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Angiotensin-converting enzyme 2 is
reduced in Alzheimer’s disease in
association with increasing amyloid-β and
tau pathology
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Abstract

Background: Hyperactivity of the classical axis of the renin-angiotensin system (RAS), mediated by angiotensin II
(Ang II) activation of the angiotensin II type 1 receptor (AT1R), is implicated in the pathogenesis of Alzheimer’s
disease (AD). Angiotensin-converting enzyme-2 (ACE-2) degrades Ang II to angiotensin 1–7 (Ang (1-7)) and
counter-regulates the classical axis of RAS. We have investigated the expression and distribution of ACE-2 in
post-mortem human brain tissue in relation to AD pathology and classical RAS axis activity.

Methods: We measured ACE-2 activity by fluorogenic peptide substrate assay in mid-frontal cortex (Brodmann
area 9) in a cohort of AD (n = 90) and age-matched non-demented controls (n = 59) for which we have previous
data on ACE-1 activity, amyloid β (Aβ) level and tau pathology, as well as known ACE1 (rs1799752) indel
polymorphism, apolipoprotein E (APOE) genotype, and cerebral amyloid angiopathy severity scores.

Results: ACE-2 activity was significantly reduced in AD compared with age-matched controls (P < 0.0001) and
correlated inversely with levels of Aβ (r = −0.267, P < 0.001) and phosphorylated tau (p-tau) pathology (r = −0.
327, P < 0.01). ACE-2 was reduced in individuals possessing an APOE ε4 allele (P < 0.05) and was associated with
ACE1 indel polymorphism (P < 0.05), with lower ACE-2 activity in individuals homozygous for the ACE1 insertion
AD risk allele. ACE-2 activity correlated inversely with ACE-1 activity (r = −0.453, P < 0.0001), and the ratio of ACE-1 to
ACE-2 was significantly elevated in AD (P < 0.0001). Finally, we show that the ratio of Ang II to Ang (1–7) (a proxy
measure of ACE-2 activity indicating conversion of Ang II to Ang (1–7)) is reduced in AD.

Conclusions: Together, our findings indicate that ACE-2 activity is reduced in AD and is an important regulator of the
central classical ACE-1/Ang II/AT1R axis of RAS, and also that dysregulation of this pathway likely plays a significant role
in the pathogenesis of AD.

Keywords: Angiotensin-converting enzyme-2, Renin-angiotensin system, Angiotensin-converting enzyme-1,
Angiotensin II, Alzheimer’s disease

Background
Genetic, clinical and epidemiological data as well as ex-
perimental cell and animal studies all support a role for
the renin-angiotensin system (RAS) in the pathogenesis
of Alzheimer’s disease (AD) [1]. Many of the pro-
inflammatory, anti-cholinergic and vasopressor actions
of RAS associated with the pathogenesis of AD are

mediated by angiotensin II (Ang II) signalling through
the angiotensin II type 1 receptor (AT1R), commonly re-
ferred to as the classical axis (reviewed in [1]). Intra-
cerebroventricular infusion of Ang II increased both
amyloid-β (Aβ) (via increased amyloidogenic processing of
amyloid precursor protein [APP]) [2] and tau pathology,
and also reduced cognitive performance [3], in aged nor-
mal rats. We have previously reported that angiotensin-
converting enzyme-1 (ACE-1), the rate-limiting enzyme in
the production of angiotensin II (Ang II), is increased in
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AD in human brain tissue [4, 5]. Angiotensin II type 1 re-
ceptor blockers (ARBs) and angiotensin-converting en-
zyme inhibitors (ACEIs) reduce the amount of AD-like
pathology and improve cognitive performance in most but
not all mouse models of AD [6–11]. Translation of these
treatments in AD is also supported in secondary outcomes
of clinical trials of various ARBs and ACEIs, as well as in
epidemiological studies where the prevalence of AD was
reduced [12–16]. Last, the ACE-1 indel polymorphism
(rs1799752) is a genetic risk factor for sporadic AD [17].
This finding has previously been supported by several
meta-analyses [18–22] but not by recent genome-wide as-
sociation studies.
ACE-2 is a zinc metallopeptidase which shares 42% se-

quence homology within the ACE-1 catalytic region [23,
24]. The ACE-2 metalloprotease is expressed mostly as a
transmembrane protein, but it also exists in an active sol-
uble truncated form [24]. It is expressed predominantly in
endothelial and arterial smooth muscle cells throughout
the body [25], but it is also expressed in non-vascular cells
within the brain, including neuronal cell bodies [26] and
astroglial cells [27]. Upon its discovery, ACE-2 was shown
to generate angiotensin 1–7 (Ang (1-7)) from Ang II, and,
to a lesser extent, angiotensin 1–9 (Ang (1-9)) from Ang I
[23, 24, 28]. Emerging data suggest that ACE-2-mediated
conversion of Ang II to Ang (1–7) and subsequent activa-
tion of the Mas receptor by Ang (1–7) (comprising the
ACE-2/Ang (1-7) /Mas axis) oppose the local actions of
the classical RAS pathway in both the periphery (reviewed
in [29]) and brain (reviewed in [30–33]). In experimental
animal studies, ACE-2 regulates blood pressure by coun-
teracting the effects of the classical axis. A reduction in
ACE-2 expression has been implicated in cardiac and
renal pathologies (reviewed in [30]) associated with
chronic hypertension. Activation of brain ACE-2 has
been shown to be neuroprotective in animal models of
ischaemic stroke [34, 35].
Previous studies have suggested a link between re-

duced activity of the ACE-2/Ang (1–7)/Mas axis and
neurodegenerative conditions, including multiple scler-
osis [36]. A recent study provided the first clues of an
association with AD and reported reduced serum ACE-2
activity in patients with AD compared with control sub-
jects [37]. Notably, this study also identified that ACE-2
converts Aβ43 (an early deposited and highly amyloido-
genic form of Aβ that seeds plaque formation [38]) to
Aβ42, which in turn is cleaved by ACE-1 to less toxic
Aβ40 and Aβ41 species [37]. Ang (1–7) levels were also
reduced in a mouse model of sporadic AD in association
with hyperphosphorylation of tau [39].
In the present study, we investigated the expression

and distribution of ACE-2 in relation to AD pathology
and the classical RAS axis in human post-mortem brain
tissue. We show, for the first time to our knowledge,

that ACE-2 activity is reduced in human post-mortem
brain tissue in AD in relation to Aβ and tau pathology,
and also that ACE-2 correlates inversely with ACE-1 activ-
ity. We also show that the ratio of Ang II to Ang (1–7)
(a proxy measure of ACE-2 activity) was increased in
AD, indicating reduced conversion of Ang II to Ang
(1–7). Together, these data indicate that the ACE-2/
Ang (1–7)/Mas axis is dysregulated in AD and that loss
of function of this regulatory arm of RAS may contrib-
ute, at least in part, to overactivation of the classical
RAS axis associated with AD pathogenesis.

Methods
Case selection
Brain tissue was obtained from the South West Dementia
Brain Bank, University of Bristol, UK, with local research
ethics committee approval (National Research Ethics Ser-
vice 08/H0106/28 + 5). Tissue was dissected from the
mid-frontal cortex (Brodmann area 9) in 90 cases of AD
and 59 age-matched controls. Brains had been subjected
to detailed neuropathological assessment according to
the National Institute on Aging-Alzheimer’s Association
guidelines [40], and AD pathology was a sufficient explan-
ation for the dementia in these cases. Control brains were
from people who had no history of dementia, had been
extensively assessed neuropathologically, and had few or
absent neuritic plaques, Braak tangle stage III or less,
and no other neuropathological abnormalities. The demo-
graphic data for these cases are presented in Table 1, and
the Medical Research Council UK Brain Banks Network
(MRC UK-BBN) database identifiers are shown in
Additional file 1: Table S1.
Previous measurements of ACE-1 activity, measured by

fluorogenic activity assay, were available for all cases [4, 41].
Total soluble (Nonidet P-40-extracted) and insoluble (6 M
guanidine hydrochloride-extracted) Aβ levels were mea-
sured previously by sandwich enzyme-linked immunosorb-
ent assay (ELISA) [42], and cerebral amyloid angiopathy
(CAA) severity, which was graded semi-quantitatively on a
4-point scale by a method adapted from that of Olichney
et al. [43], had previously been reported [44]. Phosphory-
lated tau (p-tau) load (area fraction of cerebral cortex
immunopositive for p-tau) had been measured for all
cases, as previously reported [45, 46]. ACE1 genotype
data for the Alu 237-bp insertion(I)/deletion(D) (indel)
polymorphism (rs1799752) in intron 16 of the ACE1 gene

Table 1 Demographics of the study cohort

Control (n = 59) AD (n = 90)

Age, years, mean ± SD 78.5 ± 10.1 78.5 ± 9.7

Sex, F/M 22/37 55/35

PM delay, h, mean ± SD) 43.8 ± 36.4 45.2 ± 25.1

AD Alzheimer’s disease, PM Post-mortem
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were previously reported [5, 41]. Last, all cases had pre-
viously been apolipoprotein E (APOE)-genotyped [44, 47]
by a polymerase chain reaction method [48].

Brain tissue
The right cerebral cortex had been fixed in 10% formalin
for a minimum of 3 weeks before the tissue was processed
and paraffin blocks were taken for pathological assess-
ment. The left cerebral hemisphere had been sliced and
frozen at −80 °C until used for biochemical assessment.
For each case, 200 mg of dissected frozen brain tissue was
homogenised in a Precellys homogeniser (Stretton Sci-
entific, Stretton, UK) as previously described [4, 5]. The
samples were centrifuged at 13,000 rpm, and the clari-
fied supernatants were aliquoted and stored at −80 °C
until required. Total protein was measured using the
Total Protein kit (Sigma-Aldrich, Poole, UK) following
the manufacturer’s guidelines. All brain tissue was ob-
tained within 72 h after death.

ACE-2 activity assay
ACE-2 activity was measured in brain tissue using the
SensoLyte® 390 ACE2 activity assay kit (catalogue num-
ber AS-72086; AnaSpec, Fremont, CA, USA). The assay
was performed in black, flat-bottomed, non-binding, 96-
well Nunc FluoroNunc plates (Fisher Scientific, Lough-
borough, UK) following the manufacturer’s guidelines
with minor modifications. Brain tissue homogenates were
prepared in assay buffer provided in the kit, to which
0.05% Triton X-100 was added. Samples were centrifuged
at 13,000 rpm for 15 minutes at 4 °C, and supernatants
were removed and stored at −80 °C until used. Superna-
tants were diluted 1:100 in the proprietary ACE-2 assay
buffer and incubated for 10 minutes at room temperature
prior to addition of the ACE-2-specific fluorescence res-
onance energy transfer (FRET) peptide and then incu-
bated for 30 minutes in the dark. Cleavage of the ACE-2
FRET peptide was measured using a BMG FLUOstar OP-
TIMA microplate reader (BMG Labtech, Aylesbury, UK)
at an excitation/emission wavelength of 330/390 nm.
ACE-2 activity was interpolated from a serial dilution of
7-methoxycoumarin-4-yl-acetyl (Mca) fluorescence refer-
ence standard, and measurements for each case were re-
peated in duplicate.
To confirm the specificity of the commercial ACE-2

assay kit, we measured ACE-2 activity in a subset of
samples (ten controls and ten AD) for which we had
previously measured ACE-2 activity as outlined above.
The assay was performed in black, flat-bottomed, non-
binding, 96-well Nunc FluoroNunc plates. Recombinant
human ACE-2 (440-6 ng/ml) (R&D Systems, Cambridge,
UK) and brain tissue supernatants (diluted 1:20) were
diluted in assay buffer (75 mM Tris, 1 M NaCl, pH 7.5)
and pre-incubated with an ACE-2 specific inhibitor,

MLN4760 (10 μM) (Calbiochem, Nottingham, UK) or
assay buffer alone for 10 minutes at 37 °C. An ACE-2
fluorogenic peptide Mca-APK(Dnp) (Enzo Life Sciences,
Exeter, UK) was then added, and the reaction was incu-
bated at 37 °C for 30 minutes in the dark. Fluorescence
was read at an excitation/emission wavelength of 330/
405 nm using a BMG FLUOstar OPTIMA microplate
reader. ACE-2-specific activity was calculated after sub-
tracting fluorescence in the presence of MLN-4760 from
the uninhibited sample. We observed a very strong correl-
ation between the independent measurements of ACE-2
in the presence of MLN4760 (10 μM) and with the kit, in-
dicating the specificity of the ACE-2 assay kit (Additional
file 2: Figure S1).

Angiotensin II sandwich ELISA
Ang II levels were measured in brain tissue homogenates
extracted in 1% SDS lysis buffer (100 μM NaCl, 10 mM
Tris, pH 6, 1 μM phenylmethylsulphonylfluoride, 1 μg/ml
aprotinin [Sigma-Aldrich] and 1% SDS in distilled
water) using a commercially available sandwich ELISA
kit (Abcam, Cambridge, UK) following the manufac-
turer’s guidelines. In brief, recombinant human Ang II
or brain tissue supernatants (diluted 1:2 in PBS) were
added in duplicate to wells that had been pre-coated
with an Ang II-specific capture antibody and incubated for
2 h at room temperature. After a wash step, the wells were
incubated for 2 h with biotinylated anti-Ang II antibody at
room temperature. The plate was again washed, followed
by a 30-minute incubation with streptavidin/HRP. After a
final wash, 3,3′,5,5′-tetramethylbenzidine (TMB) substrate
was added for 20 minutes, and the absorbance at 450 nm
was read using a FLUOstar OPTIMA plate reader. The
concentration of Ang II was interpolated from a serial
dilution of recombinant Ang II (1000–62.5 pg/ml) and
measured in duplicate for each case.

Angiotensin (1–7) direct ELISA
Ang (1–7) levels were measured in human brain tissue
homogenates in 1% SDS lysis buffer (see above) using an
in-house direct ELISA kit. Recombinant human Ang (1–
7) (Enzo Life Sciences) or human brain tissue homoge-
nates (diluted 1:40 In PBS) were incubated for 2 h in a
clear, high binding capacity Nunc MaxiSorp plate
(Thermo Fisher Scientific, Waltham, MA, USA) at 26 °C
with shaking. The wells were washed five times in PBS
with 0.05% Tween-20 and blocked for 1 h in PBS:1% bo-
vine serum albumin (Sigma-Aldrich). After another five
washes, the wells were incubated with biotinylated anti-
human Ang 1–7 (2 μg/ml in PBS) (Cloud-Clone, Wu-
han, China) for 2 h at 26 °C with shaking, followed by a
further wash step. Streptavidin/HRP (1:200) in PBS/
0.01% Tween-20 was added to each well, which was in-
cubated at room temperature for 20 minutes in the dark.
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TMB substrate (R&D Systems) was added after a further
wash and left to develop in the dark for 20 minutes. Ab-
sorbance at 450 nm was read following the addition of 2 N
sulphuric acid (‘stop’ solution) using a FLUOstar OPTIMA
plate reader. Ang (1–7) concentration was interpolated
from a standard curve generated by serially diluting recom-
binant human Ang (1–7) (5000–78.125 pg/ml). The assay
showed minimal cross-reactivity with a number of closely
related peptides, including Ang I, Ang II and Ang III.

ACE-2 immunoperoxidase labelling
Formalin-fixed, paraffin-embedded tissue sections (7 μm)
were cut and de-waxed prior to immunohistochemistry.
Sections were pre-treated in trisodium citrate buffer
(9 mM), pH 6, and microwaved for 5 minutes, left to stand
for 5 minutes, and boiled for a further 5 minutes before
being left to stand for 15 minutes at room temperature.
Sections were then rinsed thoroughly and covered in horse
serum blocking solution, rinsed again, and incubated over-
night at room temperature with anti-ACE-2 antibody
(0.05 μg/ml, ab15348; Abcam). Bound antibody was visua-
lised using a biotinylated universal antibody followed by
VECTASTAIN Elite ABC avidin-biotin complex kit (Vector
Laboratories, Peterborough, UK) and a reaction with 0.01%
H2O2. Specificity of the antibody was assessed by pre-
adsorption of the ACE-2 antibody with a 250-fold molar ex-
cess of recombinant human ACE-2 protein (R&D Systems).

Statistical analysis
Unpaired two-tailed t tests or analysis of variance
(ANOVA) with Bonferroni’s post hoc analysis was used
for comparisons between groups, and Pearson’s test was
used to assess linear correlation with SPSS version 16
(SPSS, Chicago, IL, USA) and GraphPad Prism version
6 (GraphPad Software, La Jolla, CA, USA) software. P
values <0.05 were considered statistically significant.

Results
ACE-2 enzyme activity is reduced in Alzheimer’s disease
in association with increasing Aβ load and tau pathology
ACE-2 activity was significantly reduced by approxi-
mately 50% in the mid-frontal cortex in AD compared
with age-matched controls (P < 0.0001) (Fig. 1a). ACE-2
varied according to disease severity when the controls
and AD cases were grouped and stratified into the fol-
lowing Braak tangle stage groups: 0–II, III–IV, and V-VI
(P < 0.0001 by ANOVA). Post hoc analysis using the
Bonferroni correction for multiple comparisons revealed
that ACE-2 activity was significantly reduced in Braak
tangle stages V–VI compared with stages 0–II (P < 0.0001)
and stages III–IV (P < 0.05) (Fig. 1b). No difference was
observed between Braak stages 0–II and stages III–IV.
In a combined AD and control cohort, ACE-2 activ-

ity correlated inversely with total insoluble Aβ levels

(r = −0.267, P < 0.01) (Fig. 1c) but not with soluble Aβ
(data not shown). ACE-2 correlated inversely with β-
secretase activity (r = −0.277 P < 0.001) (Additional file 3:
Figure S2). ACE-2 correlated inversely with p-tau load
(r = 0.327, P < 0.01) (Fig. 1d).

ACE-2 activity is reduced in relation to APOE and ACE1
polymorphisms and CAA severity
ACE-2 activity was significantly lower in individuals
possessing an APOE ε4 allele, an established genetic
risk factor for sporadic AD [49], than in those without
(P < 0.05) (Fig. 2a). ACE-2 activity also differed significantly

Fig. 1 Angiotensin-converting enzyme 2 (ACE-2) activity is reduced in
Alzheimer’s disease (AD). a Bar chart showing reduced ACE-2 activity in
the mid-frontal cortex in AD (n = 90) compared with age-matched
controls (n = 59) (P < 0.0001). b Bar chart showing reduced ACE-2
activity in relation to disease severity when all cases were combined
and grouped according to Braak stage (0–II, II–IV, and V–VI) (P< 0.0001).
Post hoc analysis revealed that ACE-2 activity was reduced in Braak
tangle stages V–VI compared with stages 0–II and III-IV (P < 0.0001
and P < 0.05 respectively) and in Braak tangle stages III–IV compared
with stages 0–II, but the difference was not statistically different. The
bars indicate the mean value and SEM. c and d Scatterplots showing
that ACE-2 activity was inversely correlated with insoluble amyloid-β
(Aβ) load (measured by enzyme-linked immunosorbent assay) (r =
−0.267, P < 0.01) and phosphorylated tau (p-tau) load (measured by
field fraction analysis) (r = −0.327, P < 0.001). The solid inner line
indicates the best-fit linear regression and the outer lines the 95%
confidence intervals. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
rfu Relative fluorescence units
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between ACE1 (rs1799752) indel genotypes (P < 0.05),
with individuals who were homozygous II for ACE-1
(previously associated with increased risk for AD
[17]) having the lowest ACE-2 activity, although post
hoc analysis revealed that this did not reach statistical
significance (Fig. 2b).
We assessed ACE-2 activity in relation to CAA sever-

ity and found, as for ACE-1 activity [4], a tendency, al-
though not significant, towards increased ACE-2 activity
in cases with moderate to severe CAA compared with
absent to mild CAA (P = 0.08) (Fig. 2c).

ACE-2 is inversely correlated with ACE-1, and the ratio of
ACE-1 to ACE-2 is increased in Alzheimer’s disease
ACE-2 activity correlated inversely with ACE-1 activ-
ity in a combined AD and control cohort (r = −0.453,
P > 0.0001) (Fig. 3a). The same pattern was observed
and remained statistically significant when the control
(r = −0.390, P < 0.05) and AD (r = −0.257, P < 0.05)
groups were analysed separately.
Previous reports have suggested the ratio of ACE-1 to

ACE-2 is a good proxy measure for the activation status
of classical and regulatory RAS pathways [33]. With this
in mind, we calculated the ACE-1/ACE-2 ratio for all
cases and found that it was significantly increased in AD
compared with controls (P > 0.0001) (Fig. 3b). The ACE-
1/ACE-2 ratio also correlated positively with insoluble
Aβ level, approaching significance (r = 0.199, P = 0.059)
(Fig. 3c), and significantly with p-tau (r = 0.252, P < 0.05)
(Fig. 3d). The ACE-1/ACE-2 ratio was increased in in-
dividuals possessing an APOE ε4 allele, approaching sig-
nificance (P = 0.093) (Fig. 3e), and differed significantly
according to ACE1 (rs1799752) indel polymorphism (P <
0.01). Post hoc analysis revealed that the ratio was signifi-
cantly higher in individuals with ACE1 II (AD risk factor)

than in DD (P < 0.01) and in ID than in DD (P < 0.05)
(Fig. 3f).

Ang II/Ang (1-7) ratio is increased in AD
Ang II levels were significantly increased in mid-frontal
cortex in AD compared with age-matched controls (P <
0.0001) (Fig. 4a), whereas Ang (1–7) levels were un-
changed (Fig. 4b). We calculated the Ang II/Ang (1–7)
ratio (as a proxy indicator of ACE-2 activity) and found
that the Ang II/Ang (1–7) ratio was significantly in-
creased in AD (P > 0.001) (Fig. 4c). These data indicate
that the conversion of Ang II to Ang (1–7) is likely to be
reduced in AD because of lower ACE-2 activity.

ACE-2 expression in human brain tissue
ACE-2 was localised primarily to capillaries but also had
a perivascular distribution around larger arterioles (Fig. 5a).
ACE-2 labelled non-vascular cells that strongly resembled
astrocytes (Fig. 5b and c). Labelling was not observed with
pre-adsorption of the ACE-2 antibody with recombinant
human ACE-2, demonstrating specificity of the antibody
(Fig. 5d).

Discussion
In the present study, we show that ACE-2 activity is re-
duced in post-mortem brain tissue in AD in association
with increased Aβ and tau pathology. The reduction in
ACE-2 was more pronounced in individuals carrying an
APOE ε4 allele and in those who were homozygous II
for the ACE1 (rs1799752) indel polymorphism (both of
which are suggested genetic risk factors for AD [17]).
ACE-2 activity correlated inversely with ACE-1 activity
(which we have previously shown to be increased in AD
[4, 5]), and the ACE-1/ACE-2 ratio was higher in AD.
Together, these data strongly suggest that reduced ACE-

Fig. 2 Angiotensin-converting enzyme 2 (ACE-2) activity is reduced in association with apolipoprotein E (APOE) ε4 and ACE1 (rs1799752) indel
polymorphism and increased in cerebral amyloid angiopathy (CAA). a Bar chart showing reduced ACE-2 activity in individuals with an APOE ε4 allele
(P< 0.05). b Bar chart showing that ACE-2 activity varied according to ACE1 indel polymorphism (P< 0.05), with a trend towards reduced ACE-2 activity
in ACE-1 II homozygotes. c Bar chart showing elevated ACE-2 activity in moderate to severe CAA compared with absent to mild CAA, approaching
significance (P= 0.08). The bars indicate the mean value and SEM. *P< 0.05. rfu Relative fluorescence units
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Fig. 3 Angiotensin-converting enzyme 2 (ACE-2) activity is inversely correlated with ACE-1 activity, and the ACE-1/ACE-2 ratio is increased, in
Alzheimer’s disease (AD). a Scatterplot showing a strong inverse relationship between ACE-1 and ACE-2 activity in mid-frontal cortex (r = −.453,
P < 0.0001). The inner solid line indicates the best-fit linear regression and the outer lines the 95% confidence intervals. Each dot represents an individual
brain. b Bar chart showing elevated ACE-1/ACE-2 ratio in AD (P < 0.0001). c and d Scatterplots showing positive correlation between the ACE-1/ACE-2
ratio and insoluble amyloid-β (Aβ) load (r = 0.199, P = 0.059) and p-tau load (r = 0.252, P < 0.05). e Bar chart showing a trend towards increased
ACE-1/ACE-2 ratio in individuals who possessed an apolipoprotein E (APOE) ε4 allele. f Bar chart showing lower ACE:ACE-2 ratio in individuals
who were homozygous DD for the ACE1 (rs1799752) indel polymorphism compared with II (P < 0.01) and ID (P < 0.05). The bars indicate the
mean value and SEM. *P < 0.05, **P < 0.01, ****P < 0.0001. rfu Relative fluorescence units

Fig. 4 The ratio of angiotensin II (Ang II) to angiotensin (1–7) (Ang (1-7)) (a proxy measure of ACE-2 activity) is increased, indicating reduced
conversion of Ang II to Ang (1–7) in Alzheimer’s disease (AD). Bar charts showing a elevated Ang II levels in AD and b unchanged Ang (1–7) levels in
AD compared with age-matched controls in mid-fontal cortex. c Bar chart showing the Ang II/Ang (1–7) ratio was significantly increased in
AD (P < 0.001). The bars indicate the mean value and SEM. ***P < 0.001, ****P < 0.0001
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2 activity within the brain contributes to AD pathogen-
esis and is associated with increased activation of the
central classical RAS axis.
The brain has its own intrinsic RAS [50–52], and we

have shown in our previous studies that ACE-1, the
rate-limiting enzyme in the production of Ang II, is
overactive in AD [4, 5]. It is widely accepted that Ang
II-mediated signalling via AT1R (commonly termed the
classical axis) is overactive in AD and is associated with
AD pathogenesis (reviewed in [1]). This view has been
supported in various animal studies in which infusion
of Ang II resulted in elevated plaque and tau pathology
and significant cognitive impairment [2, 3]. Secondary
observations in clinical trials and epidemiological stud-
ies have provided further evidence that RAS-targeting
drugs that either block the production of Ang II or pre-
vent AT1R-mediated signalling reduce the prevalence
of AD [12–16], while cognitive performance is improved
and pathology reduced, in animal models of AD [6–11].
Until recently, the prevailing view of the RAS in AD has
been oversimplified because it has failed to consider the
contribution of the other downstream RAS regulatory
pathways within the brain.
In this study, we found reduced brain ACE-2 activity

in AD, which supports a recent study showing lower
peripheral serum ACE-2 levels in AD [37]. ACE-2 activ-
ity correlated inversely with parenchymal Aβ load and
increased p-tau levels. We also observed a strong inverse
relationship between ACE-2 and β-secretase activity,
suggesting that ACE-2 may contribute in some way to

regulating the amyloidogenic processing of APP. There
are several possible mechanisms that link reduced
ACE-2 activity to the pathogenesis of AD. Firstly, lower
ACE-2 activity will, via a lower conversion of Ang II to
Ang (1–7), result in elevated Ang II levels (as we have
shown in this study). An increase in Ang II/Ang (1–7)
ratio has commonly been reported in other chronic
conditions associated with overactivation of the central
axis [53]. Secondly, ACE-2 is primarily responsible for
generating Ang (1–7) from Ang II [24, 54, 55], and sub-
sequent Ang (1–7) activation of the Mas receptor
counter-regulates the detrimental effects of the classical
(ACE-1/Ang II/AT1R) axis [56–58] and has been linked
with enhancing learning and memory processing [59,
60]. Lastly, ACE-2 has recently been shown to convert
Aβ43, a highly amyloidogenic form of Aβ that seeds plaque
formation [38], to Aβ42, which in turn is cleaved by
ACE-1 to Aβ40 or, to a lesser extent, Aβ41, which have
reduced toxicity [37]. Lower ACE-2 activity in AD may
therefore promote the early deposition of Aβ43 and pre-
vent downstream cleavage of Aβ42 by ACE-1.Together,
these data suggest a putative protective role of the
ACE-2/Ang (1–7)/Mas pathway, not only against the
development of pathology but also against the decline
in cognitive function, that is lost in AD.
Our findings indicate that the balance between the clas-

sical (ACE-1/Ang II/AT1R) axis and regulatory (ACE-2/
Ang (1–7)/Mas) axis of RAS is disturbed in AD, as previ-
ously shown in various mouse models of cardiovascular
disease [33] and diabetic nephropathy [53]. ACE-2 activity

Fig. 5 Angiotensin-converting enzyme 2 (ACE-2) expression in mid-frontal cortex in Alzheimer’s disease. a and b ACE-2 displayed strong capillary
labelling (black arrows) and abundant perivascular labelling of larger arterioles (scale bar = 100 μm). Shown in b at higher magnification (scale bar
= 50 μm). b and c ACE-2 was present in astrocytes (scale bar = 50 μm). d Pre-adsorption of ACE-2 antibody with recombinant human ACE-2
abolished labelling, confirming antibody specificity (scale bar = 100 μm)
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is reduced in AD and is inversely correlated with in-
creasing ACE-1 activity, and the ACE-1/ACE-2 ratio is
increased in AD in association with disease pathology.
These findings support commonly observed traits in
cardiac and renal pathologies showing that dysregulation
of the ACE-2/Ang (1–7)/Mas pathway, including reduced
ACE-2 activity, is associated with sustained hypertension
mediated by overactivation of the classical axis (reviewed
in [30, 61]). Despite the ratio of Ang II to Ang (1–7) (a
proxy measure of ACE-2 activity) being increased in AD
(i.e., reduced conversion of Ang II to Ang (1-7)), we did
not observe an overall reduction in total Ang (1–7) in AD.
This is inconsistent with a recent report showing reduced
serum Ang (1–7) levels, rather than reduced ACE-2 activ-
ity, in senescence-accelerated mouse prone 8, a mouse
model of sporadic AD (involving overexpression of APP).
The authors observed that Ang (1–7) levels correlated in-
versely with Ang II and p-tau levels [39]. The reason for
the discrepant findings between human and mouse brain
tissue is unclear; however, both studies indicate that the
ACE-2/Ang (1–7)/Mas pathway is dysregulated in AD
and that further work is required to determine the exact
contribution of each component of the pathway in AD.
Activation of the ACE-2/Ang (1–7)/Mas pathway, by

inducing ACE-2 activity, or infusion of Ang (1–7) or a
Mas receptor agonist, is protective in various experimen-
tal animal models of cardiovascular disease and is asso-
ciated with a reduction of the classical RAS pathway
(reviewed in [32, 61]). Neuronal overexpression of brain
ACE-2 is also neuroprotective in a chronic hypertension
mouse model (transgenic for renin and angiotensinogen
that overproduces Ang II) following experimental induc-
tion of ischaemic stroke [34, 35, 62]. These protective
effects were partially reversed in the presence of a Mas
receptor antagonist, demonstrating the specificity of the
ACE-2/Ang (1–7)/Mas pathway, and they have been shown
to be mediated by counter-regulating the effects of Ang
II-mediated reactive oxygen species production [63]. In
AD, there is growing recognition that re-positioning of
brain-penetrating ARBs and ACEIs may have clinical
benefits in AD [64]. In addition to reducing the central
pool of Ang II, ARBs and ACEIs might also exert their
protective effects by preventing AT1R-mediated reduction
in ACE-2 activity [65] that can be reversed by ARBs
[27, 66–69]. ACE-2 activation is also associated with re-
duced ACE-1 activity [70] and with down-regulation of
Ang II levels and AT1R expression [27, 65, 71–73].
These studies suggest that activation of ACE-2 may
exert protective effects in AD above and beyond damp-
ening RAS activation that the use of ACEIs and ARBs
currently allow.
Lastly, we explored the distribution of ACE-2 within

the mid-frontal and temporal cortices and found it to be
localised predominantly within endothelial cells and

smooth muscle cells of cerebral arteries, as previously
reported [25]. Interestingly, as for ACE-1, we also ob-
served extensive perivascular ACE-2 expression and found
that ACE-2 activity was increased in individuals with
moderate to severe CAA, as has previously been shown
for ACE-1 [4]. We speculate that the sequential cleavage
of Aβ43, first by ACE-2, and the subsequent cleavage of
Aβ42 to Aβ40 (the predominant species in CAA [74]) by
ACE-1, provides a potential mechanistic link with CAA.
Further studies are required to determine the relationship
between ACE-2 and CAA severity.

Conclusions
These data indicate that reduced activity of the ACE-2/
Ang (1–7)/Mas axis is strongly linked to overactivity of
the classical RAS pathway and with AD-related pathology.

Additional files

Additional file 1: Table S1. MRC identifiers for all cases. (DOC 80 kb)

Additional file 2: Figure S1. Scatterplot showing a strong positive
correlation between two independent measures of ACE-2 activity in brain
tissue samples. ACE-2 was measured using either a commercially available
ACE-2 activity assay kit (SensoLyte® 390) or an ACE-2 fluorogenic peptide
substrate (Mca-APK[Dnp]) in the presence of a selective ACE-2 inhibitor,
MLN4760 (10 μM). The solid inner line indicates the best-fit linear regression,
and the outer lines the 95% confidence intervals. Each point represents a
separate brain. ****P < 0.0001. (TIF 26 kb)

Additional file 3: Figure S2. Scatterplot showing an inverse relationship
between ACE-2 activity and BACE-1 activity in a combined Alzheimer’s
disease and age-matched control cohort. ACE-2 activity was measured
using the SensoLyte® 390 ACE-2 activity assay kit, and BACE-1 activity
was measured using the β-secretase specific fluorogenic substrate
(Mca-SEVNLDAEFRK[Dnp]RR-NH2). The inner solid line indicates the best-fit
linear regression, and the outer lines the 95% confidence intervals. Each
point represents a separate brain. ***P < 0.001. (TIF 25 kb)
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