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2. The
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1 Introduction
The class of real hypersurfaces in complex space that are invariant with respect to an
infinitesimal translation transversal to the complex tangent space is known as rigid hyper-
surfaces (see [1]). In this article, we consider rigid hypersurfaces in C

2 with coordinates
z,w = u + iv. In this case, a rigid hypersurface can be locally described by an equation of
the form v = h(z).
In 1991, Stanton [8] developed a normal form for rigid hypersurfaces. Other normal

forms that reflect the presence of symmetries have been constructed by Kolář [5] and
Ezhov et al. [2] more recently.
It is a natural question how to recognise hypersurfaces that are holomorphically equiv-

alent to the model hypersurface, i.e. the sphere v = |z|2, via its normal form. As an
application of the normal form, Stanton derived a list of examples of normal forms
equivalent to the sphere:

1
2r

sinh 2rv = |z|2 (1)

1
2r

sin 2rv
(
1 − 2|b|2θ

|c|2
)

= |z|2e−2θv

1 + 4|b|2|z|2 + 2i
(
bz̄ − b̄z

) + |b|2
|c|2

(
e−2θv − cos 2rv

) +

+ b̄z
c̄(1−2ib̄z)

(
e−2θv−e2irv

)+ bz̄
c(1+2ibz̄)

(
e−2θv−e−2irv) ,(2)

where b and c = r + iθ are complex parameters. The remaining examples from Stanton’s
list can be obtained by letting r and θ converge to 0. In particular, for b = 0 and θ = 0,
one finds the pendant to (1)

1
2r

sin 2rv = |z|2.
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Stanton has raised the question whether this list was complete. Her method was based
on the analysis of the holomorphic mappings that transform the infinitesimal translation
∂/∂w into a vector field of a seven-parameter family of infinitesimal sphere automor-
phisms. She acknowledged that the listed examples correspond to a four-parameter
subfamily.
The main aim of this paper is to provide a complete classification of spherical rigid

hypersurfaces. Combined with Stanton’s results, this also answers Rothschild’s question
which rigid hypersurfaces are equivalent to a hypersurface that is given by an equation:

v = p(z, z̄)

where p is a homogeneous polynomial (see [8]). Stanton has solved this problem for
polynomials of degree bigger than two. Our result completes the case of degree 2.
The following argument gives the upper bound 4 for the number of parameters

involved: In the Levi non-degenerate case, which applies for spherical rigid hypersur-
faces, Stanton’s normal form is similar to Chern-Moser’s normal form, except for the
terms of the defining function φ of bidegrees (2,2), (2,3), (3,2) and (3,3) with respect to z, z̄
being allowed to be any constants. These four real constants completely control the rigid
hypersurface. Thus, the normal form equation becomes:

v = |z|2 + c22|z|4 + c23z2z̄3 + c32z3z̄2 + c33|z|6 +
∑

min(j,k)≥2
max(j,k)≥4

Fjkzjz̄k .

The coefficients c22, c23 = c̄32 and c33 depend in an algebraic way on Stanton’s param-
eters b and c. It can be shown that not all coefficients can be attained in this way, which
indicates that Stanton’s list is incomplete. In the case when c23 = 0, Stanton’s example
reduces to:

1
2r

sin 2rv = e−2θv|z|2,
which realises only the coefficients c33 ≥ 3

2c
2
22. The coefficients c33 < 3

2 c
2
22 are realised by

the family:
1
2r

sinh 2rv = e−2θv|z|2, (3)

which for θ = 0 coincides with (1) but was absent in Stanton’s list for θ �= 0.
We show that Stanton’s mappings of a rigid sphere to the Heisenberg sphere can be

modified by combining them with suitable sphere automorphisms so that all parameters
can be covered.
This yields not only the desired classification but also provides the complete solu-

tion to a non-linear partial differential equation (PDE) that expresses the zero-curvature
equation of a rigid hypersurfaceM in normal form:

v = h(z).

It is well known that local sphericity is equivalent to vanishing of the Cartan curvature
(see, e.g.[3]). For rigid hypersurfaces the zero-curvature equation simplifies to

fzz̄z̄ − 3 fzz̄ f + 2 fz f 2 − fz fz̄ = 0 (4)

where f (z) = ∂
∂ z̄ log�h(z). Loboda has derived and studied PDE (4) in [6]. In particular

he found the solution (3). The PDE (4) appears in relation to the study of shear-free con-
gruences of null geodesics in a Lorentzian geometry by Robinson and Wilson in [7]. In
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particular, they establish a correspondence between the Taub-NUT congruence and a CR
manifold that is equivalent to our CR manifold sinh v = e−v|z|2.

2 Modified normalisation
We apply a modified Chern-Moser normalisation procedure to the Heisenberg sphere
Imw2 = |z2|2 to obtain a hypersurface of the form:

v = |z|2 + c22|z|4 + c23z2z̄3 + c32z3z̄2 + c33|z|6 + · · ·
For given c22, c23, c33, such normalisation mapping is uniquely determined up to auto-

morphisms of the Heisenberg sphere. All rigid spheres can be found by this procedure,
though the resulting hypersurface does not have to be rigid in the higher-order terms a
priori. We construct the inverse mapping as a composition of two:

z2 = p(w1) + z1 + 2i
∞∑
j=2

Tj(w1)z
j
1 = p(w1) + z1

1 − 2ip̄′(w1)z1

w2 = q(w1) + 2i
∞∑
j=1

gj(w1)z
j
1 = q(w1) + 2ip̄(w1)z1

1 − 2ip̄′(w1)z1

Here, we assume:

q′ = 1 + 2ip′p̄. (5)

Condition (5) is imposed for convenience in computation and can be fixed at the next
step.
The second mapping has the form:

z = eiα(w1)
√
h′(w1)z1

w = h(w1).

Then, p,α, h satisfy the equations:

6|p′|2 + 2α′ − c22h′ = 0 (6)

−c23e−iα(h′)3/2 − 2p′′ + 4i|p′|2p′ = 0 (7)
1
3
h′′′ − (h′′)2

2h′ + 3c222 − 2c33
2

(h′)3 + 2|p′|4h′ + 2
3

(
ip′′p̄′ − ip′p̄′′) h′ = 0 (8)

with initial conditions p(0) = 0, h(0) = 0, h′(0) > 0. Using combinations with automor-
phisms of the Heisenberg sphere we may assume that α(0) = 0, h′(0) = 1, p′(0) = 0,
h′′(0) = 0. It follows that, for given c22, c23, c33, system (6)-(8) has unique solutions α, p, h.
Though it is easy to successively compute the coefficients of the power series of α, p, h

from recursive formulae, we have not succeeded in solving this system of ODE, except for
c23 = 0. In this case, p ≡ 0 and:

h(u) = 2√
9c222 − 6c33

arctan

√
9c222 − 6c33u

2

α(u) = c22
2
h(u).

3 Stanton’s mapping
Rigid surfaces can be characterised by the presence of a translation symmetry transversal
to the complex tangent spaces. In suitable local coordinates, such symmetry is generated
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as the flow of the vector field ∂
∂u . Stanton constructed holomorphicmappings in the ambi-

ent space that pull a suitable infinitesimal automorphism X of the Heisenberg sphere back
to ∂

∂u . The relevant infinitesimal automorphisms of the Heisenberg sphere are well-known
and form a seven-parametric family consisting of:

X = 2Re
((

b + cz + aw + 2iāz2 + ρzw
) ∂

∂z
+

(
1 + 2ib̄z + 2rw + 2iāzw + ρw2

) ∂

∂w

)
,

where b, a ∈ C and c = r + iθ ∈ C
∗ and ρ ∈ R.

The resulting system is:

∂Z
∂w

= b + cZ + aW + 2 i āZ2 + ρZW

∂W
∂w

= 1 + 2 i b̄Z + 2rW + 2 i āZW + ρW 2 (9)

with initial conditions Z(z, 0) ≡ z
1−2ib̄z

, W (z, 0) ≡ 0. Stanton solved this system in the
particular case a = ρ = 0, that is when (9) is linear. The solutions are:

Z = b
c
(ecw − 1) + ecwz

1 − 2ib̄z

W =
(
1 − 2 i|b|2

c

)
e2rw − 1

2r
+ 2 ib̄

c̄

(
z

1 − 2 ib̄z
+ b

c

) (
e2rw − ecw

)
. (10)

Substituting this mapping into the sphere equation, v = |z|2 yields (2). We show that
not all values of the parameters c22, c23, c33 can be realised by these mappings. Direct
computation shows that the explicit sixth-order expansion of (2) is:

v = |z|2 + (
6|b|2 − 2θ

) |z|4 + (
2c̄ + 4 i|b|2) bz2z̄3 + (

2c − 4 i|b|2) b̄z3z̄2 +
+

(
2
3
r2 + 6θ2 + 56|b|4 − 112

3
θ |b|2

)
|z|6 + · · · (11)

Hence, the parameters take the form:

c22 = 6|b|2 − 2θ (12)

c23 = 2(r − i θ)b + 4 i b|b|2 (13)

c33 = 2
3
r2 + 6θ2 + 56|b|4 − 112

3
θ |b|2. (14)

Stanton’s family realises all those c22, c23, c33 for which the system of algebraic
equations (12)-(14) has a solution b ∈ C, r, θ ∈ R. A method to solve this system is to first
express θ using Equation (12) then express r2 through c33 and |b|2 using Equation (14)
and plug it into the absolute square of Equation (13). Solve the resulting cubic equation
on |b|2 and finally find r, θ . However, the resulting values for |b|2 or r2 could turn out to
be negative.
Consider two examples: 1. Let c23 = 0. Then, b = 0, and (14) becomes:

r2 = 3
2
c33 − 9

4
c222.

By allowing r2 to become negative, the solution:

1
2r

sin 2rv = e−2θv|z|2

turns into (1).
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2. For c22 = 0 and c23 = 2, only c33 ≥ −2 is feasible. Indeed, from Equation (12), we get
θ = 3|b|2. Then, (13) is equivalent to:

1
b

= r − i|b|2.
This implies:

r2 + |b|4 = 1
|b|2

and hence:

r2 = 1
|b|2 − |b|4.

This is only possible if |b| ≤ 1. Now (14) becomes:

c33 = 2
3

1
|b|2 − 8

3
|b|4 ≥ −2.

Finally, we point out that Stanton’s mapping can be interpreted as modified normalisa-
tion with:

α(u) = −θ

2r
log(1 + 2ru)

h(u) = 1
2r

log(1 + 2ru)

p(u) = b
c

(
e

c
2r log(1+2ru) − 1

)
.

Notice that the initial conditions are p′(0) = b and h′′(0) = −2r.
On the other hand, the proposition below shows that the solutions of (9) with different

vector fields X yield the missing rigid spheres.

Proposition 1. For any set of parameters c22, c23, c33, there exists a rigid sphere. It can
be realised by the solutions Z(z,w),W (z,w) of (9) with parameters c = iθ , a, ρ and Re c =
b = 0, where:

θ = − c22
2

a = − c23
2

ρ = −3
2
c33 + 9

4
c222

and initial conditions Z(z, 0) = z, W (z, 0) = 0.

Proof. For any choice of parameters c22, c23, c33, we find the corresponding parameters
θ , a, ρ and hence the infinitesimal sphere automorphism X. According to the Picard-
Lindelöf theorem, the system (9) has a unique solution with initial conditions Z(z, 0) = z,
W (z, 0) = 0.
Direct computations with jets show that:

Z(z,w) = z + i θzw + aw2

2
+ 2iāz2w + ρ − θ2

2
zw2 + i θa

6
w3 + · · ·

W (z,w) = w + i āzw2 + ρw3

3
+ · · ·
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where the dots indicate terms of order higher than 3. Substituting these truncated
mappings into the sphere equation:

W − W̄
2 i

− ZZ̄ = 0

yields:

v = |z|2 − 2θ |z|4 − 2az2z̄3 − 2āz3z̄2 +
(
6θ2 − 2ρ

3

)
|z|3 + · · ·

where the dots indicate terms of bidegree (2,4) and (4,2) and higher order.

It is an immediate consequence that the modified Chern-Moser normalisation of the
Heisenberg sphere from Section 2 yields indeed rigid hypersurfaces.

4 Twisting Stanton’s mapping
One way to produce solutions of (9) with non-trivial a, ρ is to apply the adjoint action of
SU(2, 1) on the coefficient matrix of the linear system in a suitable way. Geometrically,
this amounts to compose Stanton’s mapping with a sphere automorphism. The composi-
tion of Stanton’s mapping z1(z,w),w1(z,w) with parameters c = r + iθ , b and the sphere
automorphism:

z2 = z1 − bw1

1 + 2 i b̄z1 + (r − i|b|2)w1

w2 = w1

1 + 2 i b̄z1 + (r − i|b|2)w1

is:

z2 = P1
Q
, w2 = P2

Q
with:

P1 = (a + 4(θ − φ)φz)
cosh rw − eiθw + i θ sinh rw

r
r2 + θ2

+
(

−2 iφ
sinh rw

r
+ eiθw

)
z

P2 = 2 i (φ − āz)
cosh rw − eiθw + i θ sinh rw

r
r2 + θ2

+ sinh rw
r

Q = 2(φ − θ)(φ − āz)
cosh rw−eiθw+i θ sinh rw

r
(r2 + θ2)

+ i(φ − 2āz)
sinh rw

r
+cosh rw (15)

where a = −b(r − i θ + 2 i|b|2) and φ = |b|2.
Notice that the Taylor series of:

cosh rw − ei θw + i θ
sinh rw

r
has coefficients a0 = a1 = 0 :

a2n+1 = i θ(r2n − (−1)nθ2n)
(2n + 1)!

, a2n = r2n − (−1)nθ2n

(2n)!

for n ≥ 1 and therefore is divisible by r2 + θ2. Clearly, sinh rw is divisible by r. There-
fore, P1,P2,Q are entire functions with respect to z,w, r, θ , a,φ. Moreover, they are even
functions with respect to r.
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The vector field ∂
∂w is pulled back to:

(
iτz2 + aw2 + 2 i āz22 + ρz2w2

) ∂

∂z2
+ (

1 + 2 i āz2w2 + ρw2
2
) ∂

∂w2
,

where:

τ = θ − 3φ = − c22
2

(16)

a = −b(r − i θ + 2 iφ) = − c23
2

ρ = −3φ2 − r2 + 2φθ = −3
2
c33 + 9

4
c222.

We make formula (15) universal by allowing imaginary r and negative φ.
Solving (16) for θ , b, r, we find:

θ = τ + 3φ

r2 = −ρ + (2τ + 3φ)φ (17)

Now φ can be determined from the equation:

|a|2 = 4φ3 + 4τφ2 + (τ 2 − ρ)φ. (18)

Notice that the cubic equation has real coefficients and therefore has at least one real
solution. Let φ be any real solution.
For τ = 0, the solution φ can be given by the formula:

φ = 1
2

⎛
⎜⎝

⎛
⎝|a|2 +

√
|a|4 − ρ3

27

⎞
⎠

1
3

+
⎛
⎝|a|2 −

√
|a|4 − ρ3

27

⎞
⎠

1
3
⎞
⎟⎠ .

Here, we take the principal branch of the cubic root on the right half-plane and the real
cubic root on the real axis. Notice that φ is a continuous real-valued function, though not
necessarily non-negative, and that φ = 0 for a = 0.
Theorem 1. Let:

Z(z,w, a, ρ, τ ,φ) = P1
Q

W (z,w, a, ρ, τ ,φ) = P2
Q

where P1,P2,Q are as in (15) and θ and r2 are expressed as functions of τ , ρ,φ by (17).
Then, Z,W satisfy the system (9) on the real algebraic set given by (18).
It follows that all rigid spheres can be found as inverse images of ImW = |Z|2 under the

mappings Z,W with suitable parameters τ , a, ρ, θ and therefore have the form:

(
1 + 2φ|z|2) sin 2rv

2r
−e−2θv|z|2 − (

φ + āz + az̄ + 4φ(φ − θ)|z|2) e−2θv − cos 2rv + θ sin 2rv
r

r2 + θ2
= 0.

Proof. Direct computation shows that the expressions:

∂Z
∂w

− iτZ − aW − 2iāZ2 − ρZW

∂W
∂w

− 1 − 2iāZW − ρW 2

factorise with a factor 4φ3 + 4τφ2 + (τ 2 − ρ)φ − |a|2 = 4φ3 − 4θφ2 + (θ2 + r2)φ − |a|2.
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In fact:

Q
∂P1
∂w

− P1
∂Q
∂w

− aP2Q − 2iāP21 + (
r2 + 3φ2 − 2θφ

)
P1P2 − i(θ − 3φ)P1Q =

2
(
4φ3 − 4θφ2 + (θ2 + r2)φ − |a|2) (

eiθw − cosh(rw) − iθ sinh(rw)
r

)
r2 + θ2

×[−i
(
2ā(θ − φ)z2 + (

θ2 − 6θφ + r2 + 6φ2) z − a
)
(eiθw + cosh(rw))

+ (
2ā

(
θφ + r2

)
z2 + 3φ

(
θ2−2φθ−r2

)
zφ+θa

) sinh(rw)

r

]
and:

Q
∂P2
∂w

− P2
∂Q
∂w

− Q2 − 2 i āP1P2 + (
r2 + 3φ2 − 2θφ

)
P22 =

2
(
4φ3 − 4θφ2 + (θ2 + r2)φ − |a|2) (

eiθw − cosh(rw) − i θ sinh(rw)
r

)
r2 + θ2

×[
2(āz − φ)(eiθw − cosh(rw)) − i

(
2āθz + θ2 − 2φθ + r2

) sinh(rw)

r

]
.

Therefore, Z,W satisfy the system (9) on the real algebraic set (18).
Now the rigid sphere formula can be obtained either from Stanton’s formula (2) by

replacing r, θ , b by their expressions in τ , a, ρ, θ or by inserting Z,W into the standard
Heisenberg sphere equation.

Notice that the Taylor series of e−2θv − cos 2rv + θ sin 2rv
r has coefficients a0 = a1 = 0:

a2n+1 = −22n+1θ(r2n − (−1)nθ2n)
(2n + 1)!

, a2n = 22n(r2n − (−1)nθ2n)
(2n)!

for n ≥ 1 and therefore is divisible by r2+θ2. Clearly, sin 2rv is divisible by r. It follows that
the rigid sphere formula is an entire function with respect to all variables and parameters.
We find an example of a rigid sphere that is not in Stanton’s family by setting:

τ = 0, a = √
2, ρ = 6.

Then:

θ = −3, φ = −1, r2 = −3
and:(
1 − 2|z|2) sinh 2

√
3v

2
√
3

−e6v|z|2+
(
1 − √

2(z + z̄) + 8|z|2
) e6v − cosh 2

√
3v − √

3 sinh 2
√
3v

6
=0.

5 The zero-curvature equation
Local equivalence of a real hypersurface M in C

2 to a sphere can be characterised by
vanishing of its Cartan curvature. In [3], an explicit expression of the Cartan curvature has
been computed. In the case of rigid hypersurfaces, this expression considerably simplifies.
IfM is given by the equation:

v = h(z)

vanishing of the Cartan curvature is equivalent to the non-linear PDE:

fzzz̄ − 3fzz̄ f + 2fz f 2 − fz fz̄ = 0 (19)

with f = ∂
∂ z̄ log�h. The condition that h is a real function translates into ∂ f

∂z = ∂ f̄
∂ z̄ .
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Notice that the normal form conditions on h are encoded in the choice of the solution
of the auxiliary equation:

∂

∂ z̄
log�h = f

together with the condition that f does not contain antiholomorphic terms.
Though we did not succeed in solving the zero-curvature equation directly, we can

demonstrate the special cases when M is circular, i.e. v = f (|z|2), or M is a tube, i.e.
v = h(x).
In the circular case:

v = h
(|z|2) = |z|2 + a2|z|4 + a3|z|6 + . . .

and the equation on g = log(th′′ + h′) with t replacing |z|2 is:
tgIV + 3g′′′ − g′ (3tg′′′ + 7g′′) − t

(
g′′) 2 + 2t

(
g′) 2g′′ + 2

(
g′) 3 = 0.

Formal power series solutions:

g(t) = c1t + c2t2 + . . .

are determined by c1, c2. They correspond to the surfaces:
sinαv

α
= eβv|z|2 and

sinhαv
α

= eβv|z|2

with β = c1
4 , α =

√
− 2c2

3 − c21
12 and α =

√
2c2
3 + c21

12 respectively.
The spherical tubes are well-known (see, for instance, [4]). They are never in rigid

normal form, and they are affinely equivalent to one of the following:

v = x2, v = ex, sin v = ex, ev + ex = 1 (20)

This corresponds to the solutions for (19) listed below, respectively:

f = 0, f = 1
2
, f = tan x, f = − tanh x

If follows:

h = 1
2
x2, h = ex, h = − log cos x, h = log cosh x

which yields the tubes:

v = x2, v = ex, ev = cos x, ev = cosh x

which are affinely equivalent to the tubes (20).
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