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1 Introduction

Dark matter (DM) contributes a large component of the mass-energy of the universe. The

leading hypothesis is that most of the dark matter is in the form of stable, electrically

neutral, massive particles, which interact at least gravitationally with baryons. If such

a particle interacts non-gravitationally with standard model (SM) particles as well, for

instance via the weak force, detecting it through high-energy collisions at particle accel-

erators is one of the most promising avenues towards identifying the specific nature of its

detailed interactions. For instance, if DM production is kinematically accessible at the

Large Hadron Collider (LHC), then missing energy signatures that deviate from SM pre-

dictions would provide compelling evidence of new stable, electrically neutral particles, and

thus strong candidates for cosmological DM.

Various approaches to describing particle DM interactions have been explored in order

to understand possible detection signatures at the LHC. The most detailed set of attempts

include complete quantum field theories incorporating many new particles into the SM,

for example supersymmetric dark matter [1]. Such top-down, or UV-complete, theories

often have large sets of a priori undetermined additional parameters. Therefore, making

confident phenomenological predictions can become very burdensome.

On the opposite end of the spectrum, one can assume that aside from the dark matter,

any new heavy fields of the UV-complete theory can be integrated out and that the relevant

physics can be described by an effective field theory (EFT). The effective field theorist thus

proceeds by writing down a tower of non-renormalizable contact operators governing the
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Figure 1. Production mechanisms for dark matter plus Higgs through (left) a contact operator

coupling dark matter to Zh or γh, or (right) a new Z ′ coupled to a two Higgs doublet model, where

the new pseudoscalar A0 decays primarily to the dark matter.

DM interactions with SM particles. The underlying UV theory determines the coefficients

of these operators, which in turn can be constrained in a model-independent way from

experimental results and also be related in a simple way to relic density or direct detection

predictions [2]. In addition to the relative simplicity of constraining individual operators,

this approach has a particular appeal at a time when no other signs of new physics have

yet been discovered at the LHC.

Recent studies taking advantage of the EFT technique have considered collider signals

such as monophoton [3], monojet [4–7], mono-Z/W [8, 9] and mono-b events [10], during

which one (or more) particle of the SM is produced and detected in the collider, recoiling

against some missing transverse energy (MET or /pT ) associated with the DM. This work

has been generalized to a set of so-called “simplified models” where the DM couples to the

SM through renormalizable interactions, for example through a new mediator that can be

produced on-shell [11–15].

In light of the recent Higgs discovery at the LHC [16, 17], we can expand our search in

yet another avenue. In this paper we investigate the possible production of a Higgs along

with DM, which is accordingly dubbed a mono-Higgs process. The observed final states are

MET plus the Higgs decay products, with an invariant mass constrained to be relatively

close to the true mass mh ≈ 125 GeV.

The focus of our article is to explore those possibilities where mono-Higgs could be the

primary production mechanism for DM at the LHC. We will consider examples of both

contact operators and simplified models. We begin in section 2 with a discussion of LHC

searches for Higgs plus MET final states, concentrating here on the bb̄ and diphoton decay

channels for the Higgs. In section 3, we present examples of higher-dimension operators

coupling DM to Higgs doublets and electroweak gauge bosons. We derive constraints on the

coefficients of these operators both with and without implementing a unitarity condition on

the potential signal events. Motivated by the processes in the EFT description, in section 4

we introduce a simplified model with a Z ′ gauge boson and two Higgs doublets, where the

dark matter is coupled to the heavy pseudoscalar Higgs. We demonstrate that the 14 TeV

LHC can probe the parameter space of this model at low tanβ. We conclude in section 5.

We also note that the mono-Higgs signal has recently been discussed in refs. [18, 19].

Ref. [18] considered contact operators coupling dark matter to SM Higgs doublets and

possibly other SM states (the operators are different from the ones in this paper); however
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they found that for most of the operators the bounds on the cutoff scale are quite low, less

than 50 GeV, which is well beyond the regime of validity for assuming a contact operator.

Ref. [19] considered a somewhat different set of operators as well as simplified models.

For the “Higgs-portal”-type operators (e.g., [20–22]), they find LHC limits to be much

weaker than exclusion limits on Higgs invisible decay for DM masses below mh/2, while

direct detection is very constraining at higher masses. Ref. [19] also considered simplified

models with an additional Z ′, where the Higgs is produced through Higgs-strahlung of the

Z ′. For the case of Z − Z ′ mass mixing, they found mono-Higgs is only able to probe

large mixing angles (sin θ > 0.1), in apparent conflict with precision electroweak data. In

contrast, for our scenario the Z ′ is produced resonantly and decays, and we have imposed

the precision electroweak constraint from fits of the ρ0 parameter.

2 Higgs + MET at the LHC

We consider two possible Higgs decay channels, bb̄ and γγ, as promising for observing

Higgs plus MET. The bb̄ channel has the largest branching ratio for a Higgs of mass

mh = 125 GeV, Br(h→ bb̄) ≈ 0.577 [23], and gives the best statistics for the signal, while

the diphoton branching ratio is only Br(h→ γγ) ≈ 2.28 × 10−3, but is potentially a very

clean channel. These channels as well as multi-lepton final states from h→ ZZ∗ were also

studied in [19].

The dominant irreducible SM background for Higgs plus MET is Zh production with

Z decaying to neutrinos. Depending on the decay channel, other SM backgrounds can also

be comparable or larger. Here we rely on the ATLAS report [24] to derive bounds from

LHC Run 1. For 14 TeV projections, we estimate backgrounds rates from our own Monte

Carlo event simulations and also use some results from [19].

Our dark matter models have been implemented with FeynRules 2.0 [25], and our

event generation makes use of the MadGraph [26], PYTHIA [27], and Delphes [28] pipeline

from parton-level to detector-level simulation.

2.1 Two b-jet channel

A search for h→ bb̄ decay in association with a Z/W boson has been performed using the

data of Run 1 of the LHC; the observed signal strength is compatible with that of the SM

Higgs boson [24, 29]. In particular, the ATLAS collaboration presents an analysis for the

Z(νν̄)h channel in several MET bins, with the full integrated luminosity of 4.7/fb at 7 TeV

and 20.3/fb at
√
s = 8 TeV [24]. We use these results to derive constraints on mono-Higgs

for the models in this paper.

Event selection is governed by demanding two leading b-tagged jets, with pT > 20 GeV

and |η| < 2.5, with the highest pT b-tagged jet having pT > 45 GeV. Multijet backgrounds

are reduced by requiring /ET > 120 GeV and constraints on the azimuthal angle between

the missing transverse momentum and jets: ∆φ(/ET , bb̄) > 2.8,min[∆φ(/ET , j)] > 1.5. A

lepton veto is imposed, and the bb̄ system invariant mass must reconstruct to near the

Higgs mass, 90 GeV < mbb < 150 GeV. Finally, tt̄ is suppressed by vetoing events that

have any additional jets with pT > 30 GeV.
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LHC Run 1 14 TeV

tt̄ 200 1006± 335

Zbb̄ 336 682± 26

V h 23 142± 5

SM total 727± 11 1830± 336

Dim-8, fermion DM 329± 10 23150± 880

MZ′ = 1 TeV, tanβ = 1 43± 1 1836± 36

Table 1. Background and signal events for h → bb̄ decay, for the cuts described in the text.

The background numbers for LHC Run I are taken from ref. [24] for MET > 120 GeV. For our

background estimate at a 14 TeV LHC, we include only the processes listed here; uncertainties

from MC statistics are shown and we include an additional 25% systematic uncertainty in deriving

constraints. For the signal from a dimension-8 operator with fermion DM, eq. (3.7), we take fiducial

values of Λ = 200 GeV and mX = 1 GeV. For the Z ′ case, the coupling is the upper limit allowed

by the ρ0 constraint, shown in figure 4.

Estimates of SM processes, including Zh, are compared to observed data events in

three MET bins. The most important backgrounds are Z + bb̄ and tt̄. Making use of

these published SM process estimates, we compare our signal to the data with cuts of

/ET > 120 GeV, /ET > 160 GeV, and /ET > 200 GeV, and derive 95% CL upper limits

on the number of possible mono-Higgs signal events. We have also validated our event

simulation against these background estimates.

For 14 TeV projections, we modify the 8 TeV ATLAS cuts slightly, loosing the jet

veto such that up to one additional jet with pT > 30 GeV is allowed, and take a cut of

/ET > 250 GeV. The total integrated luminosity is 300/fb. Our estimates for background

rates are shown in table 1. We find the bb̄ channel performs better compared to the results

in ref. [19]; this appears to be due primarily to our choice of R = 0.4 jet clustering radius

instead of R = 0.7, since with a larger radius the two b-jets from the Higgs decay are more

often clustered together in the boosted Higgs regime.

2.2 Diphoton channel

The diphoton channel requires two hard photons reconstructing to the Higgs mass, large

missing energy, and a veto on leptons. The dominant SM backgrounds are Zγγ and

hZ/hW . Because the Higgs branching ratio to photons is so small, we find that this

channel is not constraining if the 8 TeV run is considered, since there are simply not

enough signal events. However, the statistics are far improved at 14 TeV. We use results

for background estimates from [19], where they found that this channel can demonstrate

improved sensitivity over bb̄ (which suffers from a larger tt̄ background). The cuts applied

require mγγ ∈ [110, 130] GeV and /ET > 100, 250 GeV at 8,14 TeV respectively.
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Figure 2. Left: distributions (at
√
s = 8 TeV) for the momentum transfer Qtr for 10 GeV (solid

gray line) and 100 GeV (solid black line) DM, from a mono-Higgs DM signal corresponding to the

operator of eq. (3.7) with fermion DM. The irreducible SM background from Zh production (red

dashed line) is also shown. Right: for the same operator, the rate for mono-Higgs at 8 TeV with a

cut of 120 GeV missing transverse energy. The total cross section is scaled by the fraction of events

satisfying various “unitarity” conditions on Qtr. The horizontal line indicates the approximate cross

section that would be ruled out at 95% CL using data from Run 1 of the LHC; regions of Λ with

cross sections above this line are excluded and correspond to the shaded regions in figure 3.

3 Effective field theory

Contact operators coupling dark matter to a Higgs doublet can potentially give rise to a

mono-Higgs signal. If the dark matter is a gauge singlet, then gauge invariance implies the

operator must also include other electroweak doublets. We focus on operators that give rise

to a coupling of dark matter to both h and Z/γ, allowing the production of dark matter

through the process shown in figure 1. If the dark matter couples to two Higgs bosons, the

production rate is correspondingly lower.

For the process above, we also note that a mono-Z signal is possible by reversing the

roles of the h and the Z; this rate is automatically lower by several orders of magnitude since

it requires the initial production of an s-channel Higgs. For all the operators considered

here, the limits from mono-Z are weaker compared to mono-Higgs.

These kinds of operators have been studied in refs. [19, 30, 31], as well as mono-Higgs

from Higgs-portal type operators in [18]. The lowest dimension SM operator that can give

a Zh interaction with dark matter is

i(H†DµH − h.c.)→ −2mZhZµ − 〈v〉mZZµ, (3.1)

after electroweak symmetry breaking. This operator could be combined with singlets

formed of the dark matter: i(φ†∂µφ − h.c.) for scalar DM, and X̄γµX or X̄γµγ5X for

fermion DM. Because of the induced direct Z coupling to dark matter, direct detection is

very constraining for mDM > 10 GeV, while the invisible Z width is very constraining for

mDM < mZ/2. Despite this, in the case of scalar DM ref. [19] found that a mono-Higgs

search at 14 TeV could be much more sensitive than the invisible Z width.1 We therefore

do not consider this operator further.

1The constraints on the suppression scale Λ are again of order a few hundred GeV up to a TeV for the

LHC and therefore has the same problem with unitarity that we discuss below.
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Figure 3. 95% CL constraints from mono-Higgs on the suppression scale Λ as a

function of DM mass, for operators discussed in section 3. The dimension-7 opera-

tor is i
Λ3 X̄γ

µνX
[
(DµH)†DνH − h.c.

]
, the dimension-8 operator coupling to fermion DM is

1
Λ4 X̄γ

µX (W a
νµH

†taDνH + h.c.), and the dimension-8 operator coupling to scalar DM is
1

Λ4
1
2 (φ†∂µφ + h.c.) (BνµH

†DνH + h.c.). The solid lines are the lower bounds for the naive EFT

result (Qtr < ∞). The shaded regions are the excluded regions imposing the conditions on the

momentum transfer Qtr < 4π × Λ or Qtr < 4Λ to address the apparent violation of unitarity. The

left column shows LHC Run 1 limits, derived for the bb̄ channel with a MET cut of 120 GeV, while

right column shows 14 TeV limits assuming the diphoton channel and a MET cut of 250 GeV.

At dimension-4 in the SM factor there is the operator

i
[
(DµH)†DνH − h.c.

]
→ mZ(Zµ∂νh− Zν∂µh), (3.2)

concentrating on the part giving an hZ interaction. Including a DM factor, we consider

1

Λ3
X̄γµνX × i

[
(DµH)†DνH − h.c.

]
, (3.3)

neglecting the similar possibility with X̄γ5γµνX.
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Finally there are dimension-5 SM operators [30]

(BνµYHH
†DνH + h.c.) (3.4)

→ 〈v〉
2

(cos θwFνµ∂
νh− sin θwZνµ∂

νh)

(W a
νµH

†taDνH + h.c.) (3.5)

→ −〈v〉
2

(sin θwFνµ∂
νh+ cos θwZνµ∂

νh)

where Bνµ, W a
νµ are the field strengths for U(1)Y and SU(2)L, and Zνµ, Fνµ are the field

strengths for Z and γ, respectively. Dimension-8 operators are formed by including a DM

factor of either X̄γµX or X̄γµ5X for fermion DM, and either i(φ†∂µφ−h.c.) or (φ†∂µφ+h.c.)

for scalar DM. Combined with the possibility of exchanging Bνµ,W
a
νµ for B̃νµ, W̃

a
νµ, a large

number of operators are possible. We therefore restrict our attention to two representative

examples with scalar DM (φ) or a Dirac fermion (X):

1

Λ4

1

2
(φ†∂µφ+ h.c.) (BνµH

†DνH + h.c.) (3.6)

1

Λ4
X̄γµX (W a

νµH
†taDνH + h.c.) , (3.7)

refs. [30, 31] discuss the complete list of possible operators, as well as further details on

the relic density and gamma-ray signals of dark matter annihilation.

For the operators in eqs. (3.3), and (3.6)–(3.7) we derive constraints on Λ as a function

of DM mass from a mono-Higgs search. For LHC Run 1 data, we consider the bb̄ channel

with the weakest cut on the missing energy /ET > 120 GeV. Higher /ET values will necessar-

ily require larger momentum transfer and thus lead to even larger error in the validity of

the EFT, as discussed further in the following section. For 14 TeV, we obtain constraints

using the diphoton channel, where we find the best results.

The LHC Run 1 lower bounds on Λ are comparable and on the order of 200 GeV

for all three cases, increasing up to 300 GeV for 14 TeV projections. The related opera-

tor 1
Λ4 X̄γ

µX(BµνH
†DνH + h.c.) was also studied in ref. [19], where they obtained very

similar bounds.

Even though one would expect the constraints on the dimension-7 operator to be

stronger than for the dimension-8 ones, they are in fact slightly weaker. This is because

most of the mono-Higgs signal is coming from the high momentum transfer (Qtr) region,

as can also be seen in figure 2, and the dimension-7 operator has a softer Qtr dependence.

This result is clearly related to the issue of validity of the EFT, as we discuss further below.

3.1 Unitarity

A frequent concern in this EFT approach is that, taking LHC constraints at face value,

the values of Λ that can be probed correspond to energy scales accessible at the LHC. This

implies a violation of perturbative unitarity at high momentum transfer, or equivalently

that the EFT is no longer a valid description for LHC processes.

Figure 2 shows the distribution for the momentum transfer Qtr for the operator of

eq. (3.7). Compared to the naive constraint of Λ & 225 GeV derived for the operator,

– 7 –
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it is clear that the EFT description is on shaky footing. For an s-channel mediator, the

condition Qtr . 4πΛ is required for an expansion in the mediator mass for a perturbative

theory [32] or Qtr . 2.5Λ for unitarity of the S-matrix [33]. In general the specific regime

of Qtr where the theory breaks down depends on the form of the operator (as well as its

UV completion). Since it is not straightforward to derive UV completions for the operators

here, we consider Qtr = 4Λ and Qtr = 4πΛ as representative of where the EFT assumption

begins to suffer from large errors.

We implement three different criteria: Qtr < ∞ (corresponding to the näıve limit),

Qtr < 4π × Λ, and Qtr < 4Λ. More specifically, for a given Λ, we discard any events in

violation and thus rescale the calculated cross section by the fraction of events satisfying

this criterion at parton-level. The conditions above on the generated events should not be

taken literally; they are only to indicate the size of the error in assuming a single effective

operator can describe the relevant physics. This procedure gives conservative constraints,

in the sense that any new physics giving rise to the operator is expected to be relevant

at these scales. In general, this could lead to even stronger constraints on the model,

for example from an enhanced signal in the original channel or from other new signal

channels [32–34].

Our results for the operators are shown in figure 3, where the solid lines give the lower

limit on Λ without any condition on the momentum transfer. When a condition on Qtr

is imposed, this weakens and shifts the bound on Λ; in addition, low values of Λ are no

longer excluded, which we interpret as the breakdown of the EFT. This is also illustrated

by figure 2, where we show the mono-Higgs cross section when each one of the unitarity

conditions above is imposed. For very small Λ, no events satisfy the condition on Qtr. As

Λ is increased, more events meet the criterion until the suppression of the cross section

with large Λ takes over. The excluded region is the range of Λ where the cross section is

above that observable at the LHC (indicated by the dashed line).

For the weakest condition Qtr < 4πΛ a constraint is possible for all operators below

DM masses around a few hundred GeV. In the most restrictive case Qtr < 4Λ, we find

that no bound is possible for the operators in eqs. (3.3), (3.6). For the fermion DM

operator in eq. (3.7), a limit for a narrow range in Λ is still possible with the strongest

Qtr condition and 8 TeV data, but again no bound is expected at larger masses or with a

14 TeV run. Compared to the results for the 7/8 TeV runs of the LHC, the 14 TeV run does

not necessarily promise a significant improvement with respect to the issue of unitarity due

to the need for a stronger /ET cut to suppress backgrounds.

4 Dark matter via a Z′ and heavy Higgs

Motivated by the mono-Higgs processes discussed in the previous section, we construct

a simple model with renormalizable interactions where the relevant states may be pro-

duced on-shell. The high-dimension operators considered previously are challenging to

UV-complete; however, it is more straightforward to generalize the mono-Higgs process,

as shown in figure 1. If the intermediate Z is instead a new Z ′ gauge boson, resonant

production is possible; the Z ′ then decays to a Higgs plus an intermediate state which

– 8 –
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decays to a DM pair. Since a SM state decaying to DM is highly constrained, we consider

a two-Higgs doublet extension to the standard model with Z ′ → hA0, where A0 is a heavy

pseudoscalar with a large branching ratio to dark matter. Below we discuss in more detail

the Z ′ coupled to a two-Higgs doublet model (2HDM), which is sufficient to determine the

mono-Higgs signal. More model-dependent details of the DM coupling to the pseudoscalar

are discussed in section 4.3.

The gauge symmetry of the SM is extended by a U(1)Z′ , with a new massive Z ′ gauge

boson (see, for example, [35, 36]). We assume that this sector also contains a SM singlet

scalar φ that leads to spontaneous breaking of the symmetry and a Z ′ mass at a scale

above electroweak symmetry-breaking. There are many choices for how the SM fermions

are charged under the U(1)Z′ ; for simplicity, we assume generation-independent charges

for the fermions and that only the right-handed quarks uR are charged.2 This allows

LHC production of the Z ′, but since the leptons are neutral, avoids potentially stringent

constraints from searches for dilepton resonances.

For the Higgs sector we assume a Type 2 two-Higgs-doublet model, where Φu couples

to up-type quarks and Φd couples to down-type quarks and leptons:

− L ⊃ yuQΦ̃uū+ ydQΦdd̄+ yeLΦdē+ h.c. (4.1)

with hypercharge Y = 1/2 Higgs doublets Φu,Φd that could have Z ′ charges zu, zd. In

the case we consider, only uR and Φu are charged under U(1)Z′ . Our convention for the

charges are shown in table 2.

After electroweak symmetry breaking, the Higgs doublets attain vevs vu and vd, and

in unitary gauge the doublets are parametrized as

Φd =
1√
2

(
− sinβ H+

vd − sinα h+ cosα H − i sinβ A0

)
,

Φu =
1√
2

(
cosβ H+

vu + cosα h+ sinα H + i cosβ A0

)
(4.2)

where h,H are neutral CP-even scalars and A0 is a neutral CP-odd scalar. Furthermore,

tanβ ≡ vu/vd, and α is the mixing angle that diagonalizes the h−H mass squared matrix.

We make some simplifying assumptions for the Higgs sector, taking h as the scalar

corresponding to the observed Higgs boson with mh ∼ 125 GeV. The remaining scalars

H,A0, H± are assumed to have masses around or above 300 GeV, in accordance with b→ sγ

constraints [37]. Fits to the observed Higgs couplings from the LHC [38] indicate that a

Type 2 2HDM is tightly constrained around the alignment limit where sin (β − α) → 1

(specifically β → α + π/2, α ∈ (−π/2, 0)). In this limit, h has SM-like couplings to

fermions and gauge bosons. In addition, perturbativity of the top yukawa coupling implies

tanβ & 0.3. Hence, we choose to work in the α − β parameter space where tanβ ≥ 0.3

and α = β − π/2.

2Anomaly cancellation can be achieved with a pair of colored triplet fields which are singlets with respect

to SU(2)L: ψL(Qz = 0, Y = −2/3) and ψR(Qz = −zu, Y = −2/3) where zu is the Z′ charge of uR.
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Φd Φu QL dR uR

U(1)Z′ 0 1/2 0 0 1/2

Table 2. SM fermion and scalar U(1)Z′ gauge charges. All other SM particles are neutral.

Figure 4. 95% CL bounds on the Z ′ coupling gz as a function of MZ′ . The dashed lines are

upper bounds from ρ0 parameter constraints on Z − Z ′ mixing, given in eq. (4.7), for three values

of tanβ = 0.3, 1, 10. We also show upper limits from dijet resonance searches at the Tevatron and

at the LHC; see text for further details.

The Higgs vevs lead to Z − Z ′ mass mixing. Diagonalizing the gauge boson mass

matrix, the tree-level masses of the Z and Z ′ bosons are given by

M2
Z ≈ (M0

Z)2 − ε2
[
(M0

Z′)2 − (M0
Z)2
]

M2
Z′ ≈ (M0

Z′)2 + ε2
[
(M0

Z′)2 − (M0
Z)2
]

, (4.3)

where (M0
Z)2 = g2(v2

d + v2
u)/(4 cos2 θw) and (M0

Z′)2 = g2
z(z

2
dv

2
d + z2

uv
2
u + z2

φv
2
φ) are the mass-

squared values in the absence of mixing. The result above is accurate to order ε2, where ε

is a small mixing parameter given by

ε ≡ 1

M2
Z′ −M2

Z

ggz
2 cos θw

(zdv
2
d + zuv

2
u)

=
(M0

Z)2

M2
Z′ −M2

Z

2gz cos θw
g

zu sin2 β. (4.4)

Finally, the mass eigenstates corresponding to the observed Z boson and the hypothetical

Z ′ boson are

Zµ ≈W 3µ cos θw −Bµ
Y sin θw + εBµ

Z ,

Z ′µ ≈ Bµ
Z − ε

(
W 3µ cos θw −Bµ

Y sin θw
)
. (4.5)

4.1 Z′ constraints

The Z − Z ′ mixing leads to a modification to the Z mass, as shown in eq. (4.3). This in

turn affects the relation between the W and Z masses, which is expressed as a deviation
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of the ρ0 parameter away from unity:

ρ0 = 1 + ε2
(
M2
Z′ −M2

Z

M2
Z

)
, (4.6)

Current precision electroweak global fits constrain ρ0 = 1.0004+0.0003
−0.0004 [39]. Taking this

result at face value, the approximate 95% upper limit

ρ0 ≤ 1.0009 (4.7)

implies an upper limit on gz (at fixed tanβ and MZ′), shown in figure 4. Although there

are also strong LEP constraints on Z − Z ′ mixing from, e.g., precision measurements of

dijets/dileptons through a Z resonance, in our case the limits are weak since the coupling

to leptons is ε-suppressed.

There are additional gz constraints from searches for dijet resonances from Z ′ decay to

qq̄, also shown in figure 4. We apply results from Tevatron and LHC studies, with Tevatron

results [40] providing coverage for 300 GeV ≤MZ′ ≤ 1.4 TeV. We also apply 95% CL upper

limits from CMS using 7 TeV [41] and 8 TeV [42] data,3 given in a model-independent form

in terms of a cross section times acceptance for a narrow resonance decaying to qq̄. An

upper bound on gz is derived by comparing our detector-level simulation to the published

upper limits, assuming that the Z ′ width is fixed for the most part by its decay to quarks:

ΓZ′→qq̄ ≈
g2
z

24π
z2
uNcMZ′ (4.8)

for each light-quark flavor. This is a valid approximation for the model here, assuming

that there isn’t a significant width for Z ′ decay to other new fermionic modes.

For masses below ∼ 1.3 TeV (exactly the regime that we find the strongest potential

mono-Higgs signal) and in particular for large tanβ, we find that the ρ0 constraint on gz is

stronger than dijet limits. However, for tanβ . 0.6, the dijet constraints dominate even at

low masses. For the remainder of the paper, for any given MZ′ and tanβ, we will simply

assume the coupling gz is the maximum allowed by ρ0 and dijet constraints, as given in

figure 4.

4.2 Mono-Higgs signal

The mono-Higgs signal associated with DM plus Higgs production proceeds through Z ′ →
hA0; the decay width for this to leading order in ε is

ΓZ′→hA0 = (gz cosα cosβ)2 |p|
24π

|p|2
M2
Z′
. (4.9)

The center of mass momentum for the decay products is |p| = 1
2MZ′

λ1/2(M2
Z′ ,m2

h,m
2
A0),

where λ is the Källen triangle function. Since only the Φu doublet couples directly to the

3The ATLAS collaboration has also presented 95% CL upper limits [43, 44], but for a narrow Gaussian in

dijet mass distribution, which is not applicable to this case since there is a significant tail to the distribution

at lower dijet masses.
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Figure 5. Total cross sections for Higgs+MET, via a new Z ′ gauge boson coupled to a 2HDM,

for the LHC at 8 TeV and 14 TeV. Both Higgs plus DM production from Z ′ → hA0 and Higgs plus

MET from Z ′ → hZ,Z → νν̄ are included. The Z ′ gauge coupling is fixed to be its 95% CL upper

limit, as shown in figure 4.

Z ′, and since the pseudoscalar component of the Φu scales with cosβ, this decay width is

suppressed by 1/ tan2 β in the limit of large tanβ. For tanβ < 1, the rate actually increases

because the allowed gz from the precision electroweak constraint increases, at least until

tanβ ≈ 0.6 when dijet limits take over.

The Z ′ model enjoys an additional source of Higgs plus MET from the decay of Z ′ →
hZ, where the Z decays invisibly. The decay width is

ΓZ′→hZ = (gz cosα sinβ)2 |p|
24π

( |p|2
M2
Z′

+ 3
M2
Z

M2
Z′

)
, (4.10)

which grows with smaller MZ′ due to the M2
Z/M

′2
Z term. At fixed MZ′ , the mono-Higgs

rate for this process is almost independent of tanβ for tanβ & 0.6. Although the rate

näıvely scales as sin4 β, this dependence is almost exactly cancelled when we apply the

upper limit on gz from ρ0, which leads to an upper limit on gz ∝ 1/(sin2 β). This can also

be seen from eqs. (4.4), (4.6). When tanβ . 0.6, the constraint on gz is independent of

tanβ and the width is therefore suppressed by sin4 β.

Figure 5 shows the total mono-Higgs cross section at 8 TeV and at 14 TeV, as a function

of MZ′ and tanβ. We have fixed the coupling gz according to its 95% CL upper bound,

as discussed in the previous section. The heavy scalar masses are assumed to be 300 GeV

and we take the alignment limit, sin(β−α) = 1. The branching ratio of A0 to dark matter

is taken to be 100%. Despite the larger coupling allowed at larger MZ′ , the total cross

section eventually falls with MZ′ due to pdf suppression. For large or small tanβ, the cross

section also falls due to the (sinβ cosβ)2 dependence in the hA0 channel. The ratio of the

two mono-Higgs rates is shown in figure 6. Over much of the parameter space we consider,
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Figure 6. Ratio of the cross sections (or, ratio of the branching ratios) for mono-Higgs from

Z ′ → hA0, A0 → X̄X to mono-Higgs from Z ′ → hZ,Z → ν̄ν.

the mono-Higgs from Z ′ → hA0 dominates, however Z ′ → hZ is a non-negligible fraction

of the total signal and becomes important at low MZ′ and also at large tanβ.

We present results for the mono-Higgs reach at the LHC in figure 7. For Run 1 of the

LHC (combined 7 TeV and 8 TeV), we show the three 95% CL exclusion regions for the

bb̄ channel with /ET > 120, 160, and 200 GeV, where the constrained region increases with

MET cut.4 For 14 TeV projections, we again find better overall sensitivity with a harder

MET cut (taken here to be /ET > 250 GeV) to reduce SM backgrounds.

The diphoton channel is sensitive to lower cross sections compared to bb̄ for a 14 TeV

LHC, as evidenced by the reach of this channel for large values of tanβ. Although our plot

cuts off at tanβ = 5, the mono-Higgs cross section is approximately constant for large tanβ

and the sensitivity can extend to much higher tanβ. However for much larger tanβ, direct

searches for H,A0 would start to be constraining [45], depending on the scalar masses. The

diphoton channel also performs worse than expected at large MZ′ . This is because in our

detector simulation, the energy resolution for photons deteriorates at higher energies such

that the mγγ peak is much broader, which limits the signal efficiency. This effect could be

reduced by loosening the cut on mγγ , however the extent to which this would be helpful

depends on the actual energy resolution in the experiment.

An appropriate question is whether other 14 TeV searches will potentially also have

sensitivity for this model. For example, although data from the next LHC run will improve

dijet resonance constraints, this will be mainly at large MZ′ ; below 1.5 TeV it will be even

more difficult to probe due to the large QCD backgrounds. Here the strongest constraint

for our model was the precision electroweak fit for ρ0. A somewhat indirect but possibly

4If we were to use the results of ref. [19], the 8 TeV data would be unconstraining at 95% CL for almost

the entire parameter space. This is partly due to the rather conservatives estimates and also because the

cuts are not optimal for our model.

– 13 –



J
H
E
P
0
6
(
2
0
1
4
)
0
7
8

Figure 7. 95% CL exclusion regions for the parameter space with data from Run 1 of the LHC (7

and 8 TeV, total 25/fb) for the bb̄ channel with MET cuts of 120, 160 and 200 GeV. Dashed lines

give projections for a 14 TeV LHC with 300/fb integrated luminosity for bb̄ and diphoton channels.

We only show the parameter space up to tanβ = 5 but the reach for the diphoton channel could

extend to somewhat larger tanβ, since the cross section is approximately constant with tanβ.

important channel is a direct search for H,A0 decay; for example, for H decay to SM

fermions, the 14 TeV data could improve the upper limits on tanβ significantly for the

range of masses relevant here [46].

4.3 Dark matter coupling to Higgs sector

To incorporate DM interactions, we have assumed that the CP-odd pseudoscalar A0 of the

theory possesses a large coupling to DM particles, such that the branching ratio is order

one. Here we sketch out some simple models that could give rise to this kind of coupling,

reserving more detailed studies for future work.

One possibility is fermion DM; for example, a pseudoscalar interaction can arise in

singlet-doublet DM from a coupling to the down-type Higgs. In this model, a singlet S and

electroweak doublets D1,2 (all singlets under U(1)Z′) are introduced, with a Lagrangian

−L ⊃ 1

2
M2
SS

2 +MDD1D2 + y1SD1Φd + y2SΦ†dD2 + h.c.

The DM is the Majorana fermion that is the lightest mass eigenstate, and we require that

it has a mass of at least mh/2 in order to avoid bounds on the invisible width of the Higgs.

In general, this state is a mixture of the singlet and the neutral components of the doublets.

For more details, see for example refs. [47, 48].

Elastic scattering off quarks can proceed via the exchange of h or H, and direct de-

tection constraints severely restrict the parameter space for this model. However, in parts

of the parameter space near the “blind spot” where the coupling through the Higgs is sup-

pressed, the direct detection cross sections are small. This cancellation requires tan θ < 0,
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where y1 = y cos θ, y2 = y sin θ. We find it is possible to obtain large branching ratios of A0

to DM while satisfying LUX constraints [49] for parameter values of y = 1.5, tan θ = −2

and masses of MS ≈ 100− 200 GeV and MD ≈ 120− 180 GeV.

For scalar DM, we consider a complex scalar field X, written as X = 1√
2

(X1 + iX2),

which is a SM singlet and has U(1)Z′ charge −1/4. Then the renormalizable interactions

of the DM with the Higgs sector are

L ⊃
(
λdd|Φd|2 + λuu|Φu|2

)
|X|2

+
(
λduΦ†dΦuX

2 + h.c.
)
, (4.11)

with all couplings taken to be real. The mass eigenstates are the real fields fields X1,2

with masses m2
1,2 = m2

X ∓ 2λdu sin(2β)m2
W /g

2, where the overall mass scale m2
X is a free

parameter. Again, the lightest component is a DM candidate.

The A0 can decay through the term λduvA
0X1X2. However, this decay is not truly

invisible, since the X2 can decay to X1qq̄ through an off-shell A or Z ′, as well as to X1`
+`−

with a somewhat smaller rate. This X2 decay will wash out some of the missing energy;

however, if the splitting between X2 and X1 is not too large, these additional jets or leptons

are relatively soft. There is some tension for this parameter space, since larger λdu is needed

for an O(1) branching fraction, but at the same time this leads to a larger mass splitting.

Finally, DM scattering off of quarks is through h or H exchange, since Z ′ interactions

are inelastic with a large mass splitting. It is possible to satisfy the direct detection limits

from LUX if there are cancellations among the couplings λdd, λuu, and λdu at the 10%

level [50]. We find that couplings of order |λ| ∼ 0.1 and a mass scale of mX ∼ 100 GeV

can give rise to the desired features of the model.

5 Summary and conclusions

The discovery of a new particle brings with it the prospect of a new signal channel for

probing dark matter particle physics. In the search for dark matter, there are already

many different potential avenues to its discovery, though so far without conclusive results.

The simple question motivating this work is to search for possible models where dark

matter production with a Higgs is the dominant discovery mode in the current generation

of hadron colliders. For these models we adopted ATLAS results from the combined 7 and

8 TeV (25/fb) analysis in the h → b̄b channel in order to derive constraints, and studied

the sensitivity of a 14 TeV LHC in the b̄b as well as diphoton channels.

One way for mono-Higgs to occur is through higher dimension operators coupling dark

matter to Higgs doublets and electroweak gauge bosons. LHC constraints applied to the

dimension-7 or -8 operators studied here lead to the näıve conclusion that the cutoff scale

Λ must be greater than 100-200 GeV. However, this is problematic from an effective field

theory point of view, since such scales are low compared to the typical momentum transfer

in the collider process. We have attempted to quantify the extent to which imposing a

unitary constraint gives rise to a reliable (although conservative) bound on the operator.

This is possible only for low dark matter masses.
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We also presented a viable simplified model, where the resonant production of a Z ′

decaying to hA0 and hZ allows for a potentially observable rate of mono-Higgs. This

is primarily possible at low tanβ, in part because the Z ′ → hA0 branching fraction is

1/tanβ2 suppressed. In addition, we require the Z ′ gauge coupling to be near the maximum

allowed from precision electroweak fits. Nevertheless, we show there is an interesting part

of parameter space for low tanβ and MZ′ around 1 TeV, assuming the pseudoscalar A0

decays to dark matter 100% of the time. We briefly discussed possible models that could

give rise to this large pseudoscalar to invisible branching ratio. It would be interesting

to pursue more detailed model-building work in this direction, taking into account direct

detection or relic density considerations.
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