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Any digital signal processing algorithm or processor can be reasonably described as a digital filter. The main advantage of an
infinite impulse response (IIR) filter is that it can provide a much better performance than the finite impulse response (FIR)
filter having the same number of coefficients. However, they might have a multimodal error surface. Differential evolution (DE)
algorithm is a new heuristic approach mainly having three advantages; finding the true global minimum of a multimodal search
space regardless of the initial parameter values, fast convergence, and using a few control parameters. In this work, DE algorithm
has been applied to the design of digital IIR filters and its performance has been compared to that of a genetic algorithm.
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1. INTRODUCTION

Anything that contains information can be considered as a
signal. Therefore, signals arise in almost every field of science
and engineering. Two general classes of signals can be iden-
tified, namely, continuous-time and discrete-time signals. A
discrete-time signal is one that is defined at discrete instants
of time. The numerical manipulation of signals and data in
discrete-time signals is called digital signal processing (DSP).
The extraordinary growth of microelectronics and comput-
ing has had a major impact on DSP. Therefore, DSP has al-
ready moved from being primarily a specialist research topic
to a one with practical applications in many disciplines. Al-
most any DSP algorithm or processor can reasonably be de-
scribed as a filter. Filtering is a process by which the frequency
spectrum of a signal can be modified, reshaped, or manipu-
lated according to some desired specifications. Digital filters
can be broadly classified into two groups: recursive and non-
recursive. The response of nonrecursive (FIR) filters is de-
pendent only on present and previous values of the input
signal. However, the response of recursive (IIR) filters de-
pends not only on the input data but also on one or more
previous output values. The main advantage of an IIR filter
is that it can provide a much better performance than the
FIR filter having the same number of coefficients. Design of
a digital filter is the process of synthesizing and implement-
ing a filter network so that a set of prescribed excitations re-
sults in a set of desired responses [1, 2]. However, there are
some problems with the design of IIR filters [3, 4, 5]. The
fundamental problem is that they might have a multimodal
error surface. A further problem is the possibility of the filter

becoming unstable during the adaptation process. This sec-
ond problem can be easily handled by limiting the parameter
space. In order to avoid the first problem, a design method
which can achieve the global minima in a multimodal er-
ror surface is required. However, the conventional methods
based on gradient search can easily be stuck at local minima
of error surface. Therefore, some researchers have attempted
to develop the design methods based on modern global op-
timization algorithms such as the simulated annealing (SA)
[6, 7, 8], genetic algorithm (GA) [9, 10, 11, 12, 13, 14], ant
colony optimization (ACO) [15], and tabu search (TS) algo-
rithm [16]. Among these algorithms, GA is the one which has
been applied more times than others on the IIR filter design.

A simple GA has three main operators: crossover, mu-
tation operators from genetic science, and a selection oper-
ator simulating natural selection phenomena. GA can effi-
ciently search large solution spaces due to its parallel struc-
ture and the probabilistic transition rules employed in the
operators. However, a standard GA has two drawbacks: lack
of good local search ability and premature convergence. In
order to overcome this disadvantage of GA in numerical op-
timization problems, the differential evolution (DE) algo-
rithm has been introduced by Storn and Price [17]. It has
shown a good performance in finding optimal solutions in
many cases. DE algorithm is a population-based algorithm
like genetic algorithms using the similar operators; crossover,
mutation, and selection. The studies on the design of optimal
digital filters by using DE algorithm are not as common as
GA. In the literature, there are only a few studies related to
the application of DE algorithm to the digital filter design
[18].
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Initialization
Evaluation
REPEAT

Mutation
Recombination
Evaluation
Selection

UNTIL (termination criteria are met)

Algorithm 1: Basic DE algorithm.

In this work, the performance comparison of the design
methods based on DE and GA is presented for digital IIR
filters since DE algorithm is very similar to, but much sim-
pler than, GA. The paper is organized as follows. Section 2
presents a basic DE algorithm. Section 3 describes the prob-
lem. In Section 4, firstly the performance of DE is compared
with that of GA on a set of well-known numeric test func-
tions [19] and secondly, DE and GA are applied to the design
of low- and high-order digital IIR filters and the results ob-
tained are discussed.

2. DIFFERENTIAL EVOLUTION ALGORITHM

An optimization task consisting of D parameters can be rep-
resented by a D-dimensional vector. In DE, a population of
NP solution vectors is randomly created at the start. This
population is successfully improved by applying mutation,
crossover, and selection operators.

The main steps of a basic DE algorithm is given in
Algorithm 1.

2.1. Mutation

For each target vector xi,G, a mutant vector is produced by

vi,G+1 = xi,G + K
(
xr1,G − xi,G

)
+ F
(
xr2,G − xr3,G

)
, (1)

where i, r1, r2, r3 ∈ {1, 2, . . . ,NP} that are randomly chosen
and must be different from each other. In (1), F is the scaling
factor belonging to [0, 2] affecting difference vector (xr2,G −
xr3,G), K is the combination factor.

2.2. Crossover

The parent vector is mixed with the mutated vector to pro-
duce trial vector

U ji,G+1 =

vji,G+1 if

(
rndj ≤ CR

)
or j = rni,

xji,G if
(
rndj > CR

)
and j �= rni,

(2)

where j = 1, 2, . . . ,D; r j ∈ [0, 1] is the random number;
CR stands for the crossover constant ∈ [0, 1]; and rni ∈
(1, 2, . . . ,D) is the randomly chosen index.

2.3. Selection

Performance of the trial vector and its parent is compared
and the better one is selected. This method is usually named
greedy selection. All solutions have the same chance of be-
ing selected as parents without dependence on their fitness

value. The better one of the trial solution and its parent wins
the competition providing significant advantage of converg-
ing performance over genetic algorithms.

3. DEFINITION OF THE PROBLEM

Consider the IIR filter with the input-output relationship
governed by

y(k) +
M∑
i=1

bi y(k − i) =
L∑
i=0

aix(k − i), (3)

where x(k) and y(k) are the filter’s input and output, respec-
tively, and M (≥ L) is the filter order. The transfer function
of this IIR filter can be written in the following general form:

H(z) = A(z)
B(z)

=
∑L

i=0 aiz−i

1 +
∑M

i=1 biz−i
. (4)

Hence, the design of this filter can be considered as an opti-
mization problem of the cost function J(w) stated as follows:

min
w∈W

J(w), (5)

where w = [a0a1 · · · aLb1 · · · bM]T is the filter coefficient
vector.

The aim is to minimize the cost function J(w) by adjust-
ing w. The cost function is usually expressed as the time-
averaged cost function defined by (4):

J(w) = 1
N

N∑
k=1

(
d(k)− y(k)

)2
, (6)

where d(k) and y(k) are the filter’s desired and actual re-
sponses of the filter, respectively, and N is the number of
samples used for the calculation of the cost function.

4. SIMULATION RESULTS

In this section, firstly the performance of DE algorithm
is compared to that of the well-known models of GA,
Grefenstette [20], Eshelman et al. [21], andMühlenbein et al.
[22], on a set of numeric test functions defined by De Jong
[19], and secondly, the algorithms are applied to the design
of IIR filters for the purpose of system identification.

4.1. Numeric function optimization

Five functions (F1–F5) presented in Table 1 have been firstly
proposed byDe Jong [19] tomeasure the performance of GA.
After Jong, they have been extensively used by the researchers
in GA and other algorithm communities. The test environ-
ment includes functions which are nonconvex (F2), discon-
tinuous (F3), stochastic (F4), and multimodal (F5).
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Table 1: Test functions.

Function number Function Limits

F1
3∑
i=1

x2i −5.12 ≤ xi ≤ 5.12

F2 100
(
x21 − x2

)2
+
(
1− x1

)2 −2.048 ≤ xi ≤ 2.048

F3
5∑
i=1

integer
(
xi
) −5.12 ≤ xi ≤ 5.12

F4
30∑
i=1

ix4i + Gauss(0, 1) −1.28 ≤ xi ≤ 1.28

F5

[
0.002 +

25∑
j=1

(
1

j +
∑2

i=1
(
xi − ai j

)6
)]−1

−65.536 ≤ xi ≤ 65.536

Table 2: Average evaluation numbers.

Algorithms

Function 1
Domain:
[−5.12, 5.12]
Dimension: 3

Function 2
Domain:
[−2.048, 2.048]
Dimension: 2

Function 3
Domain:
[−5.12, 5.12]
Dimension: 5

Function 4
Domain:
[−1.28, 1.28]
Dimension: 30

Function 5
Domain:
[−65.536, 65.536]
Dimension: 2

Grefenstette 2210 14229 2259 3070 4334

Eshelman et al. 1538 9477 1740 4137 3004

Mühlenbein et al. (λ = 4) 1170 1235 3481 3194 1256

Mühlenbein et al. (λ = 8) 1526 1671 3634 5243 2076

DE 320 1120 160 2800 1500

F1 (Sphere)

The first function is smooth, unimodal, strongly convex, and
symmetric.

F2 (Banana)

Rosenbrock’s valley is a classic optimization function, also
known as Banana function. The global optimum is inside a
long, narrow, parabolic-shaped flat valley. To find the val-
ley is trivial; however, convergence to the global optimum is
difficult and hence this problem has been repeatedly used to
assess the performance of optimization algorithms.

F3 (Step)

This function represents the problem of flat surfaces. Flat
surfaces are obstacles for optimization algorithms because
they do not give any information about which direction is
favourable. Unless an algorithm has variable step sizes, it can
get stuck on one of the flat plateaus.

F4 (Stochastic)

This is a simple unimodal function padded with noise. In this
type function, the algorithm never gets the same value on the
same point. Algorithms not doing well on this test function
will do poorly on noisy data.

F5 (Foxholes)

Function F5 is an example of a function with many local op-
tima. Many standard optimization algorithms get stuck in
the first peak they find.

The DE algorithm has a few control parameters: num-
ber of population NP, scale vector F, combination coeffi-
cient K , and crossover rate CR. The problem-specific pa-
rameters of DE algorithm are maximum generation number
Gmax and number of parameters defining problem dimen-
sion D. The values of these two parameters depend on the
problem to be optimized. The average evaluation numbers
providing the minimum values of test functions in three-
digit accuracy have been presented in Table 2. In this work,
first the performance of DE algorithm was compared to that
of GAs described by Grefenstette [20], Eshelman et al. [21],
and Mühlenbein et al. [22]. DE algorithm was run 50 times
for each function. For every run, the initial population was
randomly created by means of using different seed numbers.

The results belonging to DE algorithm in Table 2 were
achieved using the following parameter values: population
size = 50, crossover rate = 0.8, scaling factor = 0.8, and
combination factor= 0.8. From the results obtained by using
GAs and DE, it is easy to see that the DE algorithm is usually
able to find similar solutions for the test functions with less
number of evaluations.

4.2. Digital IIR filter design

Application of the IIR filter in system identification has been
widely studied since many problems encountered in signal
processing can be characterized as a system identification
problem (Figure 1). Therefore, in the simulation study, IIR
filters are designed for the system identification purpose.
In this case, the parameters of the filters are successively
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DE algorithm

IIR filter

Unknown plant

x(k)

y(k)

∑
−

+
e(k)

d(k)

Figure 1: Block diagram of the system identification process using
IIR filter designed by the DE algorithm.

a0 a1 . . . aL b1 b2 . . . bM

Figure 2: Representation of the parameters in the string form.

adjusted by the DE algorithm until the error between the out-
put of the filter and the unknown system is minimized. By
constraining the range of the filter coefficients, the stability
is guaranteed. The filter coefficients are encoded in the string
form as shown in Figure 2.

The fitness value of a solution i in the population is de-
termined by using the following formula:

fit(i) = 1
1 + J(w)i

, (7)

where J(w)i is the cost function value computed for the solu-
tion i. The first two examples (low-order IIR filters) used in
the simulation studies were taken from [4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Example 1. In the first example, the unknown plant and the
filter had the following transfer functions:

H
[
z−1
] = 1

1− 1.2z−1 + 0.6z−2
,

HM
[
z−1
] = 1

1− a1z−1 − a2z−2
.

(8)

The input, x(k), to the system and the filter was a white se-
quence. Since the filter order is equal to the system order,
a local-minima problem does not occur. Figure 3 presents
the error surface for this filter. Figure 4 shows the evolution
of the mean square error (MSE) averaged over 50 different
runs of the DE. Each run had a randomly chosen initial w.
Figure 5 also demonstrates the evolution of parameters for a
run.

The effect of the control parameters on the DE algo-
rithm’s performance was studied by Price [24]. The param-
eter values used in this study were selected according to the
recommended values in that work. Also, in order to carry out
the comparison of the algorithms in similar conditions, the
values of similar control parameters of the algorithms were
chosen to be equal to each other; for example, population

a1

−2 −1 0 1 2

a2
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−0.5

0

0.5

1
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0.4 0.2
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Figure 3: Error surface for the first filter.
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Figure 4: Cost function value versus number of evaluations aver-
aged over 50 random runs for DE and GA.

size, generation number, and crossover rate. Table 3 shows
the control parameter values used for both algorithms in IIR
filter design.

Example 2. In the second example, the plant was a second-
order system and the filter was a first-order IIR filter with the
following transfer functions:

H
[
z−1
] = 0.05− 0.4z−1

1.0− 1.1314z−1 + 0.25z−2
,

HM
[
z−1
] = b

1− az−1
.

(9)
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Figure 5: Evolution of the parameters of the first filter for both al-
gorithms.

Table 3: Control parameter values used for the first two examples.

Differential evolution algorithm Genetic algorithm

Population size = 20 Population size = 20

Crossover rate = 0.8 Crossover rate = 0.8

Scaling factor (F) = 0.8
Mutation rate = 0.2

Combination factor (K) = 0.8

Generation number = 50 Generation number = 50

The system input was a uniform white sequence. The data
length used in calculating the MSE was N = 100. Since the
reduced-order filter is employed, the MSE is multimodal.
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Figure 6: Error surface for the second filter.
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Figure 7: Cost function value versus number of evaluations aver-
aged over 50 random runs for DE and GA.

The error surface is given in Figure 6. Figure 7 presents the
cost function value versus number of cost function eval-
uations averaged over 50 random runs. Each run had a
randomly chosen initial w as in the first example. Figure 8
presents the evolution of both parameters for a run.

Example 3. In the third example, the plant was a sixth-order
system and had the transfer function [25]

H
[
z−1
] = 1− 0.4z−2 − 0.65z−4 + 0.26z−6

1− 0.77z−2 − 0.8498z−4 + 0.6486z−6
. (10)
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Figure 8: Evolution of the parameters of the second filter for both
algorithms.

The IIR filter was the fifth order and had the following trans-
fer function:

HM
[
z−1
] = b0 + b1z−1 + b2z−2 + b3z−3 + b4z−4 + b5z−5

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4 + a5z−5
.

(11)

Since the system was a sixth-order system and the filter fifth
order, the error surface is bimodal as in the second exam-
ple. The system input was a uniform white sequence and the
data length used in calculating the MSE was N = 200 in
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Figure 9: Cost function value versus number of evaluations aver-
aged over 50 random runs for DE and GA.

this example. Figure 9 presents the cost function value ver-
sus the number of cost function evaluations averaged over 50
random runs. For each run, a randomly chosen initial w was
used as in the first two examples. Figures 10 and 11 present
the evolution of the denominator and the nominator param-
eters for a run, respectively. The control parameter values
employed in this example were the same as in the first two
examples except the generation number. In this example, the
algorithms were run for 1000 generations.

In the simulations, three IIR filters were designed for
the system identification purpose. As seen from Figure 4, DE
usually designs an acceptable filter at around 10 generations
although GA needs 15 generations for similar designs. For
the second example, as seen from Figure 7, the convergence
speed of DE is much better than GA, too. For the high-order
filter example, as expected, the algorithms require more gen-
erations to design an acceptable filter. The DE algorithm
needs about 140 generations although GA has 200 genera-
tion for designing an optimal filter design.

Consequently, DE algorithm produced good solutions to
both the unimodal and multimodal filter cases. The perfor-
mance of DE and GA can be compared in terms of the com-
putation time, too. In the simulations, it was seen that the DE
algorithm requires about 2–3 seconds although the GA algo-
rithm needs approximately 50 seconds to design an optimal
IIR filter for 50 generations. In terms of the final solution,
the performance of DE is comparable to that of GA since the
local search ability of DE is better than that of GA.

5. CONCLUSION

DE algorithm is a new heuristic approach mainly having
three advantages; finding the true global minimum of a
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Figure 10: Evolution of the denominator parameters of the high-
order filter for both algorithms; (a) DE and (b) GA.

multimodal search space regardless of the initial parameter
values, fast convergence, and using a few control parameters.
In this work, the DE algorithm was applied to the IIR fil-
ter design. In the simulations, three digital IIR filters were
designed for the purpose of system identification. From the
simulation results, it was observed that the performance of
the standard DE algorithm in terms of convergence speed
and computation time required is better than that of the
standard GA.
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Figure 11: Evolution of the nominator parameters of the high-
order filter for both algorithms; (a) DE and (b) GA.
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