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1 Introduction

The entanglement entropy offers us a universal measure of the degrees of freedom in any

quantum many-body systems. Since it is defined by focusing on an arbitrary subsystem

of a given quantum system, we can probe effective degrees of freedom for any fixed length

scale and position. Thus this includes quite a lot of information about any ground state.

It has been well-established that in any local quantum field theory with a ultraviolet

(UV) fixed point, the entanglement entropy follows the universal rule called area law [1].

This claims that the entanglement entropy SΩ for a subsystem Ω has a UV divergence in

the continuum limit of quantum field theories and that the coefficient of this divergence is

proportional to the area of the boundary ∂Ω of the subsystem.

The area law was first found in free field theories [2, 3]. One way to confirm the

area law for interacting field theories is to employ the AdS/CFT correspondence [4]. The

AdS/CFT correspondence argues that a gravitational theory on d+ 1 dimensional anti de

Sitter space (AdS space) is equivalent to a d dimensional conformal field theory (CFT),

where the latter is typically described by a strongly coupled and large N gauge theory.

The holographic formula of entanglement entropy [5–7] shows that the area law holds for

such a strongly coupled CFT with a UV fixed point and this heavily relies on the geometry

of the AdS space.

The AdS/CFT can be regarded as an example of a more general and earlier idea called

holography [8–10]. This principle conjectures that a given gravity theory in a d+1 dimen-

sional spacetime M is equivalent to a certain quantum many-body system which lives on
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the d dimensional boundary of ∂M. Therefore it is natural to ask what we can say about

general holography from the quantum entanglement viewpoint. If we consider, for example,

a flat spacetime in any dimension, we can immediately find that its holographic entangle-

ment entropy satisfies a volume law instead of the area law [11]. Refer also to related

earlier works [12, 13] and recent discussions [14, 15] in gravity duals of non-commutative

field theories, where the holographic entanglement entropy was shown to follow a volume

law. Therefore it seems important to find a class of field theories whose entanglement

entropy satisfies the volume law.

It is well-known that for the generic excited states in any quantum many-body systems,

the entanglement entropy satisfies the volume law [16]. This means that the state which

follows the area law is very special. Indeed, the local quantum field theories, which have

the area law property, are clearly special in that the interactions are very short range and

this property crucially helps to reduce the amount of entanglement.

In lattice models, it is not so difficult to construct models with a volume law. For

example, we can consider a spin system with random interactions between any two pairs

of spins. The non-local random interactions obviously lead to a highly entangled ground

state which satisfies the volume law. Moreover it has been pointed out that even without

local interactions, we can construct lattice models with a volume law if we give up the

translational invariance [17].

The purpose of this paper is to present a field theory model with the translational

invariance whose ground state satisfies the volume law. The previous arguments suggest

that we may get the volume law if we consider suitable non-local field theories. There have

already been suggestions of such field theories in [11, 18] via heuristic discussions. Also we

would like to mention that the paper [19] studied milder non-local field theories, which do

not lead to the volume law but have modified coefficients of logarithmic divergent term in

two dimensional field theories.

In this paper, we will present simple and concrete examples of non-local and non-

relativistic free scalar field theories. We will show manifestly that they indeed have the

property of volume law both by explicit numerical calculations and by analytical estima-

tions. We will also see that holographic calculations confirm the same behavior.

The dispersion relation of our model is ǫ ∼ eAkw , where A and w are parameters of

our model. In our model, the couplings between oscillators are large for L≪ A and decay

rapidly for L ≫ A where L is a distance between oscillators. The volume law holds for

L ≪ A and the area law holds for L ≫ A. The free scalar field theory whose dispersion

relation is ǫ ∼ kα, where α is a constant, do not lead to the volume law [19]. Our model is

highly nonlocal and leads the volume law for L≪ A.

The paper is organized as follows: in section 2, we will briefly review how to calculate

the entanglement entropy in free bosonic quantum many-body systems. In section 3, we

will explain our models of non-local scalar field theories in two dimensions and their lattice

regularizations. In section 4, we will present numerical results of entanglement entropy for

our non-local scalar models in two dimensions and give their analytical explanations. In

section 5, we will generalize our results into higher dimensions. In section 6 we present a

holographic interpretation and find that it is consistent with our field theoretic results. In

section 7 we summarize our conclusion.
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When we were writing the draft of this paper, we noted the paper [20], where the

authors showed that the volume law can be obtained for a non-commutative field theory

on a fuzzy sphere, which is also an example of non-local field theory (refer also to [21, 22]

for earlier works on entanglement entropy in non-commutative field theories).

2 How to compute entanglement entropy: real time approach

In this section we review the method of computing the entanglement entropy in free field

theories developed by Bombelli et al. [2], which we will employ in this paper. Refer to [3, 23–

31] for examples of other useful computational methods for the entanglement entropy in

free field theories. As a model amenable to unambiguous calculation we deal with the scalar

field as a collection of coupled oscillators on a lattice of space points, labeled by capital

Latin indices, the displacement at each point giving the value of the scalar field there. In

this case the Hamiltonian can be given by

H =
1

2
δMNPMPN +

1

2
VMNqMqN , (2.1)

where qM gives the displacement of theM -th oscillator and PM is the conjugate momentum

to qM . The matrix VMN is symmetric and positive definite. The matrix VMN is independent

of qM and q̇M . We can obtain the ground state wave function as

ψ({qA}) =
(

det
W

π

)1/4

exp

(

−1

2
WABqAqB

)

, (2.2)

where

W ≡ V 1/2. (2.3)

The matrix WMN is symmetric and positive definite.

Now consider a subsystem (or subregion) Ω in the space. The oscillators in this region

will be specified by lowercase Latin letters, and those in its complement Ωc will be specified

by Greek letters. We will use the following notation

WAB =

(

Wab Waβ

Wαb Wαβ

)

≡
(

A B

BT C

)

W−1
AB =

(

W−1
ab W−1

aβ

W−1
αb W−1

αβ

)

≡
(

D E

ET F

)

. (2.4)

From WW−1 = 1, we have
(

1 0

0 1

)

=

(

A B

BT C

)(

D E

ET F

)

=

(

AD +BET AE +BF

BTD + CET BTE + CF

)

. (2.5)

We can obtain a reduced density matrix ρred for Ω by integrating out over qα ∈ R for

each of the oscillators in Ωc, and then we have

ρred
({

q1a
}

,
{

q2b
})

=

(

det W
π

det C
π

)1/2

exp

[

−1

2

(

q1a, q
2
b

)

(

X 2Y

2Y X

)(

q1a
q2b

)]

(2.6)

where X = A− 1
2BC

−1BT , Y = −1
4BC

−1BT .
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We can write the density matrix as one for non coupled degrees of freedom by making

an appropriate linear transformation on qa. Finally the entanglement entropy SΩ =

−trρred ln ρred is given by [2]

SΩ =
∑

n

f(λn), (2.7)

f(λ) ≡ ln

(

1

2
λ1/2

)

+ (1 + λ)1/2 ln
[

(

1 + λ−1
)1/2

+ λ−1/2
]

, (2.8)

where λn are the eigenvalues of the matrix

Λa
b = −W aαWαb = −

(

EBT
)a

b
= (DA)a b − δa b. (2.9)

In the last equality we have used (2.5). The last expression in (2.9) is useful for numerical

calculations when Ω is smaller than Ωc, because the indices of A and D take over only the

space points on Ω and the matrix sizes of A and D are smaller than those of B and E as

emphasized in [32]. It can be shown that all of λn are non-negative as follows. From (2.5)

we have

AΛ = −AEBT = BFBT . (2.10)

It is easy to show that A,C,D and F are positive definite matrices when W and W−1

are positive definite matrices. Then AΛ is a positive semidefinite matrix as can be seen

from (2.10). So all eigenvalues of Λ are non-negative. After all, we can obtain the entan-

glement entropy by solving the eigenvalue problem of Λ.

3 Two dimensional non-local scalar fields on lattices

We apply the above formalism to free scalar fields in (1+1)-dimensional Minkowski space-

time. As an ultraviolet regulator, we replace the continuous space coordinate x by a lattice

of discrete points with spacing a. As an infrared cutoff, we allow n ≡ x/a to take only a

finite integer values −N/2 < n ≤ N/2. Outside this range we assume the lattice is periodic.

Later we will take N to infinity. The dimensionless Hamiltonian H0 ≡ aH is given by

H0 ≡ aH ≡
∑

n

1

2
π2n +

∑

m,n

1

2
φmVmnφn, (3.1)

where φn and πn are dimensionless and Hermitian, and obey the canonical commutation

relations

[φn, πm] = iδnm. (3.2)

As an example, let us consider the Klein Gordon field whose mass is m. We can

diagonalize the matrix V by a Fourier transform [33] and obtain

(VKG)mn = N−1
∑

k

[

a2m2 + 2

(

1− cos
2πk

N

)]

e2πik(n−m)/N , (3.3)

(WKG)mn = N−1
∑

k

[

a2m2 + 2

(

1− cos
2πk

N

)]1/2

e2πik(n−m)/N , (3.4)

(WKG)
−1
mn = N−1

∑

k

[

a2m2 + 2

(

1− cos
2πk

N

)]

−1/2

e2πik(n−m)/N , (3.5)
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where the index k is also an integer in the range of −N/2 < k ≤ N/2. We take N to

infinity and change the momentum sum into an integral with the replacements q = 2πk/N

and N−1
∑

k →
∫ π
−π

dq
(2π) , and then we have

(WKG)mn =

∫ π

−π

dq

(2π)
eiq(n−m)

[

a2m2 + 2 (1− cos q)
]
1

2 , (3.6)

(WKG)
−1
mn =

∫ π

−π

dq

(2π)d
eiq(n−m)

[

a2m2 + 2 (1− cos q)
]
−1

2 . (3.7)

Then the laplacian on lattices is 2(1− cos q).

Next we turn to non-local scalar fields theories which we are interested in this paper.

The Hamiltonian is defined by

H =
1

2

∫

dx

[

(dφ/dt)2 +B0φe
A0(−∂2)

w/2

φ

]

, (3.8)

where A0, B0 are positive constants. We define dimensionless constants

B0 = B/a2, A0 = awA. (3.9)

We can change B into 1 by rescaling t. Thus the entanglement entropy is independent of

B and we can set B = 1. We obtain W and W−1 as follows

(Ww)mn =

∫ π

−π

dq

2π
eiq(n−m) exp

[

A/2 (2− 2 cos q)w/2
]

(3.10)

(Ww)−1
mn =

∫ π

−π

dq

2π
eiq(n−m) exp

[

−A/2 (2− 2 cos q)w/2
]

. (3.11)

For later convenience we define

Wn =Wm,m+n, W−1
n =W−1

m,m+n. (3.12)

When w = 1, 2, we can calculate W,W−1 analytically as we will show below.

In our model, we can obtain the couplings between oscillators V =W 2 as (V w)mn(A) =

(Ww)mn(2A). (V
w)mn is large for |m−n| ≪ A and decrease rapidly for |m−n| ≫ A as we

will discuss in the section 4.2. So our model is highly nonlocal at the scale smaller than A.

3.1 Case1: w = 1

In the case w = 1, we obtain

(Ww=1)n =

∫ π

−π

dq

2π
eiqn exp

[

A/2(2− 2 cos q)1/2
]

=

∫ π

−π

dq

2π
eiqn exp

[

A| sin(q/2)|
]

=

∫ 2π

0

dq

2π
eiqn exp

[

A sin(q/2)
]

=

∫ π

0

dx

π
e2ixn exp[A sinx]

=

∫ π

0

dx

π

[

cos(2nx− iA sinx) + i sin(2nx− iA sinx)
]

= J2n(iA) + iE2n(iA)

(3.13)
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where J2n is the Bessel function and E2n is the Weber function. We can rewrite (3.13) as

(

Ww=1
)

n
= (−1)nI2n(A) +

1

2
A(−1)n1 F̃2

[

1; (3− 2n)/2, (2n+ 3)/2;A2/4
]

(3.14)

where I2n is the modified Bessel function and we have used J2n(iA) = i2nI2n(A) =

(−1)nI2n(A) and

E2n(iA) = −1

2
iA(−1)n1 F̃2

[

1; (3− 2n)/2, (2n+ 3)/2;A2/4
]

. (3.15)

Here 1F̃2 is the regularized hypergeometric function. The regularized hypergeometric func-

tion is defined as

pF̃q [a1, . . . , ap; b1, . . . , bq; z] ≡ pFq [a1, . . . , ap; b1, . . . , bq; z]

Γ(b1) . . .Γ(bq)
, (3.16)

where pFq[a1, . . . , ap; b1, . . . , bq; z] is the hypergeometric function. This expression is man-

ifestly real and suitable for numerical calculations. We can obtain W−1 by replacing

A→ −A in W :

(

Ww=1
)

−1

n
= (−1)nI2n(A)−

1

2
A(−1)n1 F̃2

[

1; (3− 2n)/2, (2n+ 3)/2;A2/4
]

. (3.17)

3.2 Case2: w = 2

In the case w = 2 we find

(

Ww=2
)

n
=

∫ π

−π

dq

2π
eiqn exp[A(1− cos q)] = eA

∫ π

−π

dq

2π
eiqn exp[−A cos q]

= eA
∫ π

0

dq

π
cos(nq) exp[−A cos q] = eAinJn(iA) = eA(−1)nIn(A).

(3.18)

We can obtain W−1 by replacing A→ −A in W :

(

Ww=2
)

−1

n
= e−A(−1)nIn(−A) = e−AIn(A). (3.19)

4 Computations of entanglement entropy

Now we would like to turn to the main part of this paper: computations of entanglement

entropy for our non-local scalar field theories. We will first present numerical results which

support the volume law and later give an analytical explanation.

4.1 Numerical calculations

We perform matrix operations and calculate the eigenvalues λn of the matrix Λ in (2.9).

Then finally we can obtain the entanglement entropy in (2.8) with Mathematica 8. We

define the subsystem Ω to be an interval on the one dimensional lattice with the length L.

Since the columns and rows of the matrix Λ describe points in Ω, the size of the matrix Λ

is given by L× L.

– 6 –
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Figure 1. The entanglement entropy SΩ(L) of one interval whose length is L for w = 1 as a function

of L. In the left picture, the blue, red, yellow and green points correspond to A = 400, 600, 800, 1000.

In the right picture, the blue, red and yellow points correspond to A = 40, 60, 80.

For w = 1 (case 1), we show the computed values of SΩ(L) as a function of L in figure 1.

As can be seen, SΩ(L) is proportional to L when L ≪ A and approaches its maximum

value when L ≫ A. By using the data between 1 ≤ L ≤ 20 for 2000 ≤ A ≤ 3000, we

obtain SΩ(L) ≃ 0.48AL for L ≪ A. By using the data for 100 ≤ A ≤ 200, we obtain

SΩ(L) ≃ 0.055A2.0 for L≫ A.

For w = 2 (case 2), we show the computed values of SΩ(L) as a function of L in figure 2.

As can be seen, SΩ(L) is proportional to L when L ≪ A and approaches its maximum

value when L ≫ A. This behavior is similar to the entanglement entropy for w = 1. By

using the data between 1 ≤ L ≤ 20 for 2000 ≤ A ≤ 3000, we obtain SΩ(L) ≃ 0.98AL for

L≪ A. By using the data for 100 ≤ A ≤ 200, we obtain SΩ(L) ≃ 0.26A2.0 for L≫ A.

These numerical result suggests that the entanglement entropy behaves like

SΩ(L) ≃ c1LA (L≪ A),

≃ c2A
2 (L≫ A), (4.1)

where c1 and c2 are order one constants which depends only on the value of w. Our

numerical results implies the identification c1 = w/2. In this way, we can conclude that

ground states of these models satisfy the volume law as long as the subsystem size is small

as L≪ A.

4.2 Analytical explanation

We consider the behavior of the entanglement entropy by examining the matrix Λ in (2.9).

We can write explicitly Λ as

Λm,n =
L
∑

l=1

W−1
m−lWl−n − δm,n (4.2)

where 1 ≤ m,n ≤ L. First we consider the region L ≪ A. In this region we can use the

asymptotic expansion of Wn and W−1
n for large values of A. From (3.13), (3.17), (3.18)

– 7 –
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Figure 2. The entanglement entropy SΩ(L) of one interval whose length is L for w = 2 as a function

of L. In the left picture, the blue, red, yellow and green points correspond to A = 400, 600, 800, 1000.

In the right picture, the blue, red and yellow points correspond to A = 40, 60, 80.

and (3.19), we have the asymptotic expansions for A≫ 1 as

(

Ww=1
)

n
∼ (−1)neA

√

2

πA

[

1− 1

A

(

2n2 − 1

8

)

+ . . .

]

(4.3)

(

Ww=1
)

−1

n
∼ 2

πA

[

1− 1

A2

(

4n2 − 1
)

+ . . .

]

(4.4)

(

Ww=2
)

n
∼ (−1)n

e2A√
2πA

[

1− 1

2A

(

n2 − 1

4

)

+ . . .

]

(4.5)

(

Ww=2
)

−1

n
∼ 1√

2πA

[

1− 1

2A

(

n2 − 1

4

)

+ . . .

]

. (4.6)

From these asymptotic expansions, Λm,n ∼ ewA and the magnitude of nonzero eigen-

values λi is e
wA. From (2.8) each λi contribute

wA
2 to the entanglement entropy. Since all

of L eigenvalues are expected to contribute, we obtain SΩ(L) ≃ w
2LA = c1LA.

Next we consider the region L ≫ A. In this case we use the asymptotic forms of Wn

and W−1
n for large n. First we consider the case w = 2. We can obtain the asymptotic

form of In(A) in (3.18) and (3.19) from the integral representation

In(A) =
1

2πi

(
∫

−πi

−∞−πi
+

∫ πi

−πi
+

∫ πi+∞

πi

)

eA cosh t−ntdt . (4.7)

By using the method of steepest descent, we obtain

In(A) ∼
√

tanhβ

2π
e−n(β−cothβ) (4.8)

where sinhβ = n/A and n ≫ A. From the asymptotic form of In(A), we can see that

|Wn| and |W−1
n | decrease rapidly when n(≫ A) increases. From (3.18), (3.19) and (4.2) we

obtain Λm,n ≃ 0 when |m − n| ≫ A. Furthermore we can see that Λm,n ≃ 0 when A ≪
m,n≪ L−A by the following argument. By using the identity

∑

∞

l=−∞
W−1

m−lWl−n = δm,n,

we can rewrite Λ in (4.2) as

Λm,n = −
(

0
∑

l=−∞

+
∞
∑

l=L+1

)

W−1
m−lWl−n. (4.9)
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Figure 3. The matrices Λ(L,A) for w = 2 (left) and w = 1 (right). In the left picture we show

Λ(L = 100, A = 20) for w = 2 and the magnitude of the matrix elements in the white region is

smaller than 10−15 times the maximum of the matrix elements. The matrix elements in the orange

(blue) region is positive (negative). In the right picture we show Λ(L = 80, A = 50) for w = 1

and the magnitude of the matrix elements in the white region is smaller than 10−18 times the

maximum of the matrix elements. The matrix elements in the orange (blue) region are positive

(negative) again.

Notice Wl−n in the sum in the above expression. The largest Wl−n in the sum is

Wmin(n,L+1−n) and min(n,L + 1 − n) ≫ A when A ≪ n ≪ L − A. So Λm,n ≃ 0 when

A ≪ n ≪ L − A. In the same way we can see that Λm,n ≃ 0 when A ≪ m ≪ L − A.

Finally, Λm,n are significant values only when m,n . A or L − A . m,n. We show Λ in

figure 3. The blocks in which Λm,n are significant values are A×A matrices and Λm,n ∼ e2A

in these blocks. In the same way as in the case L≪ A, we can estimate the entanglement

entropy and obtain SΩ(L) ≃ c2A
2 when L≫ A.

In the case w = 1, we can estimate the entanglement entropy in the similar way. In

this case we can see numericaly thatWn decrease faster thanW−1
n . Via the same argument

under (4.9) we can see that Λm,n ≃ 0 when A≪ n≪ L−A. We show Λ in figure 3. We can

rewrite the entanglement entropy in (2.7) as SΩ = Trf(Λ). From the form of the matrix

Λ, we can see that TrΛl is independent of L. Thus the entanglement entropy is constant

when L≫ A.

5 Higher dimensional generalization

Next we would like to consider a straightforward generalization of our two dimensional

scalar field model (3.8) to the d dimensional one (d > 2) defined by the Hamiltonian

H =

∫

dd−1x

[

1

2
(∂tφ)

2 +B0φ · eA0(−∂i∂i)
w/2 · φ

]

, (5.1)

where we defined ∂i =
∂
∂xi

and xi (i = 1, 2, · · ·, d− 1) are the coordinates of Rd−1.
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We divide the coordinates of Rd−1 into two parts: x1 ∈ R and (x2, · · ·, xd−1) ∈ R
d−2.

We take the Fourier transformation with respect to the latter and obtain

H =

∫

dd−2k

∫

dx1

[

1

2
∂tφ(k)∂tφ(−k) +B0φ(k) · eA0(−∂2+k2)w/2 · φ(−k)

]

,

≡
∫

dd−2k H(k). (5.2)

In this way we can decompose the Hamiltonian as a sum of two dimensional scalar Hamil-

tonian H(k) over the transverse momenta k. Note that in the Hamiltonian H(k), |k| plays
the role of mass parameter in the two dimensional theory as is familiar in the Kaluza-Klein

theories. As a IR regularization, we compactify the space R
d−2 into a torus with the ra-

dius Ra (a was the lattice constant and R is the size of torus in the lattice space.). Then

the momentum is quantized as ki = 2π ni
Ra , where ni runs −R

2 ≤ ni <
R
2 . We choose the

subsystem Ω in the definition of entanglement entropy SΩ to be a strip with the width La

defined by

− La

2
≤ x1 ≤

La

2
, 0 ≤ x2, · · ·, xd−1 ≤ Ra. (5.3)

First consider the case w = 2. The entanglement entropy SΩ for the ground state of

the Hamiltonian H(k) is identical to our original model in two dimension i.e. H(0). This

is because the k dependence only appears as a factor eA0k2 in front of φ2 term, which does

not change our calculation of SΩ as is clear from our previous calculations. Therefore we

can estimate the total contribution when L≪ A as follows

SΩ ≃
d−1
∏

i=2

R/2
∑

ni=−R/2

AL = ALRd−2. (5.4)

Therefore we confirmed the volume law in any dimension.

Now let us move on to more general w. We define p to be the momentum in the x1
direction. Since 1 ≪ L ≪ R and p ∼ 1

La ≪ 1
a , the dominant contribution comes from the

region k ≫ p. When k ≫ p, we find

eA0(p2+k2)w/2 ≃ eA0kwe
A0w
2

kw−2p2 . (5.5)

Thus we can approximate the calculation of SΩ by that of w = 2 with A0 replaced with
A0w
2 kw−2 for each k. In this way we can estimate as follows

SΩ ≃
d−1
∏

i=2

R/2
∑

ni=−R/2

A0w

2a2

(

2π|n|
Ra

)w−2

L ≃ C1 ·ALRd−2, (5.6)

where C1 is a certain order one constant; we employed the same definition A = A0a
−w

of A as in the two dimensional case. In this way, again we found the volume law in

any dimension.

We can similarly analyze SΩ in our d dimensional theory even when L ≫ A. In the

end we find SΩ ≃ C2A
2Rd−2, for a certain constant C2. In summary, for our d dimensional
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non-local scalar field model, we obtained the following behavior:

SΩ(L) ≃ C1ALR
d−2 (L≪ A),

≃ C2A
2Rd−2 (L≫ A). (5.7)

In this way we confirmed that our higher dimensional model also has the property of

volume law for a small size subsystem. On the other hand, when the size of Ω gets larger

than the parameter A, it follows an area law.

6 Holographic interpretation

Finally we would like to discuss a holographic counterpart of our field theory analysis.

Originally, the non-local scalar field model defined by the Hamiltonian (5.1) was considered

in [18] in the context of an interpretation of AdS/CFT correspondence as an entanglement

renormalization. See also [11] for a similar but different model which was proposed as a

toy model of holographic dual of gravity in a flat spacetime.

In [34], it has been conjectured that a framework of real space renormalization, called

MERA (multi-scale entanglement renormalization ansatz) [35, 36], is equivalent to the

AdS/CFT correspondence. This idea allows us to relate the entanglement structure of a

quantum state in MERA to the metric of its gravity dual.

Especially, by using the continuum limit of MERA (called cMERA [37]), a formula for

the metric in the extra dimension has been proposed in [18]. Consider the metric in the

d+ 1 dimensional gravity dual:

ds2 ∝ guudu
2 +

e2u

a2

d−1
∑

i=1

dx2i + gttdt
2, (6.1)

where a is the UV cut off (or lattice spacing) as in our previous sections and u is the

coordinate of extra direction. We regard u = 0 as the boundary of d + 1 dimensional

spacetime where its holographic dual lives. Note that we ignored any constant factor of

the metric which depends only on the Hamiltonian of the theory.

The metric for a free scalar field whose dispersion relation is ǫ(k) was found to be as

guu =
N

4

(

k∂kǫ

ǫ

)∣

∣

∣

∣

k=eu/a

(6.2)

in eq. (42) in [18], where N is a constant.

If we consider the free scalar field theory defined by (5.1), then this formula computes

guu as follows

guu =
A2

0

a2
e2wu. (6.3)

Now we introduce the standard extra dimension coordinate z ≡ ae−u and then we can

rewrite the metric (6.1) as

ds2 ∝ A2
0

dz2

z2(w+1)
+

1

z2

d−1
∑

i=1

dx2i + gttdt
2. (6.4)
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Moreover, it is useful to define the coordinate y = z−w to rewrite the spacial part of the

above metric into

ds2space ∝ A2
0dy

2 + y
2

w

d−1
∑

i=1

dx2i , (6.5)

where rescaled xi by a finite amount.

Now we would like to study the holographic entanglement entropy [5, 6] for the gravity

dual (6.5). We choose the subsystem Ω to be the strip defined by (5.3), with the under-

standing that R is infinitely large by taking the decompactifying limit. The holographic

entanglement entropy is given by

Shol
Ω =

1

4GN
Area(γΩ), (6.6)

where the d − 1 dimensional surface γΩ is the minimal surface which ends on ∂Ω (i.e.

∂γΩ = ∂Ω) [5, 6]; GN is the Newton constant of the d + 1 dimensional gravity. The area

of minimal surface ending on ∂Ω can be obtained by minimizing

Area = Rd−2ad−2

∫ La/2

−La/2
dx1y

d−2

w

√

A2
0y

′2 + y
2

w , (6.7)

where y′ = ∂y
∂x1

. By deriving a conserved quantity (‘Hamiltonian’), we find

A0
dy

dx1
= y1/w

√

y2(d−1)/w/y
2(d−1)/w
∗ − 1, (6.8)

where y∗ is the integration constant. We assumed that the minimal surface extends between

y∗ ≤ y < y∞, where y∞ = a−w is the counterpart of the UV cut off in the gravity dual,

which corresponds to the boundary of d+ 1 dimensional spacetime defined by u = 0. Also

y = y∗ is the turning point of the surface where y′ vanishes. By integrating (6.8) we find

aw−1 ·
∫ y∞

y∗

dy

y1/w
√

y2(d−1)/w/y
2(d−1)/w
∗ − 1

=
L

2A
. (6.9)

In the end, the minimal area is expressed as the integral

Area = 2Rd−2ad−2A0

∫ y∞

y∗

dy
y(2d−3)/wy

−(d−1)/w
∗

√

y2(d−1)/w/y
2(d−1)/w
∗ − 1

. (6.10)

First we are focusing on the region L ≪ A as we assumed to show the volume law in

our previous sections. From (6.9), this case corresponds to y∗ ≃ y∞(= a−w) and thus the

minimal surface is always very close to the boundary y = y∞. Thus the minimal area (6.10)

is proportional to the volume LRd−2 of the d − 1 dimensional space where the non-local

scalar field lives. Indeed, in this case, we can estimate the holographic entanglement entropy

as follows

SΩ ∝ Rd−2ad−1Ly(d−1)/w
∞

= LRd−2, (6.11)

where we omitted the coefficient which only depends on the theory (or equally Hamiltonian).
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It is also intriguing to ask the behavior of holographic entanglement entropy when

L ≫ A. First note that there exist two disconnected minimal surfaces which are simply

given by x1 = ±La/2 with 0 ≤ y ≤ y∞. The sum of these two disconnected surfaces is

another candidate of minimal surfaces γΩ for the holographic entanglement entropy SΩ.

Indeed since the metric in the xi direction vanishes at y = 0, it satisfies the required

condition ∂γΩ = ∂Ω. The minimal area principle of holographic entanglement entropy

tells us that we should choose γΩ to be the sum of the disconnected surfaces when L≫ A.

This leads to the estimate Area(γΩ) ∝ ARd−2. Notice also that in the opposite case L≪ A,

we have to choose γΩ to be the connected surface because the area of the connected one

is clearly smaller than that of the disconnected ones. This is a typical example of ‘phase

transition’ for the entanglement entropy as observed in a variety of holographic examples

(see e.g. [38–40]), which is considered to be an artifact of large N limit.

In this way, our holographic results confirmed the behavior (4.1) and (5.7), assuming

that the proportionality coefficient, which we are not able to fix, is given by A times a

numerical constant. Especially this supports the claim that the entanglement entropy

satisfies the volume law when L ≪ A. We achieve the volume law at all scales when A

goes to infinity.

7 Conclusion

In this paper we presented a simple class of non-relativistic field theories whose entan-

glement entropy satisfies a volume law as long as the size of subsystem is smaller than

a certain parameter (called A) of the theory, which parameterizes the magnitude of non-

locality. These field theories are highly non-local in real space and this is obviously the

reason why it follows the volume law rather than the area law. This model has another

parameter w which is related to the types of non-locality we are considering.

We confirmed our model follows the volume law when w = 1 and w = 2 in the two

dimensional scalar field theory both from numerical calculations and analytical estimates.

We also extended this result into higher dimensions. The final result of entanglement

entropy SΩ, when the subsystem Ω is a strip with the width L, is summarized in (5.7).

Also our holographic calculation agrees with these field theory results and furthermore

predicts that we will obtain the volume law for any values of w(> 0).

It will be intriguing a future problem to go beyond free field theories by taking into in-

teractions as well as to extend our constructions to fermions. Another interesting direction

is to pursuit holography for general spacetimes by using entanglement entropy. It is an

important future problem to better understand our holographic relation between almost

flat spacetimes and non-local field theories.
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