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Abstract

This article provides a general Bayesian approach to the tasks of linear and nonlinear acoustic echo cancellation (AEC).
We introduce a state-space model with latent state vector modeling all relevant information of the unknown system.
Based on three cases for defining the state vector (to model a linear or nonlinear echo path) and its mathematical
relation to the observation, it is shown that the normalized least mean square algorithm (with fixed and adaptive
stepsize), the Hammerstein group model, and a numerical sampling scheme for nonlinear AEC can be derived by
applying fundamental techniques for probabilistic graphical models. As a consequence, the major contribution of this
Bayesian approach is a unifying graphical-model perspective which may serve as a powerful framework for future
work in linear and nonlinear AEC.
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1 Introduction
The problem of acoustic echo cancellation (AEC) is one
of the earliest applications of adaptive filtering to acous-
tic signals and yet is still an active research topic [1, 2].
Especially in applications like teleconferencing and hands-
free communication systems, it is of vital importance to
compensate acoustic echos and thus prevent the users
from listening to delayed version of their own speech
[3]. Since the invention of the normalized least mean
square (NLMS) algorithm in 1960 [4], the acoustic cou-
pling between loudspeakers and microphones is often
modeled by adaptive linear finite impulse response (FIR)
filters. However, the statistical properties of speech signals
(being wide-sense stationary only for short time frames)
and challenging properties of the acoustic environment
(such as speech signals as interference, non-stationary
background noise and time-varying acoustic echo paths)
complicate the filter adaptation and motivated various
concepts improving the performance of linear FIR filters
in many practical scenarios [5–7]. Despite these chal-
lenges, single-channel linear AEC has already reached
a mature state as vital part of modern communication
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devices. On the other hand, the nonlinear distortions cre-
ated by amplifiers and transducers in miniaturized loud-
speakers require dedicated nonlinear echo-path models
and are still a very active research topic [8, 9]. In
this context, a variety of concepts for nonlinear AEC
have been proposed based on artificial neural networks
[10, 11], Volterra filters [12, 13], or Kernel methods
[14, 15]. A commonly used model, which is also con-
sidered in this article, is a cascade of a nonlinear mem-
oryless preprocessor (to model the loudspeaker signal
distortions) and an adaptive linear FIR filter (to model
the acoustic sound propagation and the microphone)
[9, 16–19].
Recently, the application of machine learning tech-

niques to signal processing tasks attracted increasing
interest [20–22]. In particular, graphical models provide a
powerful framework for deriving (links between) numer-
ous existing algorithms based on probabilistic inference
[23–25]. Besides the widely used factor graphs, which cap-
ture detailed information about the factorization of a joint
probability distribution [23, 26, 27], especially directed
graphical models, such as Bayesian networks, have been
shown to be well-suited for modeling causal probabilistic
relationships of sequential data like speech [28, 29].
This article provides a concise overview on different

algorithms for linear and nonlinear AEC from a unifying
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Bayesian network perspective. For this, we consider a
state-space model with a latent (unobserved) state vec-
tor capturing all relevant information of the unknown
system. Depending on the definition of the state vec-
tor (modeling a linear or nonlinear echo path) and its
mathematical relation to the observation, we illustrate
that the application of different probabilistic inference
techniques to the same graphical model straightfor-
wardly leads to the NLMS algorithm with fixed/adaptive
stepsize value, the Hammerstein group model (con-
sidered from this perspective here for the first time),
and a numerical sampling scheme for nonlinear AEC.
This consistent Bayesian view on conceptually differ-
ent algorithms highlights the probabilistic assumptions
underlying the respective derivations and provides a
powerful framework for further research in linear and
nonlinear AEC.
Throughout this article, the problem of AEC is consid-

ered in the time domain (time index n), where we denote
scalars zn by lowercase italic letters, column vectors zn
by lower case bold letters, and matrices Cz,n by upper
case bold letters. Furthermore, sequences of variables are
written as z1:N = {z1, . . . , zN }. For a normally distributed
random vector zn with mean vector μz,n and covariance
matrix Cz,n, we write

zn ∼ N
{
zn|μz,n,Cz,n

}
.

Note that Cz,n = Cz,nI (identity matrix I) implies
the elements of zn to be mutually statistically inde-
pendent and of equal variance Cz,n. Finally, we distin-
guish between the probability density function (PDF)
p(zn) and realizations z(l)n (samples drawn from p(zn))
of a random variable zn, where l is the sample
index.
This article is structured as follows: First, we briefly

review Bayesian networks and introduce a general state-
space model in Section 2. This state-space model will be
further specified in Section 3 for the tasks of linear and
nonlinear AEC. This is followed by applying several fun-
damental probabilistic inference techniques for deriving
the NLMS algorithm with fixed/adaptive stepsize value
(linear AEC, Section 4), as well as the Hammerstein group
model and a numerical sampling scheme (nonlinear AEC,
Section 5). Finally, the practical performance of the algo-
rithms is illustrated in Section 6 and conclusions are
drawn in Section 7.

2 Review of Bayesian networks and state-space
modeling

This section provides a concise review of Bayesian net-
works and state-space modeling following the detailed
discussions in [30].

2.1 Bayesian networks
Bayesian networks are graphical descriptions of joint
probability distributions and provide a powerful frame-
work for many kinds of regression and classification prob-
lems. Consisting of nodes (random variables) and directed
links (probabilistic relationships), they define the factor-
ization properties of a joint PDF p(z1:K ) through the
following rule:

p(z1:K ) =
K∏

k=1
p (zk| par(zk)) , (1)

where {par(zk)} is the set of nodes (so-called parent nodes
of zk) from which a link is going to the node zk . We illus-
trate this basic definition by the example shown in Fig. 1:
the joint PDF p(z1, z2, z3) over the random variables z1, z2,
z3 factorizes to

p(z1, z2, z3) = p(z1) p(z2|z1) p(z3|z1, z2), (2)

where the PDF of each random variable is conditioned on
its parent nodes (if any). This fundamental factorization
property of Bayesian networks can be employed to derive
several rules of conditional dependence and indepen-
dence for Bayesian networks. As an example, we consider
three independent random variables z1, η, ε defining two
further random variables z2 and z3 through the following
observation model:

z2 = z1 + ε, z3 = z2 + η. (3)

The probabilistic relationship of z1, z2, z3 can be
represented by the Bayesian network depicted in Fig. 2a,
where the variables η and ε have been omitted to focus on
the head-to-tail relationship in z2. Although z1 and z3 are
statistically dependent, we can exploit (1) to show that z1
and z3 are conditionally independent given z2:

p(z1, z3|z2) = p(z1, z2, z3)
p(z2)

(4)

(1)= p(z1) p(z2|z1) p(z3|z2)
p(z2)

= p(z1|z2) p(z3|z2). (5)

The same property of conditional independence can be
derived for the case of a tail-to-tail relationship in z2 as
shown in Fig. 2b. In contrast, two independent random
variables z1 and z3 are conditionally dependent given z2 if
they share a head-to-head relationship as in Fig. 2c, which
would, e.g., be the case if z2 was defined as z2 = z1 + z3.

Fig. 1 Example of a Bayesian network
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Fig. 2 Bayesian networks with a) head-to-tail, b) tail-to-tail, and
c) head-to-head relationship in z2 [31]

Generalizing the above, it can be shown that two ran-
dom variables z1 and z3 are conditionally independent
given a set of random variables C if all paths leading from
z1 to z3 contain a node, where the

• arrows meet head-to-tail or tail-to-tail, and the node
is in the set C

• arrows meet head-to-head and neither the node, nor
any of its descendants, are in the set C [30].

2.2 State-space modeling
In this part, we introduce a general probabilistic model
(later applied to linear and nonlinear AEC) and review
fundamental techniques which are commonly employed
in Bayesian network modeling.
Probabilistic model: Assume all relevant information of

an unknown system at time instant n is captured by a
latent (unobserved) state vector

zn = [z0,n, z1,n, . . . , zR−1,n]T . (6)

In general, a state-space model is defined by the process
equation (modeling the temporal evolution of the state
vector) and the observation equation (modeling the rela-
tion between state vector and observation). The remain-
der of this article is based on the following observation
equation and state equation, respectively,

dn = g (xn, zn) + vn and zn = zn−1 + wn, (7)

where the temporal evolution of the state vector zn is
captured by the additive uncertainty wn. Furthermore,
the observation dn in (7) is modeled by adding a scalar
uncertainty vn to the output of the function g(xn, zn),
which depends on the state vector zn and the input signal
vector xn = [xn, xn−1, . . . , xn−M+1]T (time-domain sam-
ples xn at time instant n). The state-space model of (7)
is represented by the Bayesian network in Fig. 3, where
observed variables, such as dn, are marked by shaded cir-
cles. Note that the input signal vector xn is regarded as
an observed random variable (without explicitly estimated
statistics) and thus omitted in Fig. 3 for notational conve-
nience in the later probabilistic calculus. The conditional

Fig. 3 Bayesian network of the state-space model in (7), where the
observations d1:n are marked by coloration [30]

independence rules of Section 2 reveal two major proper-
ties of the Bayesian network in Fig. 3:

• With respect to the latent state vector zn−1, the
head-to-tail relationships of all paths from d1:n−2 to
zn and the tail-to-tail relationship of the path from
dn−1 to zn together imply the current state vector zn
to depend on all previous observations d1:n−1. For the
conditional PDF of zn given {zn−1, d1:n−1}, this leads
to:

p (zn|zn−1, d1:n−1) = p (zn|zn−1) . (8)

• The current observation dn depends on all previous
observations d1:n−1 following the head-to-tail
relationship in the latent state vector zn. This allows
to reformulate the conditional PDF of dn given
{zn, d1:n−1} as

p (dn|zn, d1:n−1) = p (dn|zn) . (9)

The state-space model in (7) is a fundamental proba-
bilistic model and will be employed to derive well-known
methods for linear and nonlinear AEC in Sections 4 and 5.
For this, we make the following assumptions on the PDFs
of the additive uncertainties in (7) [32]:

• wn is normally distributed with mean vector 0 and
covariance matrix Cw,n defined by the scalar
variance Cw,n:

wn ∼ N {wn|0,Cw,n}, Cw,n = Cw,nI. (10)

• vn is assumed to be normally distributed with
variance Cv,n and zero mean:

vn ∼ N {vn|0,Cv,n}. (11)

To derive estimates for the state vector and the hyperpa-
rameters Cv,n and Cw,n, we recall the steps of probabilistic
inference and learning in the next part.
Inference/Learning: In the inference stage, themean vec-

tor of the posterior PDF p (zn|d1:n) can be identified as
minimum mean square error (MMSE) estimate for the
state vector [30]:
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ẑn = argmin
z̃n

E
{||z̃n − zn||22

} = E {zn|d1:n} , (12)

where ||·||2 is the Euclidean norm and E{·} the expectation
operator. Note that this MMSE estimate can be calculated
in an analytically closed form in case of linear relations
between the variables in (7) and is optimal in the Bayesian
sense for jointly normally distributed random variables zn
and d1:n.
In the learning stage, the hyperparametersCv,n and Cw,n

of the state-space model in (7) are estimated by solving
a maximum likelihood (ML) problem (see Section 4.1 for
more details).

3 State-spacemodel for linear and nonlinear AEC
To identify the electroacoustic echo path (from the loud-
speaker to the microphone), a physically justifiable model
has to be selected first. As the sound propagation through
air can be modeled by a linear system [1], the acoustic
path at time n between loudspeaker and microphone is
estimated by the linear FIR filter

ĥn =
[
ĥ0,n, ĥ1,n, . . . , ĥM−1,n

]T
(13)

of lengthM. Ideally, the error signal

en = dn − d̂n (14)

between the observation dn and the linear transformation
of the input vector yn:

d̂n = ĥTn−1yn (15)

equals zero, which means that the estimated impulse
response matches the actual physical one. In many practi-
cal applications, nonlinear loudspeaker signal distortions
created by amplifiers and transducers in minituarized
loudspeakers prior to the linear acoustic impulse response
limit the practical performance of linear echo path mod-
els. This justifies to model the overall echo path by a
nonlinear-linear cascade of a memoryless preprocessor
(to model nonlinear loudspeaker signal distortions) pre-
ceding the linear FIR filter ĥn (to model the sound prop-
agation through air) [9, 16, 17], see Fig. 4. Motivated by
the good performance in nonlinear AEC [18, 19, 32], we
choose a polynomial preprocessor

yn = f(xn, ân−1) = xn +
P∑

ν=1
âν,n−1�ν{xn}, (16)

defined as weighted superposition of nonlinear functions
�ν{·} parameterized by the estimated vector

ân−1 = [
â1,n−1, â2,n−1, . . . , âP,n−1

]T , (17)

to perform an element-wise transformation of the loud-
speaker signal vector xn to the input vector yn of the linear

Fig. 4 Nonlinear AEC scenario with memoryless preprocessor
f(xn , ân−1) and linear FIR filter ĥn−1

FIR filter in (15). In particular, odd-order Legendre func-
tions of the first kind (inserted for�ν{·} in (16)) have been
shown to be efficient for specific applications [18, 19]. By
combining (15) and (16), the error signal en resulting from
the nonlinear-linear cascade in Fig. 4 is given as:

d̂n = ĥTn−1

(
xn +

P∑
ν=1

âν,n−1�ν{xn}
)
. (18)

It is obvious that the nonlinear-linear cascade in Fig. 4
simplifies to a linear AEC system when setting the esti-
mated preprocessor coefficients equal to zero because:

yn
(16)= xn, for ân−1 = [0, 0, . . . , 0]T . (19)

In the following, we describe the tasks of linear and
nonlinear AEC from a Bayesian network perspective by
further specializing the general state-space model in (7).
This is summarized in Fig. 5 as guidance through the
following derivations.
Linear AEC: The observation equation for linear AEC

follows the definition of d̂n in (15):

dn = zTnxn + vn, with zn = hn, (20)

where the latent length-M vector hn models the acoustic
path between the loudspeaker and the microphone. Note
that the observation equation in (20) is denoted as amodel
which is linear in the coefficients (LIC model) due to the
linear relation between the elements of the state vector zn
and the observation dn.
Nonlinear AEC: For the task of nonlinear AEC, we

derive the observation equation from (18):

dn = hTn

(
xn +

P∑
ν=1

aν,n�ν{xn}
)

+ vn, (21)

where the latent variables aν,n(ν = 1, . . . ,P) model the
preprocessor coefficients and represent the entries of the
length-P vector an, which is identically defined as in (17).
Depending on the choice of the state vector, the observa-
tion equation in (21) represents a LIC model or a model
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Fig. 5 Overview of the following sections including the different observation equations and respective state-vector definitions for the tasks of linear
and nonlinear AEC, where the process equation equals zn = zn−1 + wn for all cases

which is nonlinear in the coefficients (NIC model) of the
state vector. To start with the latter case, we specify:

zn =
[
aTn ,hTn

]T
(22)

as state vector of length M + P. Thereby, the observation
equation in (21) becomes a NIC model due to the nonlin-
ear relation between the entries of the state vector zn and
the observation dn. Alternatively, we can express the same
input-output relation by the length-M ·(P+1) state vector

zn =
[
hTn , a1,nhTn , . . . , aP,nhTn

]T
(23)

together with the observation equation

dn = zTn
[
xTn ,�1{xn}T, . . . ,�P{xn}T

]T + vn. (24)

This represents a LIC model as the output dn linearly
depends on the coefficients of zn. The three previously
described pairs of observation equations and state vec-
tor definitions represent special cases of the state-space
model in (7) and will be employed in the subsequent
sections to derive algorithms for linear and nonlinear AEC
following the schematic overview in Fig. 5.

4 A Bayesian view on linear AEC
Consider the task of linear AEC using the state-space
model (see left part of Fig. 5)

dn = hTnxn + vn, hn = hn−1 + wn, (25)

which can be represented by the Bayesian network shown
in Fig. 6. To derive an NLMS-like filter adaptation, we
assume the PDFs p (hn|hn−1), p (dn|hn), and p (hn|d1:n) to
be Gaussian probability distributions [30], where the latter
is denoted as:

p (hn|d1:n) (12)= N
{
hn|ĥn,Ch,n

}
. (26)

Therein, we restrict the covariance matrix of p (hn|d1:n)
to be diagonal [33]

Ch,n = Ch,nI with Ch,n = tr{Ch,n}/M, (27)

where tr{·} represents the trace of a matrix. This implies
the filter taps to be uncorrelated and of equal estima-
tion uncertainty. The assumption (27) will be the basis for
deriving the NLMS algorithm with adaptive (Section 4.1)
and fixed (Section 4.2) stepsize value.

4.1 NLMS algorithmwith adaptive stepsize value [32]
The NLMS algorithm with optimal stepsize calculation
has been initially proposed by Yamamoto and Kitayama
in 1982 [34]. Since then, the derivation of the adaptive
stepsize NLMS algorithm with filter update

ĥn = ĥn−1 + 1
M

E
{
||hn − ĥn−1||22

}
E

{
e2n

} xnen (28)

has been adopted inmany textbooks [35]. As the true echo
path hn is not observable, the numerator in (28) can be
approximated by introducing a delay of NT coefficients to
the echo path hn [36, 37]. Then, it is assumed that the
leading NT coefficients ĥκ ,n−1, with κ = 0, . . . ,NT − 1,
should be zero for causal systems and any nonzero coeffi-
cient values are representative for the system error norm
E

{
||hn − ĥn−1||22

}
. Typically, the denominator in (28)

is recursively approximated using a smoothing factor η

[35, 37]. Thus, the filter update is realized as follows:

Fig. 6 Bayesian network of the state-space model in (25), where the
observations d1:n are marked by coloration [30]
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ĥn = ĥn−1 + 1
NT

NT−1∑
κ=0

ĥ2κ ,n−1

(1 − η)e2n + ηE
{
e2n−1

}xnen
= ĥn−1 + βnxnen. (29)

However, the approximations in (29) often lead to oscil-
lations which have to be addressed by limiting the absolute
value of βn [36].
In the following, we employ Bayesian network modeling

to derive the filter update of (28) (in the inference stage)
and an estimation scheme for the adaptive stepsize βn (in
the learning stage).
Inference: To derive the MMSE estimate of the state

vector following (12), we rewrite the posterior PDF as

p(hn|d1:n) = p(dn,hn|d1:n−1)

p(dn|d1:n−1)
(30)

= p(dn|hn, d1:n−1)p(hn|d1:n−1)

p(dn|d1:n−1)
(31)

(8)= p(dn|hn)p(hn|d1:n−1)

p(dn|d1:n−1)
. (32)

Then, the product rules of linear Gaussian models ([30]
p. 639) can be applied to derive recursive updates for the
mean vector ĥn = E(hn|d1:n) and the covariance matrix
Ch,n, resulting in a special case of the well-known Kalman
filter equations:

ĥn = ĥn−1 + (Ch,n−1 + Cw,n)xnen
xTn (Ch,n−1 + Cw,n)xn + Cv,n

,

Ch,n =
(
I − �nxnxTn

)
(Ch,n−1 + Cw,n). (33)

By inserting the assumptions (10) and (27), we can
rewrite the filter update as:

ĥn = ĥn−1 + (Ch,n−1 + Cw,n)xnen
xTnxn(Ch,n−1 + Cw,n) + Cv,n

, (34)

Ch,n =
(
1 − λn

xTnxn
M

)
(Ch,n−1 + Cw,n). (35)

The equivalence between the filter updates of (34) and
(28) can be illustrated by exploiting the equalities

Ch,nI
(27)= Ch,n

(26)= E
{(

hn − ĥn
) (

hn − ĥn
)T}

,

Cw,nI
(10)= Cw,n = E

{
wnwT

n

}
,

(36)

which lead to:

Ch,n =
E

{
||hn − ĥn||22

}
M

,

Cw,n = E
{
wT
nwn

}
M

= E
{||wn||22

}
M

. (37)

Furthermore, hn−1 and wn are statistically independent
due to the head-to-head relationship with respect to the
latent vector hn in Fig. 6. Thus, we rewrite:

E
{
||hn − ĥn−1||22

}
M

(25)=
E

{
||hn−1 + wn − ĥn−1||22

}
M

=
E

{
||hn−1 − ĥn−1||22

}
M

+ E
{||wn||22

}
M

(37)= Ch,n−1 + Cw,n. (38)

Furthermore, one can use the fact that vn is statistically
independent from hn−1 and wn (head-to-head relation-
ship in dn in Fig. 6) to express E

{
e2n

}
as:

E
{
e2n

} (14),(15)= E
{(

xTn
(
hn − ĥn−1

)
+ vn

)2}

= E
{
xTn

(
hn − ĥn−1

) (
hn − ĥn−1

)T
xn

}
+ E

{
v2n

}
= xTnE

{(
hn − ĥn−1

) (
hn − ĥn−1

)T}
xn + Cv,n

(25),(36)= xTnxn(Ch,n−1 + Cw,n) + Cv,n. (39)

Inserting (38) and (39) into (28) finally yields the identi-
cal expression for the filter update as in (34). All together,
we thus derived the adaptive stepsize NLMS algorithm
(initially heuristically proposed in 1982 [34]) by applying
fundamental techniques of Bayesian network modeling
to a special realization of the fundamental state-space
model in (7). Next, we estimate the hyperparameters Cv,n
and Cw,n in the learning stage to realize the adaptive
stepsize NLMS algorithm in (34) without exploiting the
approximations of (28).
Learning: For deriving an update of the model parame-

ters from θn = {
Cv,n,Cw,n

}
to

{
Cnew
v,n ,Cnew

w,n
}
, we determine

the joint PDF

p(d1:n,h1:n) =
n∏

m=1
p(hm|hm−1)p(dm|hm), (40)

based on the factorization rules of Section 2. Although the
ML problem

{
Cnew
v,n ,Cnew

w,n
} = argmax

Cnew
v,n ,Cnew

w,n

p(d1:n) (41)

is analytically tractable, marginalizing over the joint PDF
in (40) to calculate p(d1:n) leads to a computational com-
plexity exponentially growing with n [30]. Thus, we iter-
atively approximate the ML solution to derive an online
estimator based on the lower bound [30]
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ln p(d1:n) = ln p(d1:n)
∫

p(h1:n|d1:n) dh1:n

≥
∫

p(h1:n|d1:n) ln p(d1:n,h1:n) dh1:n
= E{ln ( p(d1:n,h1:n))}. (42)

Taking the natural logarithm ln(·) of the joint PDF
defined in (40) and maximizing the right-hand side of (42)
with respect to the new parameters leads to two sep-
arate optimization problems caused by the conditional
independence properties in (8) and (9):

Cnew
w,n = argmax

Cnew
w,n

E{ln ( p(hn|hn−1))}, (43)

Cnew
v,n = argmax

Cnew
v,n

E{ln ( p(dn|hn))}. (44)

For the estimation of Cnew
v,n , we insert

ln( p(dn|hn)) (25)= − ln
(
2πCnew

v,n
)

2
−

(
dn − xTnhn

)2
2Cnew

v,n

into (44) and thus derive the instantaneous estimate by
equating the derivation with respect to Cnew

v,n to zero:

Cnew
v,n = E

{(
dn − xTnhn

)2}

= d2n + xTnE
{
hnhTn

}
xn − 2xTn ĥn

= d2n + xTn
(
Ch,nI + ĥnĥTn

)
xn − 2xTn ĥn

=
(
dn − xTn ĥn

)2 + xTnxnCh,n, (45)

which can be interpreted as follows [31]: The first term
in (45) (squared error signal after filter adaptation) is
influenced by near-end interferences like background
noise. The second term in (45) depends on the signal
energy xTnxn and the variance Ch,n which means that it
considers the input signal power and uncertainties in the
linear echo path model. Similar to the derivation for Cnew

v,n ,
we insert

ln( p(hn|hn−1))
(25)= −M ln

(
2πCnew

w,n
)

2

− (hn − hn−1)T(hn − hn−1)

2Cnew
w,n

into (43), to derive the instantaneous estimate

Cnew
w,n = 1

M
Eh1:n|θn

{
(hn − hn−1)

T(hn − hn−1)
}

(27)= Ch,n − Ch,n−1

+ 1
M

(
ĥTn ĥn − ĥTn−1ĥn−1

)
, (46)

where we employed the statistical independence between
wn and hn−1. Equation (46) states that Cnew

w,n is estimated
as difference of the filter tap autocorrelations between the
time instants n and n − 1. Finally, the updated parameter
values are used as initialization for the following time step,
so that

Cw,n+1 := Cnew
w,n , Cv,n+1 := Cnew

v,n . (47)

Note that this approximated ML solution is only guar-
anteed to converge to a locally but not necessarily globally
optimum solution [32].

4.2 NLMS algorithmwith fixed stepsize value [38]
In the previous section, we estimated the model param-
eters θn by approximating the ML problem in (41). For
some applications, it might be promising to manually set
the values of Cv,n and Cw,n. This is done in the follow-
ing leading to the NLMS algorithm with a fixed stepsize
value:

• The uncertainty wn is equal to zero by choosing
Cw,n = 0 in (10).

• The variance of the microphone signal uncertainty
Cv,n is proportional to the current loudspeaker power
and the estimation uncertainty Ch,n−1:

Cv,n = α̃xTnxnCh,n−1, where α̃ ≥ 0. (48)

Inserting both assumptions into (34) leads to the
filter update of the NLMS algorithm

ĥn = ĥn−1 + Ch,n−1xnen
xTnxnCh,n−1 + α̃xTnxnCh,n−1

= ĥn−1 + α

xTnxn
xnen (49)

with fixed stepsize value

α = (1 + α̃)−1. (50)

Interestingly, the resulting stepsize α is from the
interval typically chosen for an NLMS algorithm: if
the additive uncertainty is equal to zero (Cv,n

(48)= 0
for α̃ = 0), the stepsize reaches the maximum value
of α (50)= 1. With increasing additive uncertainty
(Cv,n

(48)→ ∞ for α̃ → ∞), the stepsize decreases and
tends to zero.

5 A Bayesian view on nonlinear AEC
In this section, we consider the nonlinear AEC scenario
of Fig. 4 and compare both realizations of the state vector
in (22) and (23) to compare models having a linear (LIC
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models) or nonlinear (NIC models) relation between the
observation and the coefficients of the state vector.

5.1 LIC model: Hammerstein groupmodels
Following the definition of the state vector in (23), we
define the state-space model as follows:

dn
(24)= zTnyn + vn, zn = zn−1 + wn, (51)

where yn =
[
xTn ,�1{xn}T, . . . ,�P{xn}T

]T
. (52)

Note that (51) is similar to (25) with the difference that
the state vector zn, the input signal vector yn, and the
uncertainty wn are extended byM · P values. Thus, apply-
ing equivalent assumptions as in Section 4.2 leads to the
filter update

ẑn = ẑn−1 + α

yTn yn
yn

(
dn − ẑTn−1yn

)
(53)

for ẑn
(23)=

[
ẑTn,1, ẑTn,2, . . . , ẑTn,P+1

]T
. (54)

As illustrated in Fig. 7, this represents the realization
of P + 1 parallel NLMS algorithms with individually pre-
processed loudspeaker signal xn. One advantage of this
Hammerstein group model is the application of well-
known linear FIR filters to identify a nonlinear electroa-
coustic echo path. However, this is at the cost of an
increased number of coefficients to be estimated. It should
be emphasized that this Bayesian network view on the
Hammerstein group model is considered here for the first
time.

5.2 NIC model: numerical sampling
In cases where the observation equation of (21) represents
an NIC model due to the definition of the state vector
in (22), we cannot analytically derive the Bayesian esti-
mate of ẑn in a closed form. Thus, we employ particle
filtering to approximate the posterior PDF in (32) by a
discrete distribution [30, 39]:

Fig. 7 Hammerstein group model to estimate d̂n = ẑTn−1yn with ẑn
and yn defined in (54) and (52), respectively

p (zn|d1:n) (32)= p(dn|zn)p(zn|d1:n−1)∫
p(dn|zn)p(zn|d1:n−1)dzn

≈
L∑

l=1

p
(
dn|z(l)

n
)

δ
(
zn − z(l)

n
)

L∑
l=1

∫
p

(
dn|z(l)

n
)

δ
(
zn − z(l)

n
)
dzn

=
L∑

l=1
ω(l)
n δ

(
zn − z(l)

n

)
, (55)

where δ(·) is the Dirac delta distribution. Based on (55),
the set of L realizations of the state vector z(l)

n (so-called
particles) is characterized by the weights

ω(l)
n =

p
(
dn|z(l)

n
)

L∑
l=1

p
(
dn|z(l)

n
) (7)=

N
(
dn|d(l)

n ,Cv,n
)

L∑
l=1

N
(
dn|d(l)

n ,Cv,n
) , (56)

which describe the likelihoods that the observation is
obtained by the corresponding particle (as measures for
the probability of the samples to be drawn from the true
PDF [40]). To calculate the weights in (56), the parti-
cles are plugged into (18) to determine the estimated
microphone samples d(l)

n .
Due to the definition of the discrete posterior PDF

in (55), the MMSE estimate for the state vector is given by
the mean vector

ẑn
(12)= E{zn|d1:n} ≈

L∑
l=1

ω(l)
n z(l)

n . (57)

This fundamental concept is illustrated in Fig. 8 and can
be summarized as follows [9]:

• Starting point : L particles z(l)
n .

• Measurement update: Calculate the weights ω
(l)
n and

determine the posterior PDF p (zn|d1:n) (see (56)
and (55), respectively).

• Time update: Replace all particles by L new samples
drawn from the posterior PDF [30]

p (zn+1|d1:n) =
L∑

l=1
ω(l)
n p

(
zn+1|z(l)

n

)
, (58)

Fig. 8 Concept of the classical particle filter
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which is equivalent to sampling from p (zn|d1:n) and
subsequently adding one realization of the
uncertainty wn+1 defined in (10)1. This is the starting
point for the next iteration step.

Unfortunately, the classical particle filter (initially pro-
posed for tracking applications) is conceptually ill-suited
for the task of nonlinear AEC: it is well known that the
performance degrades with increasing search space and
that the local optimization problem is solved without gen-
eralizing the instantaneous solution (see the weight cal-
culation in (56)) [41–43]. These properties of the classical
particle filter are severe limitations for the task of nonlin-
ear AEC with its high-dimensional state vector (see (22)).
To cope with these conceptional limitations without intro-
ducing sophisticated resampling methods [40, 44], the eli-
tist particle filter based on evolutionary strategies (EPFES)
has been recently proposed in [9]. As major modifications
for the task of nonlinear AEC, an evolutionary selection
process facilitates to evaluate realizations of the state vec-
tor based on recursively calculated particle weights to
generalize the instantaneous solution of the optimization
problem [9]. These fundamental properties of the EPFES
will be illustrated for the state-space model of (7) in the
next part.
EPFES [9]: As first modification with respect to the

classical particle filter, the particle weights are recursively
calculated

ω(l)
n = γ ω

(l)
n−1 + (1 − γ )

p
(
dn|z(l)

n
)

L∑
l=1

p
(
dn|z(l)

n
) , (59)

where γ is the so-called forgetting factor. Following con-
cepts from the field of evolutionary strategies (ES) [45], we
subsequently select Qn elitist particles z̄(qn)

n with weights
larger than a thresholdωth to determine the posterior PDF
p (zn|d1:n) (and the MMSE estimate ẑn as its mean vector)
by replacing

{
z(l)
n ,ω(l)

n
}
in (55) by the set of elitist particles

and respective weights
{
z̄(qn)
n , ω̄(qn)

n
}
. Subsequently, L−Qn

new samples drawn from the posterior PDF p (zn|d1:n)
replace the non-elitist particles and complete the set of
particles for realizing the time update. These steps are
illustrated in Fig. 9 and can be summarized as follows:

• Starting point : L particles z(l)
n with weights ω

(l)
n−1

determined in the previous time step.
• Measurement update: Update weights ω

(l)
n in (59),

select elitist particles, and determine p (zn|d1:n) by
inserting the set of elitist particles z̄(qn)

n and weights
ω̄

(qn)
n into (55).

• Time update: Replace the non-elitist particles by new
samples drawn from the posterior PDF p (zn|d1:n).

Fig. 9 Concept of the EPFES

Furthermore, add realizations of wn+1 (following (7))
to the set of particles (containing Qn elitist particles
and L − Qn new samples). This is the starting point
for the next iteration step2.

It has been shown that these modifications of the clas-
sical particle filter generalize the instantaneous solution
of the optimization problem and thus allow to identify
the nonlinear-linear cascade in Fig. 4 [9]. However, the
EPFES evaluates realizations of the state vector based on
long-term fitness measures. This leads to a high com-
putational complexity due to the high dimension of the
state vector in (22). Although many real-time implemen-
tations of particle filters have been proposed using parallel
processing units [46, 47], it might be necessary for typi-
cal applications of nonlinear AEC (e.g., in mobile devices)
to reduce the computational complexity to meet specific
hardware constraints. Note that a very efficient solution
for this problem is the so-called significance-aware EPFES
(SA-EPFES) proposed in [19], where the NLMS algorithm
(to estimate the linear component of the AEC scenario)
is combined with the EPFES (to estimate the loudspeaker
signal distortions) by applying significance-aware (SA) fil-
tering. In short, the fundamental idea of SA filtering is to
reduce the computational complexity by exploiting phys-
ical knowledge about the most significant part of the
linear subsystem to estimate the coefficients of the non-
linear preprocessor [18]. Thus, the state vector in (22)
underlying the derivation of the SA-EPFES models the
coefficients of the nonlinear preprocessor and a small part
of the impulse response around the highest energy peak
(to capture estimation errors of the NLMS algorithm in
the direct-path region).

6 Experimental performance
This overview article establishes a unifying Bayesian net-
work view on linear and nonlinear AEC with the goal
to drive future research by highlighting the idealizations
and limitations in the probabilistic models of existing
methods. Note that a detailed analysis of the adaptive
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algorithms described in the previous sections has already
been performed in [18, 19]. Therefore, we briefly sum-
marize the main findings without explicitly detailing the
practical realizations of the algorithms (see [18, 19] for
more details). For a recorded female speech signal (com-
mercial smartphone placed on a table with display facing
the desk) in a medium-size room with moderate back-
ground noise (SNR ≈ 40 dB), the NLMS algorithm
(length-256 FIR filter at 16 kHz) achieved an average echo
return loss enhancement (ERLE) of 8.2 dB in a time inter-
val of 9 s [19]. Compared to this, the Hammerstein group
model and the SA-EPFES improve the average ERLE by 34
and 68 % at a computational complexity increased by 27
and 50 %, respectively [19]. To achieve these results, the
Hammerstein group model (termed as SA-HGM in [18])
and the SA-EPFES are realized based on the concept of
SA filtering [18] (11 filter taps for the direct-path region of
the RIR) by using length-256 FIR filters and a third-order
memoryless preprocessor (inserting odd-order Legendre
functions into (18)).

7 Conclusions
In this article, we derived a set of conceptually different
algorithms for linear and nonlinear AEC from a unifying
graphical model perspective. Based on a concise review
of Bayesian networks, we introduced a state-space model
with latent state vector capturing all relevant information
of the unknown system. After this, we employed three
combinations of state-vector definitions (to model a lin-
ear or nonlinear echo path) and observation equations
(mathematical relation between state vector and obser-
vation) to apply fundamental techniques of machine
learning research. Thereby, it is shown that the NLMS
algorithm, the Hammerstein group model (considered
from this perspective here for the first time), and a numer-
ical sampling scheme for nonlinear AEC can be derived
from a unifying Bayesian network perspective. This view-
point highlights probabilistic assumptions underlying dif-
ferent derivations and serves as a basis for developing new
algorithms for linear and nonlinear AEC and similar tasks.
An example for future work is a Bayesian view on a nonlin-
ear AEC scenario, where the nonlinear loudspeaker signal
distortions are modeled by a nonlinear preprocessor with
memory.

Endnotes
1Note that sampling from the posterior PDF

p (zn+1|d1:n) (7)=
L∑

l=1
ω

(l)
n N

(
zn+1|z(l)

n ,Cw,n+1I
)
is

equivalent to adding samples drawn from the discrete
PDF p (zn|d1:n) in (55) and the Gaussian PDF p (wn+1)
in (10).

2In practice, the weights of the new samples for the
recursive update in (56) are initialized by the value ωth.
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