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Abstract 

Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of 
major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the 
main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide‑resist‑
ant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show 
that the adoption of herbicide‑resistant crops impacts agronomy, agricultural practice, and weed management and 
contributes to biodiversity loss in several ways: (i) many studies show that glyphosate‑based herbicides, which were 
commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intes‑
tinal microflora and plant disease resistance; the increased use of 2,4‑D or dicamba, linked to new herbicide‑resistant 
crops, causes special concerns. (ii) The adoption of herbicide‑resistant crops has reduced crop rotation and favoured 
weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and 
the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate‑resistant 
weed species worldwide. Although recommended for many years, farmers did not counter resistance development 
in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence 
of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional her‑
bicide resistance genes. (iv) Agricultural management based on broad‑spectrum herbicides as in herbicide‑resistant 
crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland 
animals. Taken together, adverse impacts of herbicide‑resistant crops on biodiversity, when widely adopted, should 
be expected and are indeed very hard to avoid. For that reason, and in order to comply with international agreements 
to protect and enhance biodiversity, agriculture needs to focus on practices that are more environmentally friendly, 
including an overall reduction in pesticide use. (Pesticides are used for agricultural as well non‑agricultural purposes. 
Most commonly they are used as plant protection products and regarded as a synonym for it and so also in this text.)
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Preliminary remark
Together with the supplement, the present paper is a sum-
mary and an update of a comprehensive technical report 
which was previously published by the German Federal 
Agency for Nature Conservation BfN, the Austrian Envi-
ronment Agency EAA, and the Swiss Federal Office for the 
Environment FOEN [1]. Based on this technical report (see 
Additional file  1), some members of the Interest Group 
GMO within the EPA and ENCA networks,1 drafted a posi-
tion paper which highlights key messages regarding the 
environmental impacts of the cultivation of genetically 
modified herbicide-resistant plants [2, 3]. Acting upon the 
key messages should improve the current environmental 
risk assessment of these plants. The position paper was 
recently addressed to relevant EU bodies with the aim to 
ensure adequate protection of the environment in the 
future.

Most of the members of the IG GMO within the EPA 
and ENCA networks are involved in the risk assess-
ment of GMOs in the EU and other European countries. 
Hence, the group consists of agencies responsible for the 
authorization of GMO releases as well as public institu-
tions that provide scientific support to national adminis-
trations, e.g. as regards risk assessment.

This paper summarizes the lessons learned from the 
experience with the use of GM plants resistant to the her-
bicides glyphosate and glufosinate. It is based on a more 
detailed paper that can be accessed as a supplement to 
this article. Ongoing discussions about the food and feed 
safety of GM crops and the concept of substantial equiva-
lence are not in the realm of this paper.

Throughout this document, the terms “herbicide resist-
ance” and “herbicide tolerance” are used as defined by the 
Weed Science Society of America [4]; both terms are not 
used synonymously with respect to a particular response 
to a herbicide; they rather distinguish naturally occurring 
“tolerance” from engineered “resistance”.

Review
Agreements and regulations covering biodiversity 
protection
Conservation of biodiversity is high on the agenda of inter-
national and national environmental policies though not 
very present in public awareness. The need to protect bio-
diversity and stop the loss was acknowledged in the Con-
vention on Biological Diversity (CBD), internationally 
agreed on in 1992, and underscored by relevant decisions 

1 The European Networks of the Heads of Environment Protection Agen-
cies EPA and European Nature Conservation Agencies ENCA. The subset 
of the Interest Group GMO consisted of the Environment Agency Austria 
EAA, the Finnish Environment Institute SYKE, the German Federal Agency 
for Nature Conservation BfN, the Institute for Environmental Protection and 
Research ISPRA, and the Swiss Federal Office for the Environment FOEN.

since then2 (the Convention entered into force in 1993). 
The Cartagena Protocol on Biosafety (CPB), adopted by 
the Parties to the CBD in 2000 and entering into force in 
2003, seeks to protect biological diversity from potential 
risks posed by living modified organisms (LMOs), spe-
cially focusing on transboundary movement. Moreover, 
the CPB aims to facilitate information exchange on LMOs 
and procedures to ensure that countries can make 
informed decisions before they agree to import LMOs. 
Actually, 195 nations plus the EU are Parties to the CBD 
and 169 plus the EU to the Cartagena Protocol.

In the EU, the deliberate release into the environment 
of genetically modified organisms (GMOs) is regulated 
by the Directive 2001/18/EC and the Directive (EU) 
2015/412. Referring to the precautionary principle, the 
Directive 2001/18/EC aims at the protection of human 
and animal health and the environment. In the course of 
the environmental risk assessment, intended and unin-
tended as well as cumulative long-term effects relevant to 
the release and the placing on the market of GMOs have 
to be considered comprehensively.

Most commercially planted genetically modified (GM) 
crops are either herbicide-resistant (HR) or insect-resist-
ant (IR), many carrying both traits. Based on recent 
data and experience, there are concerns that HR crops 
promote the further intensification of farming and may 
therefore increase pressure on biodiversity.

Herbicide‑resistant crops
Herbicide resistance is the predominant trait of culti-
vated GM crops and will remain so in the near future. 
GM crops resistant to the broad-spectrum herbicides 
glyphosate and glufosinate have first been cultivated 
commercially in the 1990s [5], and GM crops with resist-
ance to other herbicides are under development [6], or 
already on the market, with various HR traits increas-
ingly combined in one crop [7]. Another, more recent 
strategy is the development of plants that are resistant to 
high concentrations of glyphosate without exhibiting a 
yield drag [8, 9].

Glyphosate inhibits 5-enolpyruvylshikimate-3-phos-
phate synthase (EPSPS), an enzyme of the shikimate 
pathway for biosynthesis of aromatic amino acids and 
phenolics in plants and microorganisms. This enzyme is 
not present in human or animal cells [10]. Glufosinate 
ammonium is an equimolar, racemic mixture of the d- 
and l-isomers of phosphinothricin (PPT). The l-isomer 
inhibits plant glutamine synthetase, leading to the accu-
mulation of lethal levels of ammonia [11].

To confer resistance to glyphosate, most glyphosate-
resistant crops express a glyphosate-insensitive EPSPS 
derived from Agrobacterium spp., some also the 
2 http://www.cbd.int.

http://www.cbd.int
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glyphosate-degrading enzyme glyphosate oxidoreductase 
(GOX) and/or the enzyme glyphosate acetyltransferase 
(GAT) that modifies glyphosate. In addition, various 
crops have also been transformed with one of the two 
bacterial genes pat or bar from Streptomyces spp. confer-
ring resistance to glufosinate-based herbicides. These 
genes encode the enzyme phosphinothricin acetyl trans-
ferase (PAT) which detoxifies l-PPT. Other transgenes 
contained in HR crops confer resistance to ALS inhibi-
tors3 (gm-hra gene), 2,4-D4 (aad-1 and aad-12 genes) or 
to dicamba (dmo gene).

While many transgenic HR crop species have been 
tested in the field, only four are widely grown commer-
cially since the late 1990s: soybean, maize, cotton, and 
canola [12]. In 2013, of the 175.2 million ha global GM 
crop area, about 57% (99.4 million ha) were planted 
with HR varieties and another 27% (47 million ha) with 
stacked HR/IR crops [13]. Hence, 84% of the GM crops 
carried HR genes (146.4 million ha). HR soybean is the 
dominant GM crop and grown mainly in North and 
South America, making up about 80% of the global soy-
bean area and 46% of the total GM crop area [12]. In GM 
maize and GM cotton, HR traits are often combined with 
IR genes. In the US, HR crops such as alfalfa, sugar beet, 
creeping bentgrass, and rice, are already deregulated and 
on the market or pending for deregulation [7].

Yields of HR crops
Contrary to widespread assumptions, HR crops do not 
provide consistently better yields than conventional 
crops. Increased yield is not the main reason for farmers 
to adopt HR crops. If there are yield differences between 
HR and conventional crops, they may be due to various 
factors, such as scale and region of growing, site and size 
of farms, soil, climate, tillage system, weed abundance, 
genetic background/varieties, crop management, weed 
control practice, farmer skills, and the education of the 
farm operators. Reviewing data about the agronomic 
performance of GM crops, Areal et  al. [14] concluded 
that although GM crops, in general, perform better than 
conventional counterparts in agronomic and economic 
(gross margin) terms, results on the yield performance of 
HR crops vary. A consistent yield advantage for HR crops 
over conventional systems could not be demonstrated 
[15–17].

The actual yield reduction in RoundupReady soybean 
observed in some studies [15] might be due to several 
causes: (i) the present resistance gene in the first genera-
tion of RoundupReady line (40-3-2) [18] and (ii) reduced 

3 Acetolactate synthase (ALS).
4 2,4-dichlorphenoxyacetic acid.

nodular nitrogen fixation upon glyphosate application 
[19] and/or (iii) a weaker defence response [20]. Applica-
tion of glyphosate seemed to affect nodule number and 
mass which have been correlated with nitrogen fixation 
[21] and cause the symptom of “yellow flashing” which 
leads to a decrease in grain yield (see discussion in [9]). 
The second generation RR2Y soybean (MON 89788) was 
introduced to provide better yields, but when tested in 
the greenhouse, different cultivars of RR2Y performed 
less well than RR 40-3-2 [22].

Eco‑toxicological attributes of complementary herbicides
Impacts of HR crops on biodiversity are possible through 
the altered herbicide management option, that is, appli-
cation of a broad-spectrum herbicide during crop growth 
and its impacts on weed abundance and diversity. These 
impacts, also called indirect effects, are dealt with later 
in this text. Direct impacts relate to the toxicity of the 
herbicide, of residues, and breakdown products. First, an 
update of eco-toxicological attributes and direct effects of 
relevant complementary herbicides of HR crops is given.

Glyphosate
Glyphosate (C3H8NO5P; N-(phosphonomethyl) glycine), 
a polar, water soluble organic acid, is a potent chelator 
that easily binds divalent cations (e.g. Ca, Mg, Mn, and 
Fe) and forms stable complexes [23]. In addition to the 
active ingredient (a.i.) that can be present in various 
concentrations, herbicides usually contain adjuvants or 
surfactants that facilitate penetration of the active ingre-
dient through the waxy surfaces of the treated plants. 
The best known glyphosate containing herbicides, the 
Roundup product line, often contain as a surfactant 
polyethoxylated tallow amine (POEA), a complex mix-
ture of di-ethoxylates of tallow amines characterized 
by their oxide/tallow amine ratio, that is significantly 
more toxic than glyphosate [24]. The toxicity of formu-
lations to human cells varies considerably, depending 
on the concentration (and homologue) of POEA [25]. 
Data from toxicity studies performed with glyphosate 
alone and over short periods of time may thus conceal 
adverse effects of the herbicides. Glyphosate degrada-
tion is reported to be rapid (half-lives up to 130  days) 
[3], but its main metabolite aminomethylphosphonic 
acid (AMPA) degrades more slowly. Both substances 
are frequently and widely found in US soils, surface 
water, groundwater, and precipitation [26]. Recently, the 
widespread occurrence of POEA and the persistence of 
POEA homologues in US agricultural soils have been 
reported [27] with currently unknown and unexplored 
consequences.

Inhibition of the enzyme EPSPS and disruption of 
the shikimate pathway impacts protein synthesis and 
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production of phenolics, including defence molecules, 
lignin derivatives, and salicylic acid [28]. Glyphosate 
impacts plant uptake and transport of micronutrients 
(e.g. Mn, Fe, Cu, and Zn) whose undersupply can reduce 
disease resistance and plant growth [20, 23]. In Argentine 
soils, residue levels of up to 1500 µg/kg (1.5 ppm) glypho-
sate and 2250 µg/kg (2.25 ppm) AMPA have been found 
[29].

Glyphosate affects the composition of the microflora 
in soil and gastrointestinal tracts differently, suppress-
ing some microorganisms and favouring others [30, 31]. 
This is likely linked to varying sensitivities of bacterial 
EPSPS enzymes to glyphosate [32]. In the RoundupReady 
soybean system, the bacterial-dependent nitrogen fixa-
tion and/or assimilation can be reduced [33]. Impacts of 
glyphosate on fungi vary also, depending on study sites, 
species, pathogen inoculum, timing of herbicide applica-
tion, soil properties, and tillage [28]. Mycorrhizal fungi 
seem to be sensitive to glyphosate [34], while others, 
including pathogenic Fusarium fungi, may be favoured 
under certain conditions since glyphosate may serve as 
nutrient and energy source [30]. The microbial commu-
nity of the gastrointestinal tract of animals and humans 
may be severely affected, if, as reported by Shehata et al. 
for poultry microbiota in vitro [31], pathogenic bacteria 
(e.g. Salmonella and Clostridium) are less sensitive to 
glyphosate than beneficial bacteria, e.g. lactic acid bacte-
ria. For this reason, studies on glyphosate effects on the 
gut microbiome of other species are needed.

Glyphosate-based herbicides can affect aquatic micro-
organisms both negatively (e.g. total phytoplankton and 
nitrifying community) and positively (e.g. cyanobacte-
ria) [35, 36], with surfactants such as POEA being sig-
nificantly more toxic than the active ingredient itself [37]. 
In studies where Daphnia magna were fed glyphosate 
residues for the whole life-cycle, the parameters growth, 
reproductive maturity, and offspring number were 
impaired [38]. Amphibians are particularly at risk, since 
shallow temporary ponds are areas where pollutants can 
accumulate without substantial dilution. Sublethal con-
centrations of glyphosate herbicides can cause terato-
genic effects and developmental failures in amphibians 
and impact both larval and adult stages [39]. Environ-
mentally relevant levels of exposure to both glyphosate 
and Roundup have led to major changes in the liver tran-
scriptome of brown trout, reflective of oxidative stress, 
and cellular stress response [40]. Simultaneous expo-
sure to glyphosate-based herbicides and other stressors 
can induce/increase adverse impacts on fish [41] and 
amphibians [42].

Glyphosate application reduced the number and mass 
of casts and reproductive success of earthworm species 

that inhabit agroecosystems [43]. Impacts on arthropods, 
among them beneficial land predators and parasites, vary 
[44]. Exposure to sublethal glyphosate doses impairs 
behaviour and cognitive capacities of honey bees [45]. 
Acute toxicity of glyphosate to mammals is lower rela-
tive to other herbicides. In recent years, however, glypho-
sate-based herbicides have been reported to be toxic to 
human and rat cells, impact chromosomes and organelle 
membranes, act as endocrine disruptors, and lead to 
significant changes in the transcriptome of rat liver and 
kidney cells [25, 46, 47]. Negative effects of glyphosate 
on embryonic development after injection into Xenopus 
laevis and chicken embryos have been linked to interfer-
ence of glyphosate with retinoic acid signalling that plays 
an important role in gene regulation during early verte-
brate development, also showing that damage can occur 
at very low levels of exposure [48]. The International 
Agency for Research on Cancer (IARC) concluded in a 
recent report that glyphosate is probably carcinogenic 
to humans [49]. When mandated by the European Com-
mission to consider IARCS’s conclusion, EFSA identified 
some data gaps, but argued that, based on its own calcu-
lations about glyphosate doses humans may be exposed 
to, glyphosate is unlikely to pose a carcinogenic hazard 
to humans [50]. The current concerns over the use of 
glyphosate-based herbicides are summarized in a recent 
paper [51], which concludes that glyphosate-based herbi-
cides should be prioritized for further toxicological eval-
uation and for biomonitoring studies.

Glufosinate ammonium
l-PPT glufosinate inhibits glutamine synthetase of sus-
ceptible plants and results in accumulation of lethal levels 
of ammonia [11]. Less data on eco-toxicity of glufosinate 
is available compared to glyphosate, presumably due to 
the significantly lower use of glufosinate. The formulated 
product is known to be (slightly) toxic to fish and aquatic 
invertebrates. Glufosinate has been shown to suppress 
some soil microorganisms, whereas others exhibited tol-
erance [52]. Some fungal pathogens seem to be reduced 
by glufosinate, potentially due to inhibition of glutamine 
synthetase, similar to the inhibition in plants [53]. Glu-
fosinate may impact predatory insects, mites, and butter-
flies [54, 55].

Glufosinate ammonium has the potential to induce 
severe reproductive and developmental toxicity in rats 
and rabbits [56]. Because of its reproductive toxicity, use 
of glufosinate will be phased out in the EU by September 
2017 [57]. In other countries, however, glufosinate use 
may not be discontinued as glufosinate-resistant crops 
are increasingly grown in reaction to the ever greater 
number of glyphosate-resistant weeds [7, 58].
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Other herbicides
The increasing use of “old” herbicides such as synthetic 
auxins, expected in the course of US deregulation of 
crops resistant to 2,4-D or dicamba, raises serious con-
cerns. Synthetic analogues of the plant hormone auxin 
cause uncontrolled and disorganized plant growth finally 
killing sensitive plants, e.g. broadleaf weeds. The herbi-
cide 2,4-D is 75 times and dicamba 400 times more toxic 
to broadleaf plants than glyphosate [59]. Both herbicides 
are highly volatile, thus increasing the potential for dam-
age to non-target organisms due to spray drift. Sensitive 
crops, vegetables, ornamentals, and plants in home gar-
dens could be damaged and both plant and arthropod 
communities in field edges and semi-natural habitats 
affected [60]. Whether a new formulation with lower 
volatility to be used in resistant crops, e.g. Enlist Duo 
comprising 2,4-D and glyphosate, and special steward-
ship guidelines will help reduce adverse herbicide effects, 
is highly questionable [59] since lower volatility of a sub-
stance may reduce exposure, but not toxicity, and stew-
ardship programs address resistance issues in the target 
organisms and not toxicity issues.

The herbicides 2,4-D and 2,4,5-T (2,4,5-trichlorophe-
noxyacetic acid) each accounted for about 50% of Agent 
Orange, the herbicide product sprayed by the US military 
in the jungle in Vietnam. Agent Orange contained highly 
toxic impurities, including dioxins and furans. Such 
impurities in actual 2,4-D containing herbicides are still 
a concern, especially in herbicides manufactured out-
side the EU and US [61]. Recently, IARC [62] classified 
2,4-D as a “possible human carcinogen,” a classification 
which is not shared by EFSA [63]. Due to potential syn-
ergistic effects between the two ingredients in Enlist Duo 
on non-target plants, the US Environmental Protection 
Agency has considered taking legal action to revoke the 
registration of this herbicide mix [64].

Impacts on agricultural practice and agronomy
HR crops can have various impacts on the agricultural 
practice and agronomy, including weed control, soil till-
age, planting, crop rotation, yield, and net income. These 
interdependent factors influence to which degree and 
under which circumstances HR crops are adopted and 
should be taken into account, when impacts of HR crops 
on biodiversity are considered comprehensively.

Resistance to the broad-spectrum herbicides glypho-
sate and glufosinate allows previously sensitive crops to 
survive their application, facilitating weed control and 
giving the farmer more flexibility, e.g. by extending the 
time window for spraying and post-emergence applica-
tion. Conservation tillage, often recommended to reduce 
soil erosion and to save costs and energy, has increased 
and might even further expand if more HR crops are 

grown, as they are well adapted to low tillage systems. 
From 1996 to 2008, adoption of conservation tillage in 
US soybean cultivation increased significantly [58].

In the US, the most often stated reasons for the adop-
tion of HR crops were improved and simplified weed 
control, less labour and fuel cost, no-till planting/plant-
ing flexibility, yield increase, extended time window for 
spraying, and in some cases decreased pesticide input 
[65]. Labour reduction may allow generating off-farm 
income [66]. In the beginning, weed resistance manage-
ment did not seem that important to farmers, although 
weeds had become resistant to commonly used selective 
herbicides before [6]. Farmers were likely guided by the 
industry’s argument that, for a couple of reasons, among 
them glyphosate’s unique properties, glyphosate-resist-
ant weeds would not evolve, at least not very rapidly [67]. 
Reasons for adoption of HR crops in South America were 
similar to those mentioned above [68]. Moreover, lack of 
patent protection of GM seeds facilitated the introduc-
tion of HR soybean in Argentina, as seeds could be saved 
for planting and resale, and could also enter the black 
market from where they were smuggled into Brazil [69].

Crop rotation helps maintain high productivity by 
reducing pesticide use and fertilizer input and can reduce 
pest and pathogen incidences, weed infestation, and 
selection pressure for weed resistance to herbicides [58]. 
However, in regions where HR crops are widely adopted, 
there is a clear trend toward monoculture and crop rota-
tion and diversification are reduced [59]. In the US, in 
very large areas, crop rotation comprises only glyphosate-
resistant crops, the most common rotation being HR soy-
bean to HR corn [66]. In Argentina, within a few years, 
continuous HR soybean replaced 4.6 million ha of land 
initially dedicated to other crops, leading to a noticeable 
homogenization of production and landscapes [68].

Weed control patterns and herbicide use
HR crops are advertised as being environmentally 
friendly due to less herbicide use, compared to con-
ventional crops. However, actual trends rather support 
the opposite. Changes in overall amount of herbicides 
used are difficult to assess since different herbicides are 
applied at different rates. Nevertheless, reports show 
that with the introduction of HR crops in the US in 1996, 
lower amounts of herbicides were applied during the 
first years, with glyphosate replacing other herbicides 
[70]. However, since then, overall herbicide use in HR 
crops has increased: From 1998 to 2013, the increase in 
amounts (kg/ha) of active ingredient (a.i.) in HR soybean 
was 64%, compared to 19% in conventional soybean [71]. 
The cultivation of HR soybean, maize, and cotton led 
to an increased herbicide use in the US by an estimated 
239  million kg in 1996–2011, compared to non-HR 
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crops, with HR soybean accounting for 70% of the total 
increase [72].

Global glyphosate use increased too. While from 1995 
to 2014, US agricultural use of glyphosate rose ninefold 
to 113.4  million kg, global agricultural use rose almost 
15-fold to 747 million kg, with more than 50% accounted 
for by use on HR crops [73]. In Argentina, glyphosate use 
more than doubled from 2000 to 2011, due to the steady 
increase of the cultivation area of RoundupReady soy-
beans [74]. In case HR crops would be grown in Europe, 
it is estimated that herbicide use would rise significantly. 
If HR crop introduction were accompanied by resistance 
management, herbicide use would rise by 25%, and if it 
were unlimited as in the US, the increase would be 72% 
[75].

In addition, increased weed resistance to glyphosate 
leads to changes in the mix, total amount, cost, and over-
all environmental profile of herbicides applied to HR 
crops [6, 71]. In 2013, almost two-thirds of Roundu-
pReady soybean crops received an additional herbicide 
treatment, compared to 14% in 2006 [71], e.g. the use of 
2,4-D increased from 2002 to 2011 by almost 40% [58]. 
With the introduction of additional HR traits, “old” her-
bicides such as 2,4-D, dicamba, ACCase,5 and ALS inhib-
itors are used more frequently again. After deregulation 
in the USA of 2,4-D-resistant GM soybean and corn, 
2,4-D amounts applied in the US could triple by 2020 
compared to 2011, with glyphosate use remaining stable 
[58]. Use of 2,4-D on corn could increase over 30-fold 
from 2010 levels [72].

Changes in weed susceptibility
Both non-selective herbicides glyphosate and glufosi-
nate are effective on a wide range of annual grass and 
broadleaf weed species. The simplicity and effectiveness 
of weed control in HR cropping systems can be under-
mined in several ways: (i) by shifts in weed communities 
and populations resulting from the selection pressure by 
the applied herbicides, (ii) by escape and proliferation of 
transgenic plants as weedy volunteers, and (iii) by hybrid-
ization with—and HR-gene introgression into—related 
weedy species. While point (i) indicates changes in bio-
diversity, points (ii) and (iii) could increase the overall 
herbicide use in chemical weed management and thereby 
affect biodiversity further.

Selection of resistance and weed shifts
In general, increased reliance on herbicides for weed con-
trol leads to a shift in weed species composition. Less sen-
sitive species and populations survive herbicide sprayings 

5 Acetyl CoA carboxylase (ACCase)-inhibitors.

and subsequently grow and spread, whereas more sensi-
tive species disappear. In early 2016, a total of 249 weed 
species (with 464 biotypes) resistant to various herbicides 
have been recorded, occupying hundreds of thousands of 
fields worldwide. Many of these biotypes are resistant to 
more than one herbicide mode of action [76]. Resistance 
genes can spread by hybridization between related weed 
species [77] and possibly accumulate in certain biotypes.

Although glyphosate (and glufosinate) have long been 
considered to be low-risk herbicides with regard to the 
evolution of resistance [78], at least 34 glyphosate-
resistant weed species (more than 240 populations) have 
been confirmed today, observed on millions of hectares, 
and increasingly associated with HR crop cultivation 
[76]. Many of them express resistance to other herbi-
cide classes, too. In the US, the true area infested likely 
exceeds 28 million ha [79] by a sizable margin. In par-
ticular, glyphosate-resistant palmer amaranth (Amaran-
thus palmeri) creates control problems and poses a major 
economic threat to US cotton production [58]. Recently, 
two weed species resistant to glufosinate have been 
described, among them one population resistant also to 
glyphosate [76].

The molecular and genetic mechanisms of resistance 
to glyphosate are very diverse and can co-occur [77, 80]. 
Mutations in the EPSPS target site [81], increased EPSPS 
mRNA levels [82], EPSPS gene amplification [83], delayed 
glyphosate translocation [84], sequestration of glyphosate 
in vacuoles [85], and degradation in the plant [86] have 
been described. The increased glyphosate use has also 
promoted species shift among the weed flora, and sev-
eral grass and broadleaf weeds are becoming problematic 
weeds [87].

Resistance management
In the beginning of HR crop cultivation, resistance man-
agement was not considered to be an issue [67, 88], but 
this has later changed [89, 90]. For more than a dec-
ade now, weed scientists are recommending that farm-
ers should implement an integrated weed management 
approach that consists of “many little hammers”. These 
“hammers” include crop and herbicide rotation, mechani-
cal weeding, cover crops, intercropping, and mulching 
[91, 92]. But continuous HR cropping became common in 
the Americas, and farmers often simply resorted to higher 
glyphosate doses, additional applications (often both) 
and combined use of other herbicides [93]. Paraquat and 
synthetic auxins are recommended in tank mixtures or 
in rotation with glyphosate, but resistance to these herbi-
cides is about as common as resistance to glyphosate [76]. 
New herbicides will not be commercialized within the 
near future, due to the increased development costs and 
the challenge to find suitable substances that comply with 
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the stricter regulatory standards for weed efficacy and 
environmental and toxicological safety [6].

In this context, it is noted that companies increasingly 
develop and commercialize GM crops that resist higher 
glyphosate doses or that contain stacked HR traits, such 
as resistance to glyphosate and/or glufosinate, in part 
combined with resistance to 2,4-D, dicamba, ACCase 
inhibitors or HPPD6 inhibitors [6, 7, 9]. But as resistance 
to these herbicides is already common [76], stacking of 
HR traits and increased use of herbicides other than 
glyphosate will not reduce the selection pressure on 
weeds or decrease overall herbicide amounts applied. In 
addition, merely rotating herbicides may exacerbate 
resistance problems by selecting for broader resistance 
mechanisms in weeds [94].

Against this background, integrated weed management 
is strongly recommended and seems to be the only sen-
sible strategy in the long-term. Cropping systems that 
employ such an approach are competitive with regard 
to yields and profits to systems that rely chiefly on her-
bicides [59]. A four-year crop rotation scheme (maize-
soybean-small grain  +  alfalfa–alfalfa) not only helped 
reduce herbicide applications and fertilizer input, but 
also provided similar or even better yields and economic 
output, compared to the two-year maize-soybean rota-
tion common in the US [95]. However, although tools for 
weed control other than herbicides are clearly needed, 
use of herbicides is still the main weed management 
method and the number of papers dealing with chemical 
control eclipse those on any other method [96].

Seed escape and proliferation of HR plants
Seed escape and proliferation of HR plants can create 
severe management problems, especially with persistent 
crops. Volunteers, that is, crop plants in the field emerg-
ing from the previous crop, create problems when the 
following crop is a different species or a different variety 
of the same species. Volunteer management will become 
more complex if both volunteer plants and crops are 
resistant to the same herbicide. Crops with characteris-
tics such as shattering and seed persistence are particu-
larly likely to emerge as volunteers. Oilseed rape readily 
produces volunteers and feral plants, due to its high seed 
production, high seed losses during harvest and trans-
port, and its secondary dormancy [97]. HR oilseed rape 
plants have been found up to 15 years after experimental 
releases, despite regular control of the fields for volun-
teers [98, 99]. The recently reported incidence of oilseed 
rape seed contamination by the non-approved OXY-235 
variety (resistant to oxynil herbicides) in the EU might be 
traced back to field trials in France in the nineties [100], 

6 Hydroxyphenylpyruvate dioxygenase (HPPD).

indicating that volunteers may emerge even after almost 
20 years. Seed spill can also occur outside the fields and 
along transport routes, potentially leading to HR feral 
plants that may persist over large spatial and temporal 
scales [101]. HR feral oilseed rape plants have been found 
along transport routes in the US [102], in Switzerland 
[103] and Japan [104], in regions where they had never 
been grown.

HR‑gene flow to volunteers, neighbouring crops or 
interfertile weeds
Gene flow from HR crops is a special aspect of agrobio-
diversity and relevant for the purity of genetic resources. 
The frequency of outcrossing depends on the crop spe-
cies in question and its pollination system, the distance to 
simultaneously flowering volunteers or relatives, and var-
iables such as genotype, abundance and foraging behav-
iour of pollinators, weather conditions, time of the day, 
and the size of pollen donor and receiving populations. 
Novel combinations of transgenic events can be formed 
in the wild [102]. Reviews on gene flow have focused on 
the main GM crops [105] or on single crop species such 
as oilseed rape [106], maize [107], rice [108], sugar beet 
[109], and soybean [110]. As large pollen sources, such 
as crop fields, interact on a regional scale, and tend to 
increase gene flow, isolation distances have to be adjusted 
to this factor [111].

In centres of crop origin and regions where interfertile 
weeds, which can hybridize with crops, are present, gene 
flow from crop to weeds should be taken into account. This 
is true for oilseed rape (Brassica napus) and its close relative 
field mustard (Brassica rapa) in many regions of Europe 
[106]. Once herbicide resistance genes move into weeds, 
their frequency within local weed populations will increase 
under selection pressure by the corresponding herbicide. 
Hybrids do not need to be particularly fit as long as they are 
able to backcross with the weedy relative, a capacity which 
is characteristic for many interspecific hybrids. Even geno-
types with a lower fitness may survive if the pollen flow is 
steady and the pollen source is large [112].

In some European regulation frameworks, e.g. accord-
ing to the Swiss Biosafety regulations, undesired gene 
flow in itself is considered an adverse effect.7

Agriculture and biodiversity
Intensive high-input farming is a major force driving bio-
diversity loss and other environmental impacts beyond 
the “planetary boundaries” [113, 114]. Drivers are e.g. 
the low number of cropped species, reduced rotation, 
limited seed exchange between farms, drainage, and 

7 Swiss Federal Act on Non-Human Gene Technology, Art. 6 lit. 3(e).
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landscape-consolidation, and increased use of pesti-
cides. At the same time, agriculture relies on ecosystem 
functions and services and on biodiversity, including 
pollination, biological pest control, maintenance of soil 
structure and fertility, nutrient cycling, and hydrological 
services [115].

Weeds are part of the biodiversity of the agroecosys-
tem. Although commonly regarded as pests, they offer 
considerable benefits to the agroecosystem by support-
ing a range of organisms such as decomposers, predators, 
pollinators, and parasitoids. They fulfil certain functions 
within the agroecosystem which becomes obvious when 
they are missing, e.g. decreasing the antagonists of pest 
species can increase pesticide inputs as demonstrated by 
exclusion experiments [116, 117], and lower numbers of 
pollinators may reduce yield and quality in crops depend-
ing on animal pollination [118]. Within the last decades, 
the diversity of the “associated agricultural flora” (a neu-
tral expression for weeds) and the seed bank in arable 
soils have been reduced significantly [119, 120]. If the 
associated flora and arthropods are decreased in terms of 
abundance and diversity, this will affect the whole food 
chain including small mammals and farmland birds, the 
latter being major targets, and important indicators of 
agricultural change [121]. Organic farming, however, has 
a large positive effect on biodiversity with plants benefit-
ing the most among taxonomic groups [122].

Indirect effects of HR agriculture on biodiversity
As outlined above, broad-spectrum herbicides directly 
affect various organisms. However, as part of the HR weed 
management system, they also affect biodiversity as a whole. 
As glyphosate and glufosinate are effective on more weed 
species than other currently used herbicides or mechanical 
weeding and than is necessary for crop protection and pro-
ductivity, they will increase the level of weed suppression. 
Therefore, HR crops will likely support monocultures and 
the excessive control of weeds in agricultural environments. 
Indications of increased loss of biodiversity have been found 
in the three years Farm Scale Evaluations (FSE), where the 
effects of HR cropping systems on abundance and species 
diversity of wild plants and arthropods were investigated 
across Britain [123, 124]. In glyphosate-resistant sugar beet 
and fodder beet and in glufosinate-resistant oilseed rape, 
the wild plant density, biomass, seed rain, and seed bank 
were lower by one-third to one-sixth than in the conven-
tional counterparts; also less species emerged, compared to 
conventional management [125–127]. On the other hand, 
glufosinate-resistant maize showed more diverse weed spe-
cies, compared to conventional maize sprayed with atra-
zine. However, atrazine is highly effective on a broad range 
of plants and no longer approved in the EU. Herbicide drift 

to field margins is a concern to nature conservation and 
biodiversity of agricultural landscapes, as field margins and 
hedgerows often harbour rare plant species [128]. These 
habitats too were negatively affected in the FSE trials [129].

In the FSE trials, the abundance of arthropods changed 
in the same direction as their resources and herbivores, 
pollinators, and beneficial natural enemies of pests were 
reduced [130]. The FSE findings are supported by results 
in a 1-year canola field study in Canada, where wild bee 
abundance was highest in organic fields, followed by con-
ventional fields and lowest in HR crops [131]. This might 
also impact vertebrates: If weed abundance and spectra are 
diminished, birds [132] and migrating adult amphibians 
[39] may have difficulties finding enough seeds or inver-
tebrates for food. A prominent example of indirect effects 
of HR crops on biodiversity on a large scale is the monarch 
butterfly case. Recent US data indicate that, within the last 
decade and in parallel to the widespread and increased 
adoption of HR crops, the population size of the migra-
tory monarch butterfly (Danaus plexippus) has declined 
significantly, due, at least in part, to the widespread loss of 
milkweeds (Asclepias syriaca) in the Midwest [133–135]. 
Milkweed is the main food plant of monarch larvae, and 
the Midwest is the main breeding ground for monarchs. In 
case HR maize and HR oilseed rape would be widely grown 
in Europe, a similar scenario has been predicted for the 
European butterfly Queen of Spain fritillary (Issoria latho-
nia) [136].

Aspects of sustainable agriculture
The overreliance of HR cropping systems on chemical 
weed control discourages the use and retention of exist-
ing alternative weed management skills. In addition, HR 
cropping systems are not compatible with mixed crop-
ping systems [137]. Diversification practices, however, 
such as cover crops, mixed cropping, intercropping, and 
agroforestry, help retain soil and soil moisture better than 
intensive cropping and improve resiliency to climate dis-
asters and thus support the structures of the agroecosys-
tem which provide ecosystem services.

Small multifunctional and ecologically managed farms 
are more productive than large farms, if total output 
including energy input/output is considered rather 
than single-crop yield. However, human labour cannot 
be fully substituted by mechanization in such farming 
approaches [138, 139]. Davis et al. [95] showed in a nine-
year field study in the US corn belt that more diverse 
rotations including forage legumes enhanced yields of 
corn and soybean grain by up to 9% and reduced ferti-
lizer application, energy use, and herbicide input sig-
nificantly. Weed control and profitability remained the 
same, whereas labour demand was higher.
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As pointed out by the International Assessment of Agri-
cultural Knowledge, Science and Technology for Devel-
opment [140], agriculture is multifunctional and serves 
diverse needs. But for many years, agricultural science 
and development have focused on delivering technologies 
to increase farm-level productivity rather than integrating 
externalities such as impacts on biodiversity and the rela-
tionship between agriculture and climate change. In view of 
the current challenges, IAASTD concludes that business as 
usual is not an option. Rather increased attention needs to 
be directed toward new and successful existing approaches 
to maintain and restore soil fertility and to maintain a truly 
sustainable agricultural production. From the data col-
lected and assessed, HR cropping systems seem to be no 
option for a sustainable agriculture that focuses also on 
protection of biodiversity. On the contrary, HR crops rather 
seem to be part of the problem.

Conclusions
Intensive high-input farming is known as one of the main 
drivers of the continuous biodiversity loss in agricultural 
landscapes. Diversity and abundance of the weed flora 
provide relevant indicators for farmland biodiversity. 
While HR cropping facilitates weed control for farmers 
and makes chemical weed management more flexible, it 
is accompanied by increased herbicide use and less crop 
rotation. Toxic effects of the complimentary herbicides 
on non-target organisms, e.g. soil and aquatic organisms 
have been shown. Due to the widespread use of glypho-
sate, at least 34 glyphosate-resistant weed species have 
evolved worldwide. To counter resistance evolution in 
weeds, integrated weed management is recommended. 
But continuous and widespread HR cropping is still 
very common. The commercial trend is to develop new 
GM crops with stacked HR traits and GM varieties with 
increased glyphosate resistance. However, this approach 
will not reduce the overall herbicide amounts used in 
agriculture. Control problems can also arise due to HR 
volunteers or feral plants, e.g. HR oilseed rape. In cen-
tres of crop origin and regions where sexually compatible 
plants occur, transfer of HR genes to wild relatives can 
be expected. Biodiversity will be affected by HR crop-
ping systems by the very efficient removal of weed plants 
which in turn leads to a further reduction of flora and 
fauna diversity and abundance. A prominent example in 
this respect may be the decline of monarch butterfly pop-
ulations in the US which has been linked to the massive 
loss of their food plants upon widespread adoption of HR 
crops. Since it has been shown that HR systems are not 
compatible with measures to stop the loss of biodiversity 
on farmland, a more sustainable model of agriculture is 
needed, which, according to the present experience, can-
not reasonably integrate approaches like HR cropping.
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