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1 Introduction

Yang-Mills theories coupled to a matrix-valued Higgs field are known to have a confined

phase and a Higgs phase in 2+1 and 3+1 dimensions [1]. The phase diagram in 1+1

dimensions is much less understood.

The author and P. Orland proposed studying the (1+1)-dimensional theory as a gauged

principal chiral sigma model (PCSM) [2]. We found that in the continuum theory at

infinite volume, there is only a confined phase. The physical excitations are hadron-like

bound states. We computed analytically the spectrum of the meson-like hadrons in the

nonrelativistic limit, using knowledge of the exact S-matrix of the PCSM.

A numerical lattice study of the phase diagram of the same theory, with gauge group

SU(2), was published by S. Gongyo and D. Zwanziger [3]. In this reference, they found

evidence for both the confined and the Higgs phase, even in 1+1 dimensions. There seems to

be a crossover between the two phases, instead of a sharp phase transition. This appears at

first sight contradictory to the results of [2]; however, what they found is that the crossover

seems to disappear as the volume of the system is increased. Their calculations suggest

that there is a Higgs phase, but it disappears as they move towards infinite volume. In

fact, within the paper, the authors make the statement, “from this data at finite volume we

cannot conclude that there is a phase transition to a symmetry-breaking [Higgs] phase at

infinite volume”. Furthermore, as we will suggest, the value of gluon mass monotonically

grows as the continuum limit is taken.

Inspired by the nontrivial results of [3], we extend the approach started in [2] to

study analytically the (1+1)-dimensional theory with a lattice discretization and at finite

volume. Our analytic computation is so far only possible at large-N , so it cannot be directly

compared to the N = 2 results of [3]. Nevertheless, we will see that the behavior of the

Higgs phase we find at large N is qualitatively similar to the N = 2 results of [3].

The mathematical object we study is the two-point correlation function of the

renormalized-field operator of the PCSM. This function has been calculated at infinite

volume in [4, 5], and finite volume in [6], using the LeClair-Mussardo formula for inte-

grable field theories [7].

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
0
6
4

Our main claim is that even though there is only a confined phase in the continuum

theory at infinite volume, a Higgs phase can arise once a lattice regularization is introduced,

particularly at very small volumes. Our calculation is valid only for large N , since the

nonperturbative results needed are only available in this limit. We will later argue that

a similar phenomenon can occur at finite N (particularly at N = 2, which is desired for

comparison with numerical results), however, we can only rely on perturbative calculations,

and only study the infinite-volume limit.

The PCSM has the action

SPCSM =

∫

d2x
1

2g20
Tr∂µU

†(x)∂µU(x), (1.1)

where U(x) ∈ SU(N). This model has been shown to be integrable, and its exact S-

matrix is known [8–11]. The action (1.1) has an SU(N) × SU(N) global symmetry given

by U(x) → VLU(x)VR, with VL,R ∈ SU(N). The PCSM is asymptotically free and has a

mass gap, which we call m [12, 13].

One can obtain the massive Yang-Mills action by promoting one of the SU(N) sym-

metries of (1.1) to a local gauge symmetry. We choose to gauge the left handed symmetry,

VL → VL(x). We introduce the covariant derivative Dµ = ∂µ − i eAµ(x), and field strength

Fµν = ∂µAν − ∂νAµ − ie[Aµ, Aν ]. The gauge field, Aµ(x) transforms under the gauge

symmetry as Aµ(x) → V †
L(x)Aµ(x)VL(x)− i

eV
†
L(x)∂µVL(x). The gauged PCSM action is

S =

∫

d2x

[

−1

4
TrFµνF

µν +
1

2g20
Tr(DµU)†DµU

]

. (1.2)

In Reference [2], it was argued that the model with action (1.2) is always in a confined

phase, rather than a Higgs phase. The argument was made by examining this action in

the axial gauge A1 = 0. In this gauge, the action (1.2) becomes

S =

∫

d2x

[

1

2
Tr(∂1A0)

2 +
1

2g20
Tr(∂0U

† + ieU †A0)(∂0U − ieA0U)− 1

2g20
Tr∂1U

†∂1U

]

.

The gauge field A0 can now be integrated out, obtaining the action

S =

∫

d2x

(

1

2g20
Tr∂µU

†∂µU +
1

2
jL0 a

1

−∂2
1 + e2/g20 U

†U
jL0 a

)

, (1.3)

where jLµ (x)b = −iTrtb∂µU(x)U †(x) is the Noether current associated with the left handed

symmetry, and tb, with b = 1, . . . , N2 − 1, are the generators of SU(N). The action (1.3)

describes a PCSM with an additional potential between the left-handed charges.

Looking at (1.3) one would naively conclude that, since U †U = 1 (because U is uni-

tary), the potential between the charges is screened by a force carrying excitation of mass

e/g0. This would be interpreted as the massive gluon of the Higgs phase. As was discussed

in ref. [2], this reasoning is wrong. The main problem is that even though the bare field

U(x) is unitary, the physical renormalized field, which we call Φ(x), is not [4]. The relation

between the two fields is given by

〈0|TrΦ(x)Φ(0)†|0〉 = Z[g0(Λ),Λ]
−1〈0|TrU(x)U(0)†|0〉, (1.4)

– 2 –
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Where Z[g0(Λ),Λ] is a renormalization constant, and Λ is the momentum cutoff of the

theory. Because of the asymptotic freedom of the PCSM, the renormalization constant

vanishes logarithmically with the cutoff. This means that renormalization pushes the mass

of the gluon to infinity. Therefore one does not see any massive gluons in the physical

spectrum of the theory. The model is actually in a confined phase.

Using the fact that for the bare field, U †(0)U(0) = 1, the renormalized gluon mass,

M, is given by

M =
e

g0
Z[g0(Λ),Λ]

−1/2 =
e

g0

[

1

N
〈0|TrΦ(0)Φ(0)†|0〉

]1/2

. (1.5)

The only reason that there is no Higgs phase is that the PCSM field-renormalization

constant vanishes as we increase the cutoff. Consequently, the gluon mass diverges. It is

then clear that once a cut-off is introduced by placing the theory on a lattice, the gluon

mass becomes finite. In this letter we propose that placing the model in a small volume

can further suppress the divergence. Given the values of the couplings, e, g0 used in [3],

the mass becomes small enough to be measured in Montecarlo simulations. We show that

the dependence of the gluon mass on the volume agrees qualitatively with the results of [3].

2 Infinite volume PCSM correlation function

An expression for the two-point function of the renomalized field of the PCSM was found

in ref. [4]. This expression was found using the fact that the PCSM is integrable, combined

with the large-N limit. The approach is to first find the exact S-matrix, and all the form

factors (matrix elements of local operators) of the renormalized field using the integrable

bootstrap program [14]. Once all these form factors are known (they are known for the

PCSM only in the large-N limit, with g20N fixed), the two-point function is given by the

spectral sum,

W(x) =
1

N

∑

a0,b0

〈0|Φ(x)b0a0 [Φb0a0(0)]
∗|0〉

=
1

N

∑

a0,b0

∑

Ψ

eix·pΨ〈0|Φ(0)b0a0 |Ψ〉〈Ψ|[Φ(0)b0a0 ]∗|0〉, (2.1)

where |Ψ〉 is any state with particles and antiparticles, and pΨ is the sum of the momenta

of the excitations of the state |Ψ〉.
After introducing the exact form factors in (2.1), the exact expression for the two-point

function given in [4] is

W(x) =
1

4π

∞
∑

l=0

∫ ∞

−∞

dθ1 . . .

∫ ∞

−∞

dθ2l+1 exp



ix ·
2M−1
∑

j=1

pj





2l
∏

j=1

1

(θj − θj+1)2 + π2
. (2.2)

where the integration variables, θj , correspond to the rapidities of the intermediate particles

and antiparticles. These rapidities parametrize the energy and momentum of a particle by

Ej = m cosh θj , Pj = m sinh θj .

– 3 –
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For the purposes of this letter, we are interested only in the divergence at x = 0

of (2.2). If we set x = 0, the expression (2.2) diverges because one has to integrate over

all the physical values of the rapidities. This divergence can be regularized by introducing

a rapidity cutoff, −λ < θj < λ. The rapidity cutoff, λ, is related to a standard Euclidean

momentum cutoff, Λ, by

λ = sinh−1

(
√

Λ2

2m2
− 1

2

)

= ln

(
√

Λ2

2m2
− 1

2
+

√

Λ2

2m2
+

1

2

)

≈ ln

(

Λ

m

)

.

The regularized two-point function at x = 0 is

Wλ(0) =
1

4π

∞
∑

l=0

∫ λ

−λ
dθ1 . . .

∫ λ

−λ
dθ2l+1

2l
∏

j=1

1

(θj − θj+1)2 + π2
. (2.3)

The short-distance behavior of this PCSM two point function was first studied in [5],

and the regularized function at x = 0 was shown in [6]. We will not show the full compu-

tation, but only quote the result we need, and refer the reader to the original paper. The

result of [5] and [6] is (after redefining integration variables uj = θj/λ)

Wλ(0) =
λ2

8π2

∫ ∞
∑

n=1

∣

∣

∣

∣

∫ 1

−1
duϕn(u)

∣

∣

∣

∣

2

α−1
n +O(λ) = C2λ

2 +O(λ). (2.4)

where αn and ϕn(u) are the eigenvalues and eigenfunctions of the fractional Laplacian

operator, ∆1/2 =
√

−d2/du2. The upper bound C2 < 0.0219 was found in [5].1 The corre-

lation function diverges, being proportional to (lnΛ)2, which agrees with the perturbative

result and asymptotic freedom [15].2

3 Finite volume correlation function

The PCSM two-point function at finite volume has been calculated in [6]. This is done

by compactifying the x1 dimension into a circle of length V . In 1+1 dimensions, this

is equivalent to placing the system in a finite temperature T = 1/V (if we compactify x0

instead of x1). Using the exact S-matrix, and the thermodynamic Bethe ansatz (TBA) [18,

19] one can calculate the partition function.

It was shown in [6] that the the partition function of the PCSM coming from the TBA

at large N is trivial and equivalent to a free bosonic gas. However, the correlation functions

of operators are not those of the free theory.

The two-point function of the renormalized field was evaluated at finite volume using

the Leclair-Mussardo formula [7], which we will not discuss here. This is essentially a

spectral sum, similar to (2.1), but where one sums not only over all the intermediate states

1We have learned by private communication that Eytan Katzav and Peter Orland have calculated C2

and found it is exactly 1

16π
. We will only use the upper bound found in [5], as the calculation of the exact

value has not yet been published.
2See sections 2.1 and 8.1. There is an error in eq. (8.36) of this book; The correct result is found in [16],

eq. (168) and in [17].
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of the two-point function, but one also includes an ensemble average, with a second sum

over states weighted by the thermal distribution function.

There are several problems with the Leclair-Mussardo formula for two-point functions

that make it not generally valid for all integrable theories [20, 21]. The strongest objection

is that generally, the expansion is not well defined, as there are poles for real values of the

rapidities that need to be integrated over. However, it was argued in [6] that these problems

do not affect the PCSM at large N , and therefore the two-point function should be valid.

For this model, the poles do not lie in the real line of rapidities, and the Leclair-Mussardo

formula is well defined.

We are interested in the two-point function at x = 0, but in a finite volume, V . This

result is found in eq. (6.6) of ref. [6]:

Wλ(0)V =
1

4π

∞
∑

l=0

2l
∑

n1=0

2l−n1

∑

n2=0

2l−n1−n2

∑

n4=0

∫ λ

−λ
dθ1 . . .

∫ λ

−λ
dθ2l+1 [f1(θ1)f1(θ2l+1)]

1

2

×
n1

∏

j=1

F1, 1(θj , θj+1)
n1+n2

∏

j=n1+1

F1,−1(θj , θj+1)

×
n1+n2+n4

∏

j=n1+n2+1

F−1,−1(θj , θj+1)
2l
∏

j=n1+n2+n4+1

F−1, 1(θj , θj+1)

+
1

4π

∞
∑

l=0

2l
∑

n1=0

2l−n1

∑

n2=0

2l−n1−n2

∑

n3=0

∫ λ

−λ
dθ1 . . .

∫ λ

−λ
dθ2l+1 [f−1(θ1)f−1(θ2l+1)]

1

2

×
n3

∏

j=1

F−1, 1(θj , θj+1)

n1+n3

∏

j=n3+1

F1, 1(θj , θj+1)

×
n1+n2+n3

∏

j=n1+n3+1

F1,−1(θj , θj+1)

2l
∏

j=n1+n2+n3+1

F−1,−1(θj , θj+1). (3.1)

where Fσi, σj
(θi, θj) =

[fσi (θi)fσj (θj)]
1
2

(θi−θj)2+2|σi−σj |π
, with σi,j = ±1, and f±1(θj) = 1/(1 + e∓V m cosh θj ).

The expression (3.1) is analyzed for both large and small values of V in [6]. At large

V , one simply recovers the infinite volume expression (2.3). The small-volume limit is

studied by realizing that for small volumes (for mV ≪ 1), the functions f±1(θj) become

approximately

f1(θ) =











1

2
, −L < θ < L,

1, otherwise,

f−1(θ) =











1

2
, −L < θ < L,

0, otherwise.

,

where L = ln 1
mV .

Using techniques similar to those of [5], it was found [6] that for extremely small

volumes, with L ≈ λ,

W λ(0)V ≈ C2(λ
2 − L2) +

8

π
L+O(L0) +O(λ− L). (3.2)
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At the smallest possible physical volume of V = 1/Λ the (lnΛ)2 term completely cancels

out. For these very small volumes, the divergence of the two-point function is reduced from

order λ2 to order λ.

4 The Higgs phase and gluon mass

We have presented the two-point correlation function of the renormalized field operator of

the PCSM at large N in a finite volume. For very large volumes, the standard, infinite-

volume two-point function from [4, 5], which diverges as (lnΛ)2 at short distances, is

recovered. For very small volumes, we saw that the order of this divergence reduces from

(lnΛ)2 to lnΛ as we reduce the volume size.

We would like to discuss in more detail what we mean by very small volumes. Suppose

the momentum cutoff originates from placing the theory on a lattice with spacing a ∼ 1/Λ.

Now suppose the length of the x1 direction is V = na. For the lattice computations of

ref. [3], for example, the values used were n = 256, 512, 1024. As an arbitrary example,

for the sake of illustrating our point, let’s imagine a lattice spacing is chosen such that

ma = 10−14 (this is the assumption that m is small enough that all these volumes are

still in the regime where mV < 1). It will soon be clear why this particular value of ma is

chosen and is relevant. For this spacing, the rapidity cutoff is λ = 32.236. We can calculate

L for the different volumes n = 256, 512, 1024, for which we find L256 = 26.691, L512 =

25.998, L1024 = 25.305. That is, for typical lattice volumes, like those of ref. [3], L and λ

are of the same order of magnitude. The “softening” of the divergence from (3.2) is a large

and significant effect for typical lattice computations at small volume.

The question remains, is the PCSM mass gap, m, small enough that mV ≪ 1 for the

volumes studied in ref. [3] ? The only length scale in the PCSM is m, and this parameter

is usually fixed, and the bare coupling g0(Λ) varies as we change the cutoff, Λ. Their

relationship is [15–17]

m

Λ
= ma =

K

g0

(

e−2π/g2
0 + . . .

)

, (4.1)

where K is some non-universal constant, which depends on the regularization procedure.

The parameter that was controlled by hand in ref. [3] is γ = 1/g20. The values used

were in the range γ ∈ {1, . . . , 10}, with a crossover into the Higgs phase detected around

γ = 5, 6, 7, 8. As is seen from eq. (4.1), the mass gap is very small for the values of γ at which

the crossover was seen (and thus the size of the PCSM particles is very large). For example,

if we take K = 1, we find ma(γ = 5) = 5.07834×10−14, and ma(γ = 8) = 4.18334×10−22.

It is then clear that the computations of [3] are all done deep in the small-volume regime.

We stated that the only reason for the absence of a Higgs phase in the continuum

theory is that the gluon mass is proportional to the renormalized-field two-point function

at x = 0. The gluon mass becomes finite once a momentum cutoff is introduced by placing

the theory on a lattice. Depending on the value of the coupling constants and the volume,

this mass can become small enough to be observed in Monte Carlo simulations.

We can estimate the gluon mass using eq. (1.5) and (3.2), with C2 ≈ 0.0219. We

compare our mass estimates with those of table 2. of ref. [3]. The gluon mass is a function

– 6 –
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of the variables, g0, e and n = V/a. We now switch to the notation of [3], where the

couplings used are γ, and β = 1/e2. For small volumes, the gluon mass is approximately

(with K = 1)

M(γ, β, n) =

{

γ

β
C2

[

ln2
(

1√
γ
e2πγ

)

−ln2
(

1

n
√
γ
e2πγ

)]

+
γ 8

β π
ln

(

1

n
√
γ
e2πγ

)} 1

2

. (4.2)

Equation (4.2) is not expected to agree quantitatively with the results of [3], as it is valid

only in the large-N limit. However, we argue that it qualitatively explains some of the

observed behavior.

First we examine the β dependence. As can be observed in table 2 of [3], increasing

the coupling, β while keeping γ and n constant, generally decreases the gluon mass (this

becomes clearer in their computations at higher values of γ, closer to the continuum limit).

The clearest example shown in [3] is for γ = 8, n = 256, where they find M(β=120)
M(β=200) = 1.288.

Plugging these same parameters into (4.2), we find M(β=120)
M(β=200) = 1.291, which we believe

confirms the β dependence of the gluon mass.

The size of the lattice spacing relative to the PCSM mass gap is controlled solely by

the γ parameter (eq. (4.1)). The continuum limit is equivalent to the limit, γ → ∞. It is

clear from (4.2) that the gluon mass diverges as expected in this limit. For high values of

γ, keeping β and n fixed, we expect the gluon mass to increase as we increase γ. This is

confirmed in [3], where the clearest example is for their largest measured values γ, fixing

β = 120, n = 256, finding M(γ=8)
M(γ=10) = 0.928. From the formula (4.2), for these values, we

find M(γ=8)
M(γ=10) = 0.714401. Here we expect that the large-N limit plays a larger role, since

the powers of the logarithms in (4.2) will be different at smaller N .

Finally, we verify qualitatively the volume dependence of the gluon mass. As can be

observed from table 2 of [3], how the gluon mass reacts to a change of volume depends

on the value of γ. For small values of γ, increasing the volume, slightly decreases the

mass. For example, fixing β = 120, γ = 5, they found M(n = 256) = 0.240(2), and

M(n = 512) = 0.237(3) (in lattice units). However there is a change in behavior somewhere

between γ = 5 and γ = 6. For large values of γ, increasing the volume slightly increases

the mass. For example, for β = 120, γ = 6, they find M(n = 256) = 0.265(5), and M(n =

512) = 0.267(2). Our formula, (4.2) reproduces exactly this behavior. For a fixed value of β

and γ, the mass is modified very slightly by changing the volume from n = 256 to n = 512.

For small γ, the mass decreases with increasing volume, and for large γ, the mass increases

with volume. This change in behavior for eq. (4.2) happens around γ ≈ 10.38. To illustrate

with some examples, for β = 120, and γ = 5, we have M(n = 256) = 1.71503, M(n =

512) = 1.70266. For γ = 12, we have M(n = 265) = 4.38238, M(n = 512) = 4.38589.

As was remarked in [2], for the value of γ used in [3], the PCSM mass gap, m, is very

small, compared to the coupling e, and becomes smaller as γ is increased. This means

that it is very difficult to observe the confined phase, since string breaking occurs very

easily. Since we have shown that there exist finite-mass gluons in the lattice theory at

finite volume, it is reasonable to observe a Higgs-like potential between two sources at

large separations, which explains the smooth crossover of [3].

– 7 –
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We have shown that at infinite N , the gluon mass has qualitatively similar behavior to

the one observed numerically in [3] for N = 2. Now the very important question remains,

what can we actually say analytically about the finite-N case (particularly N = 2)?

Reproducing a nonperturbative result like the correlation functions (2.4), (3.2) for

general N is a very difficult task that we are unable to achieve at this point. There are

several difficulties to overcome.

First of all, the form factors of the PCSM renormalized field at finite N are not known,

and it is significantly harder to calculate them. In fact, the simplicity of the S-matrix at

large N is what made the calculation of form factors possible. A notable exeption is the

N = 2 case, where the PCSM is equivalent to an O(4)-symmetric nonlinear sigma model,

using the fact that SU(2) × SU(2) ≃ O(4). Some of the few-particle form factors of the

O(4) model have been calculated in [22, 23]. However, we need an explicit expression of all

the form factors to study the ultraviolet regime of the correlation function, so the results

of [22, 23] are not enough to complete the N = 2 computation.

Once all the form factors are known there is still the second problem of extracting the

ultraviolet information from the correlation function by analyzing the spectral sum (2.1)

as was done in [5] for large N . This was a very nontrivial task that was possible only

because of the simple structure of the large-N form factors, where O(1/N) corrections

were discarded at various points. It will very likely take a lot more time and effort to

extract a simple result like (2.4) from the finite-N form factors, even if the form factors

were known.

Finally, if we want to study the finite-N correlation function at finite vol-

ume/temperature, the simple Leclair-Mussardo formula is no longer valid, and it is not

clear what is the way to proceed with this calculation. As was shown in [6], the Leclair-

Mussardo formula is only expected to be valid at infinite N , because of two important

properties: the expansion is well defined (there are no poles in the real line of rapidities),

and the thermal distributions arising from the thermodynamic Bethe ansatz are trivial (like

that of an ideal gas). There is no reason to believe these properties persist at finite N . It

is likely that a more careful regularization scheme is needed, like the one proposed in [24].

Having established the difficulty of extending our results to general N , one can consider

the possibility of studying large, but not infiniteN , by finding small corrections to our result

in powers of 1/N . In principle this could be possible, even though it might require a very

difficult and careful calculation, since there are several steps of the computation where

O (1/N) corrections have been ignored. To compute these small corrections, one needs to

keep track of the terms that have been ignored at the levels of the S-matrix, computation

of form factors, TBA, and correlation functions.

At the S-matrix level, it is very simple to find 1/N corrections, since and exact expres-

sion is known for all N [8–11]. However, the most important simplifying property of the

infinite-N limit is that, as was discussed in [6], the scattering becomes effectively diagonal.

In this case this means that most particles don’t interact with each other, unless there is a

color-index contraction between them. Small 1/N corrections already present a difficulty

when computing form factors, since it means that all particles interact with each other.

There is no fundamental reason why this computation should not be possible, but there
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will be many more contributions to the form factors to take into account from new particle

interactions that were not present at infinite N .

Our TBA and Leclair-Mussardo correlation-function computations were significantly

simplified by relying on the fact that the scattering was diagonal. TBA computations are

much more difficult in a non-diagonal theory, since one needs to take into account the

thermodynamic contributions of pseudo particles, such as magnons and their bound states

(also called “strings”). A full non-diagonal TBA computation for the PCSM was proposed

in [25], but the resulting functional equations have not yet been solved for large values of

N . The original proposal for computing correlations functions by Leclair and Mussardo

was also only applicable to diagonal scattering theories. A proposal for generalizing the

computation of these correlation functions to non-diagonal theories was made in ref. [26].

There is in principle not a physical reason why it should not be possible to compute

1/N corrections. But as we have discussed, even a small correction would completely

change the techniques we have to use, since the PCSM is a diagonal scattering theory only

at precisely N = ∞.

Despite all these negative arguments, there are still some statements we can make

about the Higgs phase at finite N . There are, however, two disadvantages: we are forced

to rely only on perturbative calculations, and we can only study the infinite volume case.

A simple perturbative analysis tells us how the general-N two-point function diverges

at x = 0. This simple result can be found in the first reference of [15–17], and is also

discussed in [5]. From leading-order perturbation theory one can find the time-ordered two-

point function, G(x,Λ), and the coupling g0(Λ) satisfy the renormalization group equations:

∂ lnG(x,Λ)

∂ ln Λ
= γ(g0) = γ1g

2
0 + · · · , ∂g20(Λ)

∂ ln Λ
= β(g0) = −β1g

4
0 + · · · , (4.3)

with the coefficients γ1 = (N2 − 1)/(2πN2) and β1 = 1/4π. Integrating (4.3), one finds

G(0,Λ) = C

[

ln

(

Λ

m

)]γ1/β1

+ · · · , (4.4)

where C is some undetermined constant. Equation (4.4) is completely consistent with the

nonperturbative (2.4), since limN→∞ γ1/β1 = 2, which is the main result of ref. [5]. One

advantage of the nonperturbative calculation is that one can find the constant C = C2,

while for finite N this is unknown from this calculation.

This very simple perturbative result allows us to write an expression for any N for the

gluon mass at infinite volume, up to the constant C. Combining (4.4) with (4.1), we can

write for N = 2 (using the notation of eq. (4.2), for n → ∞)

M(γ, β) =

{

γ

β
C

[

ln

(

1√
γ
e2πγ

)]3/2
} 1

2

. (4.5)

Equation (4.5) is not good enough to compare with the results from [3] because as we

argued, their computations are done in very small volumes. At small volumes we expect

there might appear some volume-dependent contributions like those of (4.2) that cannot

be ignored.
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Even though the result (4.5) is only valid for infinite volume, it can still show the basic

conclusion of this paper. That is, introducing a lattice regularization makes the gluon mass

finite, and even small, depending on the values of the couplings. For example, we show

some values that span the range used in [3], M(2, 120) = 0.843767
√
C, M(10, 120) =

6.35361
√
C, M(2, 200) = 0.653579

√
C, M(8, 200) = 3.71684

√
C.
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I would like to thank Peter Orland and Raúl Briceño for many helpful discussions. This

work has been supported by the ERC, under grant number 279391 EDEQS.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E.H. Fradkin and S.H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields,

Phys. Rev. D 19 (1979) 3682 [INSPIRE].

[2] A.C. Cubero and P. Orland, Dynamical mass reduction in the massive Yang-Mills spectrum

in 1 + 1 dimensions, Phys. Rev. D 89 (2014) 085027 [arXiv:1403.0276] [INSPIRE].

[3] S. Gongyo and D. Zwanziger, Phase structure and the gluon propagator of SU(2) gauge-Higgs

model in two dimensions, JHEP 01 (2015) 002 [arXiv:1402.7124] [INSPIRE].

[4] P. Orland, Summing planar diagrams by an integrable bootstrap,

Phys. Rev. D 84 (2011) 105005 [arXiv:1108.0058] [INSPIRE].

[5] P. Orland, Seeing asymptotic freedom in an exact correlator of a large-N matrix field theory,

Phys. Rev. D 90 (2014) 125038 [arXiv:1410.2627] [INSPIRE].

[6] A.C. Cubero, Nontrivial thermodynamics in ’t Hooft’s large-N limit,

Phys. Rev. D 91 (2015) 105025 [arXiv:1503.06139] [INSPIRE].

[7] A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT,

Nucl. Phys. B 552 (1999) 624 [hep-th/9902075] [INSPIRE].

[8] A.M. Polyakov and P.B. Wiegmann, Theory of nonabelian Goldstone bosons,

Phys. Lett. B 131 (1983) 121 [INSPIRE].

[9] E. Abdalla, M.C.B. Abdalla and A. Lima-Santos, On the exact solution of the principal

chiral model, Phys. Lett. B 140 (1984) 71 [Erratum ibid. B 146 (1984) 457] [INSPIRE].

[10] P.B. Wiegmann, On the theory of nonabelian Goldstone bosons in two-dimensions: exact

solution of the O(3) nonlinear σ model, Phys. Lett. B 141 (1984) 217 [INSPIRE].

[11] P. Wiegmann, Exact factorized S matrix of the chiral field in two-dimensions,

Phys. Lett. B 142 (1984) 173 [INSPIRE].

[12] A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in quantum field theory:
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