates. Hence, we appeal to [11],
which found 15 X -coordinates for an A3 cluster algebra.
Here we notice the remarkable mismatch between the number
of cross ratios (18) used in the n = 12 two-loop remainder
function in [17] and the X -coordinates (30). Similarly, in
[11], the authors found that at n = 6, in 4D kinematics, only
nine out of 15 X -coordinates of a single A3 cluster algebra
were related to the cross ratios of the motivic amplitudes.
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Fig. 3 Transition between pentagon triangulations representing tran-
sition between different clusters via a mutation of one of its coordinates
(red diagonal)

(a) (b) (c)

Fig. 4 In 4D kinematics, n = 6, X -coordinates are obtained from
triangulation of the hexagon (a). In 2D kinematics, n = 12, the X -
coordinates are obtained from triangulations of hexagons b and c

These X -coordinates can be obtained from triangulations of
the hexagon (Fig. 4a). We report below the nine selected X -
coordinates found in [11]:

〈23〉〈56〉
〈35〉〈26〉 ,

〈61〉〈34〉
〈13〉〈64〉 ,

〈45〉〈12〉
〈15〉〈24〉 ,

〈12〉〈34〉
〈14〉〈23〉 ,

〈56〉〈12〉
〈25〉〈16〉 ,

〈34〉〈56〉
〈36〉〈45〉 ,

〈45〉〈16〉
〈14〉〈56〉 ,

〈23〉〈45〉
〈25〉〈34〉 ,

〈61〉〈23〉
〈63〉〈12〉

(5.8)

We made above a convenient choice between some X -
coordinates and their inverse, which will become clear later.
Will the X -coordinates selected above also play a role in spe-
cial 2D kinematics? At n =12 in special 2D kinematics, we
have two copies of the A3 cluster algebra and therefore two
copies of the above X -coordinates, one with all odd particles
and the other with all even particles (Fig. 4b, c). They are:

v5,11 = 〈57〉〈11, 1〉
〈7, 11〉〈51〉

v4,10 = 〈4, 6〉〈10, 12〉
〈6, 10〉〈4, 12〉

,

v17 = 〈13〉〈79〉
〈37〉〈19〉

v6,12 = 〈12, 2〉〈68〉
〈26〉〈12, 8〉

,

v39 = 〈35〉〈9, 11〉
〈3, 11〉〈59〉

v2,8 = 〈24〉〈8, 10〉
〈4, 10〉〈48〉

v37 = 〈35〉〈79〉
〈39〉〈57〉

v26 = 〈24〉〈68〉
〈28〉〈46〉

,

v11,3 = 〈11, 1〉〈35〉
〈5, 11〉〈31〉

v10,2 = 〈10, 12〉〈24〉
〈4, 10〉〈2, 12〉

,

v7,11 = 〈79〉〈11, 1〉
〈71〉〈9, 11〉

v6,10 = 〈68〉〈10, 12〉
〈6, 12〉〈8, 10〉

v91 = 〈9, 11〉〈13〉
〈39〉〈1, 11〉

v8,12 = 〈8, 10〉〈2, 12〉
〈28〉〈10, 12〉

,

v59 = 〈57〉〈9, 11〉
〈5, 11〉〈79〉

v48 = 〈46〉〈8, 10〉
〈4, 10〉〈68〉

,

v15 = 〈13〉〈57〉
〈17〉〈35〉

v12,4 = 〈12, 2〉〈46〉
〈12, 6〉〈24〉 .

(5.9)

Once more we find the same direct relation of the above X -
coordinates to the preferred set of cross ratios (5.4) chosen in
[17] for describing R(2)

12 in special 2D kinematics. Rewriting
the expression (2.7) for cross ratios using the Plücker relation:

ui j = 1

1 + 〈i,i+2〉〈 j, j+2〉
〈i, j+2〉〈i+2, j〉

, (5.10)

which implies that the 18 nontrivial cross ratios in [17] for
n = 12, ui,i+4, and ui,i+6, i = 1, ..., 12 (cyclic indices), are
simple expressions (5.4) of the above X -coordinates of the
A3 × A3 cluster algebra:

ui,i+4 = 1

1 + vi,i+4
and ui,i+6 = 1

1 + vi,i+6
(5.11)

for i = 1, ..., 12 and indices modulo 12.
Intriguingly, 12 X -coordinates made no appearance in the

relation to the cross ratios, which led us to take a more careful
look at the 18 X -coordinates that appeared in Eq. (5.11). For
simplicity, we will work with only one copy of the A3 of
A3 × A3 cluster algebra.

We start by noticing that X -coordinates in (5.9) originate
from clusters associated to snake triangulations. According
to the expression (4.5), looking at Fig. 5, we see that the
X -coordinates corresponding to diagonals in the snake tri-
angulations (a), (b), and (c) are

hexagon (a) hexagon (b) hexagon (c)

17 → v17 39 → v−1
1,7 17 → v−1

5,11

19 → v−1
7,11 19 → v19 7 11 → v7,11

37 → v−1
15 37 → v37 15 → v15 (5.12)

Continuing by checking with the three other remaining
snake triangulations (not shown here) or simply rotating the
indices, one can realize that all nine X -coordinates of odd
parity that are directly related to the cross ratios are part of
the clusters associated to snake triangulations. We will call
them snake clusters.

Notice that these snake triangulations have the remark-
able property of projecting the A1 and A1 × A1 cluster sub-
algebras out of the A3 cluster algebra. These cluster sub-
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Fig. 5 Three out of six snake triangulations in the hexagon. The trian-
gulation (b) is a mutation exchange of diagonal 17 in a and the triangu-
lation (c) is two mutations away from a by exchanging step diagonals
37 and 19 by 15 and 7 11, respectively

algebras correspond to lines and quadrilateral faces in the
A3 Stasheff polytope [11] passing through six snake clusters
vertices in the equator of the polytope. We see that by notic-
ing in Fig. 5 that the snake triangulation in (a) mutates to the
snake triangulation in (b) by exchanging diagonal 17 to 39,
which exchanges v17 by its inverse. But in order to change
from the snake triangulation in (a) to (c) two mutations are
necessary, and these two mutations can be done in any order,
characterizing a A1 × A1 quadrilateral face:

snake (c) {v7,11, v1,5, . . .}

{v7,11, v
−1
1,5, . . .}snake (a) {v−1

7,11, v
−1
1,5, . . .}

{v−1
7,11, v1,5, . . .}

. (5.13)

The transitions between snake triangulations (a) and (c) can
be seen as the freezing of the diagonal 17, leading to the
formation of two quadrilaterals 1357 and 7 9 11 1 each rep-
resenting an A1 cluster sub-algebra. The A1 × A1 cluster
algebra has only two X -coordinates and in diagram (5.13)
they are v7,11 and v1,5.

Figure 6 shows the partial Stasheff polytope obtained by
transitioning between snake triangulations (or snake clus-
ters). Each vertex represents a cluster defined by its three
X -coordinates. Edges connecting vertices represent a muta-
tion exchange between the clusters. The vertices outside the
equator do not correspond to snake triangulations and they
are parametrized by some of the six {ei } X -coordinates not
mentioned in (5.9).

6 General n external particles

Expression (5.10) suggest us that the standard basis of cross
ratios ui j (i and j are of same parity) in special 2D kinematics
(2.7) are an expression of the X -coordinates vi j of the form
u−1

i j = 1 + vi j , once we are able to show that there is a set
of X -coordinates given by

vi j = 〈i, i + 2〉〈 j, j + 2〉
〈i, j + 2〉〈i + 2, j〉 , 4 ≤ j − i ≤ n − 4,

( j − i) even. (6.1)

We saw before that for n = 12 there is a larger number of
X -coordinates than standard cross ratios and that some X -
coordinates are, like (6.1), directly related to the cross ratios
(2.7), setting them apart from the remaining X -coordinates.
We show below that the cluster structure offers some expla-
nation, highlighting them in the cluster structure.

Most of the concepts have already been presented in
Sect. 5.3. Here we will put it in general terms. Again, for
simplification, we will look only at one An/2−3 cluster sub-
algebra of the entire An/2−3 × An/2−3 cluster algebra.

In order to show (6.1), we start by noticing that any i j
diagonal can be part of a zig-zag or snake triangulation [20]
of a polygon of n/2 sides. From a initial snake triangulation,
all other snake triangulations can be obtained by a step by step
mutation exchange of diagonals without common vertices in
the initial triangulation (Fig. 8) (mutating only the zig and
skipping the zag diagonals). In this way, any diagonal i j is

part of a unique ‘snake’ triangulation, crossing quadrilateral
{i, i+2, j, j+2} (Fig. 7). The X -coordinates of a diagonal i j
in such a snake triangulation are of the form (6.1). The total
number of such X -coordinates is the same as the total number
of A-coordinates and the number of cross ratios (2.7).

The total number of snake triangulations of an n/2-gon
is n/2. In the corresponding Stasheff polytope, these n/2
vertices will be separated by hypercubes of dimension p =
[ n/2−3

2 ] and q = n/2 −3− p, where brackets mean the inte-
ger part. These hypercubes represent A1 × A1 ×· · · A1 clus-
ter sub-algebras of the An/2−3 cluster algebra. These cluster
sub-algebras Ap

1 and Aq
1 can be seen through mutations from

one snake triangulation vertex to the next snake triangula-
tion vertex in the Stasheff polytope. Departing from a snake
triangulation (Fig. 8), the two simplest sets of mutations to
get to another snake configuration are mutating all zig or all
zag diagonals while keeping the remaining zag or zig diag-
onals unchanged. Keeping the diagonals unchanged can be
seen as freezing of the A-coordinates that they represent, and
it leads to the splitting of the polygon in several quadrilat-
erals, each one corresponding to an A1 cluster sub-algebra.
In Fig. 9, we exemplify an n = 14 case corresponding to a
partial A4 Stasheff polytope made of seven snake cluster ver-
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Fig. 6 Part of the Stasheff polytope from the A3 cluster algebra, obtained by mutation exchanges between the six snake clusters vertices in the
equator of the picture

Fig. 7 i j diagonal in a ‘snake’ triangulation of an n-gon

tices and seven quadrilaterals (p = q = 2). Such a structure
of snake clusters and hypercubes in the Stasheff polytope we
call a necklace of hypercube beads, or hypercube necklace, as
Fig. 9 suggests. Freezing of different diagonals in the snake
triangulation of an n/2-gon generates other type A cluster
sub-algebras and other geometrical pictures with one snake
cluster vertex in the Stasheff polytope.

Hypercube necklaces in Stasheff polytopes are impor-
tant in counting quadrilateral faces composed of the X -
coordinates from the snake clusters selected by the ampli-

Fig. 8 Exchanging “snake” triangulations by two mutations of alter-
nating “zig” diagonals

tude. Quadrilateral faces (A1 × A1 cluster sub-algebra) of
the amplitude selected X -coordinates were found [18] to be
related to obstruction terms of the Bloch groups B2 × B2,
which do not allow the MHV two-loop motivic amplitude
to be written in terms of the sum of classical 4-logarithms.
In 4D kinematics, no obstructions were found at n = 6 (A3

cluster algebra), but at n = 7 (E6 cluster algebra) it was
found that the obstruction is nontrivial and depends on only
42 quadrilateral faces, out of 1,785 existent in the E6 Stasheff
polytope.

7 Conclusion

Special 2D kinematics offers an interesting arena to study
the cluster structure of the configuration space of a n-particle
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Fig. 9 A4 partial Stasheff polytope related to snake triangulations of an
heptagon. Vertices in blue correspond to snake clusters. Seven quadri-
laterals correspond to the A1 × A1 cluster sub-algebra

amplitude. Following the steps of [11], we notice the exis-
tence of a preferential choice of kinematic variables (cross
ratios) that preserve the cluster structure of the configuration
space of external particles and simultaneously lead to simple
amplitude expressions ([17]) in special 2D kinematics. The
cluster algebras in 2D kinematics are of Ai type. Ai clus-
ter algebras also appear in 4D kinematics either as an entire
cluster algebra or as cluster sub-algebras, and their impor-
tance remains in relation to the choice of nontrivial cross
ratios.

In the present work, we showed the existence of special
X -coordinates among all X -coordinates of a cluster algebra
of type An . They are X -coordinates of snake clusters, those
whose associated polygon triangulation are snakes. In an An

cluster algebra, there are n + 3 snake clusters. In a Stasheff
polytope these snake clusters are opposite vertices of hyper-
cubes of dimension p and q (a line if p = 1 or quadrilateral
face if p = 2), such that p = [n/2] and p + q = n. These
snake cluster vertices connected by hypercubes form a neck-
lace in the An Stasheff polytope with hypercubes as beads.
We call it a hypercube necklace. Such a structure contains
many A1 × A1 quadrilateral faces made of pairs of snake
cluster X -coordinates that can be important in relation to the
obstruction terms found in [11]. For the E6 cluster algebra,
by freezing the cluster variables in the E6 quiver we checked
the presence of four A4 necklaces and one A5 necklace, sum-
ming altogether 56 quadrilateral faces, which some may play
a special role as arguments in the B2 × B2 obstruction terms
found at n = 7 (4D kinematics) amplitude.

Furthermore, we showed that in special 2D kinematics,
at any number of external particles, the canonical choice
of cross ratios (2.7) selected by the simple two-loop MHV
amplitude expression of [17] is directly related to these spe-
cial X -coordinates.

In [11], the authors noticed that in the two-loop MHV
n = 6 amplitude, only nine out of 15 X -coordinates appear
in the remainder function R(2)

6 . This case is the A3 cluster
algebra of Conf6(P

3). In special 2D kinematics the A3 cluster
algebra appears in the n = 12 amplitude, and we showed that
the same nine X -coordinates out of 15 are selected to appear
in the respective two-loop remainder function. The structure
of the cluster algebra discussed here has a fundamental role
to play in this mysterious selection. The fact that the same
selection took place at 2D and 4D kinematics with different
amplitude expressions reveals the importance of the cluster
structure of the configuration space and its preservation at
two loops.

The structures that we unlocked at special 2D kinematics
are always of the An type cluster algebra but once An type
cluster sub-algebras are part of the cluster structure of every
configuration space, and other kinematical limits can lead to
the appearance of the An cluster algebra, we believe that this
work program may have significant implications in the 4D
kinematics scattering amplitudes.
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