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Abstract
Data abstraction is a powerful technique to overcome

state explosion in model checking. For CSPZ (a formal in-
tegration of the well-known specification languages CSP
and Z), current approaches can mechanically abstract in-
finite domains (types) as long as they are not used in
communications. This work presents a compositional and
systematic approach to data abstract CSPZ specifications
even when communications are based on infinite domains.
Therefore, we deal with a larger class of specifications
than the previous techniques. Our approach requires that
the domains (used in communications) being abstracted
do not affect the behaviour of the system (data indepen-
dence). This criteria is used to achieve an internal parti-
tioning of the specification in such a way that complemen-
tary techniques for abstracting data types can be applied
to the components of the partition. Afterwards, the par-
tial results can be compositionally combined to abstract
the entire specification. We propose an algorithm that im-
plements the partitioning and show the application of the
entire approach to a real case study.

Keywords: Formal Methods, Model Checking, Data

Abstraction, CSP, Z, Compositionality.

1. INTRODUCTION
Integrated notations are powerful to provide separa-

tion of concerns when describing systems. The language

CSPZ [9], for example, integrates the process algebra

CSP [18] and the model-based language Z [22] in such

a way that behavioural and data aspects are modelled si-

multaneously but orthogonally; while control flow is de-

scribed in CSP (the behavioural part), data aspects are

modelled in Z (the data part). The syntax and seman-

tics of the constituent languages are almost fully reused in

CSPZ , which also provides flexibility for applying tech-

niques to perform compositional refinement and analy-

sis. For example, process and data refinement techniques

can be used relatively independently to achieve more con-

crete specifications. Concerning analysis, theorem prov-

ing [13] (Z proofs) or model checking [5] (CSP proofs)

can be used for verifying properties in CSPZ . The for-

mer method requires user intervention in general, whereas

the latter is fully automatic, but unable to analyse sys-

tems with infinite state-spaces (the state explosion prob-

lem). To overcome such a limitation, several state-space

compression techniques [5], like data abstraction, for in-
stance, have been applied.

Abstracting a system means finding an approximation
that preserves desirable properties. This simpler represen-

tation can be safe or optimal with respect to the original

system [6]. Safe abstraction does not preserve all prop-

erties, whereas optimal abstraction represents the original

system more faithfully. This work considers only opti-

mal abstractions of CSPZ specifications. The language

yields infinite state-space systems very naturally because

infinite domains are allowed as types of state and commu-

nication variables. In the first situation, the infiniteness is

already handled by the data abstraction approach reported

in [8, 16]. However, the infiniteness occurring in commu-

nications is still an open problem.

The approach presented in this work is based on a syn-

tactic splitting to isolate the infiniteness problem. This

originates two internal parts that can be data abstracted

by specific techniques. Afterwards, the resulting abstract

parts are combined to originate the abstraction for the en-

tire system. Thus, our technique increases the class of
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problems handled by data abstraction through the appli-

cation of a decomposition and reusing existing techniques

to analyse the originated parts separately. After that, we

integrate the results and obtain a more complex abstrac-

tion. We have observed that this is simpler than analysing

the entire specification.

We emphasize that our approach is applied to a CSPZ

process in isolation; we split the data (Z) part into a data

dependent and a data independent part. We can also ap-

ply the approach to all CSPZ processes (components) of a

network of processes, provided the communication of the

analysed component does not affect the behaviour of the

other processes. In this sense, the state explosion of the

entire network can be handled by applying our strategy to

its components.

We also point out that our approach is related to refine-

ment checking [18] rather than to classical model check-

ing [5]. Thus, instead of proving a specific property in

a given model, we aim at finding an optimal abstrac-

tion (SA) that preserves almost all properties of the orig-

inal specification (S). The unique distinction between S
and SA occurs when communicated values are abstracted;

however, if these values do not affect the behaviour of

other processes, we can consider SA instead of S (in iso-

lation or in a network of processes) . Furthermore, as the

equivalence between S and SA is given in terms of the

failures-divergences model of CSP [18], our approach al-

lows the verification of safety and liveness properties as

well as application specific properties.

The main contributions of this work are:

• a systematic strategy for partitioning Z specifications

into a data independent and a data dependent compo-

nents;

• the algorithmic implementation for the partitioning

strategy;

• the reuse of existing techniques to overcome the state

explosion problem;

• a compositional approach for abstracting infinite

domains of state and communication variables in

CSPZ ;

• application of the strategy to a realistic case study.

Although our strategy is developed for CSPZ , it can

be extended to other notations that associate events with

state change, such as CSPOZ [9] or CSP-B [19].

This work is organised as follows. Section 2 provides

an overview of CSPZ and presents part of the specifica-

tion of a real system that is used as our case study; this

system cannot be mechanically analysed by existing data

abstraction approaches because it presents infinite com-

munications. We propose an approach to deal with such

a problem in Section 3. The approach is based on a syn-

tactic splitting, which is described algorithmically in Sec-

tion 4. Afterwards, we discuss related work in Section 5

and present our final remarks and future directions for this

work in Section 6. The proofs of all lemmas and theorems

presented in this work can be found in Appendix A.

2. BACKGROUND ON CSPZ

The notation CSPZ provides a convenient way for

modelling concurrent systems with state information. Its

semantics is defined in such a way that developers can rea-

son about behavioural (CSP) and data (Z) aspects orthog-

onally. This section introduces several aspects of CSPZ :

syntax, semantics, model checking and data abstraction.

We introduce CSP and Z separately.

2.1. THE CSP NOTATION
The process algebra CSP [18] can be viewed as a nota-

tion for describing concurrent systems whose component

processes interact with each other by communication, or

as a collection of mathematical models that help one to

reason about processes formally.

The most fundamental element in CSP is a communi-

cation event, which can be viewed as an atomic transac-

tion (or a possible synchronisation point) between two or

more processes; an event is also an abstract way of rep-

resenting a real computation such as a method/function

call, statement, input/output, internal action, an so on. An

event occurs in a communicating channel, which can sup-

port data types. For example, if a channel a does not sup-

port types, it defines the event a; otherwise, it defines a

family of events. The communication a?x involves an in-

put on channel a, whereas a!y represents an output on the

same channel. Inputs and output are generically denoted

by ch.v, where ch is a channel and v is a value. Thus, if

v ∈ N, the communication a.v corresponds to the infinite

set of events {a.1, a.2, ...}.
On the other hand, processes are used to describe

some behaviour; each process has an associated alpha-
bet, which is the set of all events occurring in process’s

body. Thus, a process P has the alphabet αP.
The most basic processes in CSP are STOP and SKIP.

The former represents a deadlock and do not communi-

cate any observable event; the latter denotes successful

termination after performing the special event �, which

is also used to synchronise processes upon successful ter-

mination.

The construction of more complex processes is also

possible by using operators. Table 1 provides a brief ex-

planation of the main operators.

In CSP, process definitions are similar to equations,

where the left-hand-side is the process name (possibly pa-
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Table 1. Basic constructs for processes

Term Explanation
ev → P ev → P is built by prefixing P with the event

ev. This originates a process that communi-
cates the event ev and then behaves like P.

P � Q The process P � Q is defined by an external
choice of P or Q. This decision depends on the
environment or on the other processes P � Q
interacts with.

P � Q The process P � Q is defined by an internal
choice of P or Q. This decision is nondeter-
ministically performed by the process itself.

P[[R]] The process P[[R]] is obtained by applying the
event renaming R to the process P. For exam-
ple, (a → STOP)[[b/a]] = b → STOP.

P\S It represents a new process that is obtained by
hiding in P the events of the set S. For example,
(a → b → SKIP)\{b} = a → SKIP.

P ||
X

Q It denotes a process obtained by synchronising
P and Q on all events from X (the synchronisa-
tion interface). If αP = αQ and αP ⊆ X, then
P and Q are in full synchronisation.

cond & P The guarded process cond & P behaves like P
only if cond is valid; otherwise, it deadlocks. It
behaves like “if cond then P else STOP”.

�i:1..n •Pi The indexed external choice is equivalent to
P1 � P2 � . . . � Pn.

rameterised) and the right-hand-side is the process body.

For example, the specification

channel tick, tack
Clock = tick → Clock � tack → Clock

describes the behaviour of a clock that infinitely offers

tick or tack (defined by non-typed channels) using recur-

sion. Its graphic representation is given in terms of a

Labelled Transition System (Figure 1).

tick tack

Figure 1. LTS representation of the process Clock.

The set initials(P) denotes the set of acceptances

(events) that can be performed by the process P in a spe-

cific context. For example, initials(Clock) = {tick, tack}
and initials(a → b → SKIP) = {a}.

The meaning of a CSP process is defined according to

three models [18]: traces, failures or failures-divergences.

The traces model (T ) is based on the observable be-

haviour, where a process is represented by a set of traces

(sequences of events). For example, the processes STOP
and SKIP are represented by {〈〉} and {〈〉, 〈�〉}, respec-
tively. The process a → b → STOP is represented by

{〈〉 〈a〉, 〈a, b〉}; 〈〉 means no event has been performed

yet, 〈a〉 denotes only a was performed, and 〈a, b〉 means

the process performed a followed by b.
It is worth noting that the traces model captures

what a process “can” do. Actually, processes can reject

events, originating the notion of refusals (the events

a process can reject in a context). The failures model

(F ) captures this and represents a process as a set of

failures; each one is defined as a pair (s,X) where s is a

trace and X is a set of refusals after performing s. For

example, the processes a → STOP � b → STOP and

a → STOP � b → STOP are represented by the same set

of traces ({〈〉, 〈a〉, 〈b〉}). However, the second process

can nondeterministically reject a before performing

any event. The failures of these processes are respec-

tively given by {(〈〉,∅), (〈a〉, {a, b}), (〈b〉, {a, b})} and

{(〈〉,∅), (〈〉, {a}), (〈〉, {b}), (〈a〉, {a, b}), (〈b〉, {a, b})}.
Note that the first process is more predictable (determin-

istic) than the second in F because it has less failures.

Intuitively, a process that offers the external choice (�)

of certain events is better than (a refinement of) a process

that “decides” internally (�) on which events to engage.

Besides traces and refusals, processes can perform

internal actions that are not captured by T or F . The

failures-divergences model (FD) gives meaning to pro-

cesses based on their failures and divergences. A diver-

gence is a trace (and all its extensions) for which a process

is not deadlocked and does not show any observable be-

haviour (it infinitely performs internal actions). A diver-

gent behaviour is similar to an infinite loop doing nothing.

According to [18], process refinement (�) is defined

in terms of set inclusion and the equivalence (≡) is de-

fined in terms of refinement. That is,

• P �T Q ⇔ traces(Q) ⊆ traces(P)

• P �F Q ⇔ traces(Q) ⊆ traces(P) ∧
failures(Q) ⊆ failures(P)

• P �FD Q ⇔ failures(Q) ⊆ failures(P) ∧
divergences(Q) ⊆ divergences(P)

• P ≡M Q⇔P�M Q∧Q�M P, for any CSP model M.

Concerning tool support, CSP specifications can be

analysed by the refinement checker FDR [10]. The tool

is able to prove properties of specifications by applying

the above refinement definitions. To achieve that, the left-

hand specification P must satisfy the desired property.

Then an arbitrary specification Q also satisfies the same

property if P � Q. Because FDR calculates all traces,

failures and divergences of processes, it is not able to deal

with systems with an infinite state-space.
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2.2. THE Z NOTATION
The Z language [22] presents powerful structuring and

abstraction mechanisms for describing data and sequen-

tial aspects. It is based on set theory and first-order logic,

and provides two internal languages: the mathematical
and the schema languages. The former is used to describe

various aspects of a design: objects (abstract data types,

functions, predicates, etc.), and the relationships between

them; the latter is intended to structure and compose de-

scriptions: collating pieces of information, encapsulating

them, and naming them for reuse.

There are many ways of defining new types in Z. Ta-

ble 2 shows the main type constructors.

Table 2. Type constructs of Z

Construct Explanation
[Id] It is a given set that introduces Id as a new

type without specifying its values.
N== Id It is an abbreviation that defines a type syn-

onym. Thus, N is another name for the previ-
ously defined type Id.

nat ::=zero |
succ〈〈nat〉〉

It is a free type that introduces the type
nat (symbolic natural numbers) as either
zero or the successor of a natural num-
ber. Thus, nat is the smallest set contain-
ing the following collection of distinct el-
ements: zero, succ zero, succ(succ zero),
succ(succ(succ zero)), and so on.

A Z schema is a construction where declarations and

predicates are combined for defining new objects, with

the general form,

Name
declaration

predicate

Schemas have a name and are suitable for modelling

state, initialisation and operations. When modelling the

state, the declarative part defines all state elements and the

predicate establishes an invariant that must be preserved.

When representing operations, the declarative part con-

tains all manipulated variables (state, inputs and outputs)

and the predicate establishes “what” a schema does (post-

condition) as long as “certain” conditions (preconditions)

are satisfied. When a precondition is not valid, the post-

condition of a schema might generate an arbitrary state.

In this sense, schemas are relations from a before state

and an input to an after state and an output. This allows

one to manipulate them using operators over relations.

Table 3 shows some operators and their semantics. R1,

R2 and R are relations, whereas s is a set. The relevant

operators are relational composition (o9), domain restric-

tion (�) and subtraction (−�), and range restriction (�)

and subtraction (−�).

Table 3. Relational operators of Z

Op Semantics
o
9 R1

o
9 R2 = {(x, y) | (x, z) ∈ R1 ∧ (z, y) ∈ R2}

� s � R = {(x, y) | (x, y) ∈ R ∧ x ∈ s}
� R � s = {(x, y) | (x, y) ∈ R ∧ y ∈ s}
−� s−� R = {(x, y) | (x, y) ∈ R ∧ x �∈ s}
−� R−� s = {(x, y) | (x, y) ∈ R ∧ y �∈ s}

A Z specification is represented as a triple containing

a state, an initialisation and a set of operations; that is,

(State, Init,Ops). The following specification describes

a simple clock, whose state contains a natural number as

internal counter (x : N). The initialisation assigns 0 to the

next value of the state variable (x′ = 0).

State
x : N

tick
ΔState

xmod 2 == 0
x′ = x+ 1

Init
State′

x′ = 0

tack
ΔState

xmod 2 == 1
x′ = x+ 1

Regarding operations, the simple clock presents two

schemas: tick and tack. Both of them can change the state

(ΔState) by incrementing the state variable (x′ = x + 1).
However, they are enabled for different range of values:

while tick is enabled for even numbers (x mod 2 = 0),
tack is enabled for odd ones (xmod 2 = 1).

Note that, while the above Z specification describes

state change, the CSP description (represented by Fig-

ure 1) establishes a random execution of tick’s and tacks’s
without considering any state information. In the next

section we show how to integrate these complementary

features and associate behaviour with state manipulation.

2.3. INTEGRATING CSP AND Z
The orthogonal and complementary characteristics of

CSP and Z were the motivation for integrating them in

a framework for describing behavioural and data aspects

simultaneously. In this sense, CSPZ reuses as much as

possible the existing syntaxes and semantics to provide a

more expressive language. We first present the syntactic

integration of CSP and Z before giving an informal view

of its operational semantics.

Figure 2 illustrates the general form of a CSPZ spec-

ification. It may contain global data types and the pro-

cess description that is composed by two parts: CSP

and Z. The global types are defined before the keywords
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spec/end spec, which are used to limit the scope of the

process; ProcessName is the name of the process.

Global data types

spec ProcessName
CSP part - Interface
CSP part - Behavioural description
Z part

end spec ProcessName

Figure 2. Structure of a CSPZ specification

In the CSP part, the Interface contains channel dec-

larations; they define all events the process can perform.

The behavioural description contains process definitions;

they are used to define the control flow of the entire pro-

cess starting in a main process equation.

The data part is a Z specification that works conjointly

with the CSP part. A CSPZ specification is basically the

union of a behavioural description with a data one. For

example, the specification of Figure 3 describes the sim-

ple clock with control flow and state information together.

spec Clock
chan tick, tack CSP part (Interface)
main = (tick → main CSP part (Behaviour)

�

tack → main)
Z part

State
x : N

com tick
ΔState

xmod 2 == 0
x′ = x+ 1

Init
State′

x′ = 0

com tack
ΔState

xmod 2 == 1
x′ = x+ 1

end spec Clock

Figure 3. CSPZ specification of an infinite clock

Note that the names of the Z operations were changed

by adding the prefix com . This associates a Z schema

with a CSP channel in order to synchronise events with

schema executions. Thus, the CSP part performs an event

if, and only if, the Z part executes the associated oper-

ation. This allows the Z part to affect the behaviour of

the CSP one (and vice-versa): invalid preconditions cause

event refusal (the blocking view of CSPZ [9]). Note that

this is different of the pure Z semantics and originates

an LTS affected by control flow and state information to-

gether (Figure 4). The Init schema yields the initial state

while the CSP part performs an internal action (τ ). Tran-
sitions are labelled with an event and the execution of the

corresponding schema is implicit. The state (possibly)

changes after each transition according to the associated

operation schema.

1 20
tick tack tick

...
τ

com_tick com_tack com_tickInit

Figure 4. LTS of the CSPZ process Clock

2.4. CSPZ MODEL CHECKING
The simultaneous and synchronised execution of the

behavioural and the data parts of a CSPZ specification

has been the key point for the development of a model

checking strategy [17]: the CSP and the Z parts are trans-

lated into pure CSP processes (PCSP and PZ , respectively)

that synchronise on all events from the Interface, as for-

malised by Equation 1.

PCSPZ (State) = PCSP ||
αPCSPZ

PZ(State) (1)

The component processes have the same alphabet as

PCSPZ ; that is, αPCSPZ = αPCSP = αPZ . Therefore, PCSP

and PZ are in full synchronisation where PZ(State) is re-

sponsible only for state manipulation and has the normal

form given by Definition 2.1.

Definition 2.1 Let PZ(State) be the process representing
the Z specification (State, Init,Ops). The normal form of
PZ(State) is given by

PZ(State)=�com ev ∈ Ops •
pre com ev & ev → PZ(com ev(State)) ♦

The process PZ(State) is defined by a recursion whose

body is an external choice of all operations (�com ev∈Ops).

As long as a guard pre com ev is valid, PZ performs ev (in

synchronisation with PCSP) and recurses using an updated

state (com ev(State)).
Once a CSPZ specification is represented as a process,

its analysis can be carried out using any CSP model. The

standard model FD is adopted in this work.

Although Equation 1 is a concise CSP representation

of a CSPZ specification, it cannot always be directly anal-

ysed by model checking because State may assume infi-

nite values in PZ or because αPCSPZ can be infinite. For

instance, in the process Clock the state variable x is incre-

mented at each transition indefinitely. This originates an

infinite LTS representation (Figure 4). An alternative way

to avoid such a problem is using data abstraction, which

is able to determine a finite range of values for x such that

the behaviour of the process is preserved.
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2.5. CSPZ DATA ABSTRACTION
Data abstraction [8, 16, 18, 21] is a powerful state-

space compression technique, suitable for systems that

manipulate data. It allows one to calculate simpler mod-

els that preserve desirable properties and are analysable

via model checking.

The underlying theory of data abstraction is abstract
interpretation [6]. It is a general framework for estab-

lishing correspondence between semantics. In this theory,

elements of a concrete domain have an abstract meaning

given by abstraction relations, such that values and op-

erations over concrete domains are interpreted as values

and operations over abstract ones. The theory allows one

to find an approximation (safe or optimal) for a given con-

crete semantics (value, operation, etc.). They are simpler

models that keep information about the actual (concrete)

semantics. Safe abstractions preserve some properties,

whereas optimal abstractions preserve all properties.

In CSPZ , abstract interpretation has been used to de-

termine the minimum values of the state variables that

preserve the behaviour of the entire process. For example,

recall the process Clock from Figure 3. There is an essen-

tial information that affects the occurrence of tick or tack:
x is even or odd. Intuitively, the values 0 and 1 would

be sufficient to preserve this observable behaviour. The

approach proposed in [8, 16] assures this by using model

checking and theorem proving; it expands the process and

checks if a repeated trace is infinitely allowed by the CSP

part via model checking, and by the Z part via theorem

proving. For example, the trace 〈tick, tack〉 is allowed by

the CSP part because it performs any sequence of tick’s
and tack’s. In the Z part, the execution of the correspond-

ing schema composition comp =̂ com tick o
9 com tack en-

ables the composition again (infinitely), as captured by

the stability theorem (Equation 2).

∀ State; State′ | pre comp ∧ comp • (pre comp)′ (2)

If Equation 2 is valid, the future states can be repre-

sented by the previous ones (an equivalence relation). For

example, in the process Clock, the natural numbers are

partitioned according to

Etick = {n : N | nmod 2 = 0 • n �→ n+ 2}∗

Etack = {n : N | nmod 2 = 1 • n �→ n+ 2}∗

where ∗ means the reflexive closure operator of relations.

The equivalence classes Etick and Etack are used to de-

fine the abstraction function h : N → {0, 1} as follows.

h(x) =
{
0, 0 Etick x
1, 1 Etack x

The function h is used to abstract the types of

the variables, the constants and the post-conditions of

schemas; concrete preconditions are reused by the ab-

stract schemas. The application of h to the process Clock
originates the abstract specification of Figure 5. Note that

the abstract domain is given by the range of h; the orig-

inal preconditions are preserved; and the abstract post-

conditions are obtained by simply applying h to the ex-

pressions assigned to the state variable. Thus, h(0) and
h(x + 1) (where x ∈ {0, 1}) do not yield values outside

{0, 1}. This means that the abstract domain is closed un-

der initialisation and under the operation +1.

spec ClockA

chan tick, tack CSP part (Interface)
main = (tick → main CSP part (Behaviour)

�

tack → main)
Z part

StateA

x : {0, 1}
com tickA

ΔStateA

xmod 2 == 0
x′ = h(x+ 1)

Init
(StateA)′

x′ = h(0)

com tackA

ΔStateA

xmod 2 == 1
x′ = h(x+ 1)

end spec ClockA

Figure 5. The abstract version of Clock

The LTS representation of ClockA is depicted in Fig-

ure 6, where the state explosion caused by the state vari-

able x was overcome. If this same variable were involved

in communications, the approach of [8, 16] could not be

applied. In the next section we show an example that be-

longs to this class of problems.

10
τ

com tickInit

tick

tack

com_tack

Figure 6. LTS of ClockA.

2.6. A REAL EXAMPLE
In this section we present a process that describes a

module of the on-board computer of a Brazilian artificial

microsatellite [16]. Figure 7 shows the specification.

The process uses some global data types. The free-

type Message is defined in terms of the element nullMsg
(used for initialisation purposes) and the constructors TC
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and TM (used for classifying messages as telecommands

or telemetries, respectively). Both TC and TM messages

have a parameter Fields that is defined as the cartesian

product of Data and integers (Z). Data is another free-

type with three values (nullData denoting an empty mes-

sage, sendTM standing for messages that should be sent to

the Earth, and extra to represent other kinds of messages).

The integer is used for recording the message ordering.

Therefore, Message is an infinite type.

The process Telemetry is responsible for maintain-

ing the most recent telemetry data (temperature, voltage,

some process status, etc.) and sending them to the Earth.

In the CSP part, the channel FTR TM is used for in-

putting the most recent telemetry message captured by the

other processes, whereas the channel sendEarth is used to

communicate the stored telemetry data to the Earth. The

remaining channels do not support data communication.

The behaviour of Telemetry is established by its main
equation: it first accepts an input value on FTR TM
(FTR TM?msg) and sends data from the satellite to the

Earth (SEND) or stores the new message (STORE). Send-

ing data depends on whether an internal buffer is empty

or not. If it is empty, the process performs emptyTM
and behaves like main; otherwise, the process performs

moreTM, sends a stored data to the Earth (sendEarth!msg)
and behaves like SEND again.

Storing a new message also depends on the buffer sta-

tus: if it is full, the process performs storeTMFull; other-
wise it performs storeTMNotFull.

Concerning the data part, the state of Telemetry con-

tains a variable (currMsg) that keeps a new message and

a finite buffer of messages (represented by the sequence

STM : seqMessage), whose size is limited by an invari-

ant (#STM ≤ 3). The initialisation assigns nullMsg to

currMsg and the empty sequence to the component STM.

The operations com emptyTM and com moreTM do

not change the state; they use their preconditions to sim-

ply check whether STM is empty or not, respectively.

To make our decomposition strategy clear later on,

we declare the components explicitly instead of using

the Z conventions ΔState and ΞState as state change and

preservation, respectively.

The remaining operations possibly yield state change.

In com FTR TM, the state change is due to the input

of a new message (currMsg′ = msg?). When the in-

ternal buffer is full (#STM= 3), com storeTMFull dis-

cards the oldest message and stores the newest one in the

last position (STM′= tail STM � 〈currMsg〉). Otherwise

(#STM < 3), com storeTMNotFull simply appends the

storage with currMsg (STM′ = STM � 〈currMsg〉).
As long as the storage is not empty (STM �= 〈〉), the

operation com sendEarth sends the oldest message to the

Earth (msg! = head STM) and discards it from the storage

(STM′ = tail STM) .

The operations com FTR TM and com sendEarth
present an input and output, respectively. In the latter

operation, the output assumes the value of a stored mes-

sage. On the other hand, in com FTR TM, the input

msg? : Message is not specified and can be any value

of type Message. This naturally originates state explo-

sion that cannot be handled by any existing approach for

CSPZ , including [8, 16]. Fortunately, as the behaviour of

Telemetry is not affected by the type Message, we can de-

termine a minimum subset of it that is relevant to capture

the behaviour of the system. Thus, data abstraction is still

possible even when communications are based on infinite

domains. In the next section we present an approach for

handling such a class of problems.

3. DATA ABSTRACTION BASED ON
DATA INDEPENDENCE

The theory of data independence [14] is able to ab-

stract infinite types based on syntactic properties (restric-

tions); it can be used in any context where these restric-

tions are related to the type being abstracted. We have

observed that, for some systems, variables with infinite

types can be isolated, even when they participate in com-

munications. This has been the key point of our approach:

using syntactic restrictions to achieve a separation of con-

cerns and applying complementary techniques to abstract

infinite types. In this sense, our approach uses decompo-

sition and compositional reasoning in the context of data

abstraction.

The decomposition uses the data independence crite-

ria (reproduced in Definition 3.1) to originate an internal

partition of the Z part. This allows one to isolate the in-

finiteness problem occurring in variables (state and com-

munication), in such a way that data independence can be

used to abstract their domains. The remaining variables

are analysed according to our data abstraction approach.

Definition 3.1 A system P is data independent with re-
spect to a data type X if, and only if:

(1) it must not contain constants, only input/output vari-
ables of type X;

(2) it may contain only equality tests and polymorphic
operations involving type X;

(3) it may contain more complex operations, as long as
they are defined in terms of equality tests and poly-
morphic operations;

(4) no replicated constructs (such as indexed paral-
lelism) over the data type may appear, other than
replicated nondeterministic choices. ♦
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Data ::= nullData | sendTM | extra
Fields == Data× Z

Message ::= nullMsg | TC〈〈Fields〉〉 | TM〈〈Fields〉〉
spec Telemetry

chan FTR TM, sendEarth : [msg : Message] (CSP part - Interface)
chan emptyTM,moreTM, storeTMFull, storeTMNotFull

main=FTR TM?msg → (SEND � STORE) (CSP part - behaviour)
SEND = emptyTM → main

�

moreTM → sendEarth!msg → SEND
STORE = storeTMFull → main

�

storeTMNotFull → main
(Z part)

State
STM : seqMessage
currMsg : Message

#STM ≤ 3
com FTR TM
STM, STM′ : seqMessage
currMsg, currMsg′ : Message
msg? : Message

STM′ = STM
currMsg′ = msg?

com storeTMFull
STM, STM′ : seqMessage
currMsg, currMsg′ : Message

#STM = 3

STM �= 〈〉
STM′= tail STM�〈currMsg〉
currMsg′ = currMsg

com storeTMNotFull
STM, STM′ : seqMessage
currMsg, currMsg′ : Message

#STM < 3

STM′ = STM�〈currMsg〉
currMsg′ = currMsg

Init
STM′ : seqMessage
currMsg′ : Message

STM′ = 〈 〉
currMsg′ = nullMsg

com emptyTM
STM, STM′ : seqMessage
currMsg, currMsg′ : Message

STM = 〈 〉
STM′ = STM
currMsg′ = currMsg

com moreTM
STM, STM′ : seqMessage
currMsg, currMsg′ : Message

STM �= 〈 〉
STM′ = STM
currMsg′ = currMsg

com sendEarth
STM, STM′ : seqMessage
currMsg, currMsg′ : Message
msg! : Message

STM �= 〈〉
msg! = head STM
STM′ = tail STM
currMsg′ = currMsg

end spec Telemetry

Figure 7. The process Telemetry

The items of Definition 3.1 define degrees of indepen-

dence of a process P with respect to a data type X. Based

on these items, it is possible to calculate the minimum

cardinality of X to preserve P’s behaviour: the threshold
of P with respect to X or tld(P,X), for short. For instance,
if P satisfies (1) then tld(P,X) = 1. Thus, the type X must

have at east 1 element, or#X ≥ 1 is the unique constraint
the type X must satisfy to preserve P’s behaviour. This is
the key idea we use to abstract the data type manipulated

by a CSPZ specification. For instance, in Figure 1 the Z

part is data independent with respect to the state variable,

whereas in Figure 7 the data independence property is re-
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lated to the communication (input/output) variables.

Actually, data independence does not distinguish state

from communication variables. Concerning the latter,

there is preservation of behaviour, but communications

(with concrete values) involving the process and its en-

vironment are lost when restricting the cardinality of the

domain. Therefore, our approach is only applicable to a

CSPZ system, as long as its communicated values do not

affect the other CSPZ components it interacts with (so-

called closed systems). Furthermore, the reduction of the

communicated values (of type X) of a process is achieved

by applying a renaming of events that reduces the data

communicated by P to a set whose cardinality is greater

than or equal to tld(P,X). In this case, the renaming pre-
serves P’s behaviour (Lemma 3.1). For example, let P be

a process that performs ch.x (x ∈ N) and tld(P,N) = 1.
Suppose that, by data independence analysis, we restrict

N to the set {0}. Thus, ch.x is replaced with ch.0 and P’s
behaviour is preserved because #{0} ≥ tld(P,N).

Lemma 3.1 Let P be a CSP process. Let c be a channel
of P with type Tc and R : A → B a renaming function,
such that A = {c.v ∈ αP} and B = {c.v′ ∈ Σ}. If P is
data independent with respect to Tc and# ran({c}�R) ≥
tld(P,Tc), then applying R preserves P’s behaviour. ♦

Lemma 3.1 follows directly from data indepen-

dence [14] and extends the idea of preservation of be-

haviour considering all channels of a process; Σ repre-

sents the set of all events a process can perform, and � is

an extended version of the domain restriction operator of

Z [22], used for filtering relations. The type of a channel

ch is denoted by Tch. As events have the form ch or ch.v,
we use � to filter the events occurring in a channel. Thus,

� : PΣ× (Σ↔ Σ) �→ (Σ↔ Σ) such that

A�S={(x, y) |x ∈ A∧((x, y) ∈ S∨∃ v : Tx•(x.v, y) ∈ S)}

For example, let S = {(a.1, b), (a.2, c), (e, f ), (c, f )}.
Then, {a}�S={(a.1, b), (a.2, c)} and {c}�S={(c, f )}.

Note that, if no values are communicated by channel

c, R becomes the identity map and, hence, P = P[[R]].
Moreover, when specific (or data dependent) operations

of the type being abstracted are used, data independence

is not applicable. However, we can still isolate the data

independent aspects to apply a complementary technique

to deal with the data dependent aspects separately. This is

achieved by using Definition 3.1 to factor out the Z part,

originating a partition of it.

Figure 8 illustrates the steps of the complete strat-

egy. Step 1 splits the Z part of a CSPZ process, origi-

nating two internal subparts: one data independent (DI)

and another data dependent (DD). Then, Step 2 trans-

lates all structures (CSP part, DI and DD subparts) into

CSP processes according to the strategy proposed in [17].

This originates a compound process that can still have an

infinite state-space. To overcome this problem, Step 3
applies data independence to the parallelism of the CSP

part and the DI component, and data abstraction to the

DD component. The latter task gives an abstract process

(Pdd
Z

A
) that is combined with the data independent part

(PCSP
||

InterfaceA Pdi
Z ) to produce the abstraction for the en-

tire process, considering a new and finite synchronisation

interface (InterfaceA).

To split the data part we introduce some definitions.

Definition 3.2 A Z specification is DI if it is data inde-
pendent with respect to the types of its variables (state
and communication). ♦

Note that a DI specification is classified according to

Definition 3.1 and, therefore, can be data abstracted by

data independence. The other category of specifications

(Definition 3.3) is also used when values of the type being

abstracted occur in data dependent operations.

Definition 3.3 A Z specification is DD if it is not DI and
has no infinite inputs (communicated to the environment)
in data dependent operations. ♦

Note that Definitions 3.2 and 3.3 are almost comple-

mentary. Actually, Definition 3.3 is complementary to

Definition 3.2 with an extra restriction: infinite inputs

are not allowed. This is necessary because our data ab-

straction strategy is able to deal only with finite data de-

pendent communications. The essential advantage of us-

ing Definitions 3.2 and 3.3 is to provide a partition of a

Z specification, where infinite communications are data

independent. Thus, if a Z specification can be decom-

posed into two specifications such that Definitions 3.2

and 3.3 are satisfied by each resulting specification sepa-

rately, a simple bi-partition is originated (Definition 3.4).

We assume that a schema sch belongs to the specification

(State, Init,Ops) if it is the state, the initialisation or one

of the operations (sch ∈ ({State} ∪ {Init} ∪ Ops)), and
that two schemas are disjoint if they do not have variables

in common.

Definition 3.4 Let Zspec = (State, Init,Ops), Zdi
spec =

(Statedi, Initdi,Opsdi) and Zdd
sp = (Statedd, Initdd,Opsdd)

be Z specifications. If Zdi
spec is DI, Zdd

spec is DD and for all
schema sch ∈ Zspec there are two corresponding and dis-
joint schemas schdi ∈ Zdi

spec and schdd ∈ Zdd
spec such that,

sch = schdi ∧ schdd, then Zdi
spec and Zdd

spec form a simple
bi-partition of Zspec. ♦

Definition 3.4 involves the notions of DI specifica-

tion, DD specification and disjointness of schemas. This

allows one to reason about compositional behaviour of
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State
dd

Init
dd

Op1
dd

CSPZ

Z partdd

State
di

Init
di

Op1
di

Z partdi
...

(DI)

CSPZ

Z part
Op1

Init

State

...

end_spec P

spec P

[channel declarations]

CSP part
[behavioural description]

channel declarations
with types restricted

ZP
di

CSPP

||
Interface

||
Interface

CSPP

||
Interface

ZP
di

ZP
dd

||
Interface

(DD)

...

spec P

end_spec P

CSP part
[behavioural description]

[channel declarations]

Step 1

1 − Partitioning

2 − Convertion to pure CSP

3 − Local Analysis
Process with a

finite state−space

Step 3

Data Independence

Data Abstraction

Process with a possible
infinite state−space

Step 2

CSP

ZP
dd

A

A

A

CSP

[channel declarations]

Figure 8. Overview of the strategy

Z specifications: executing an operation is similar to si-

multaneously executing (parallelism) its DI and DD com-

ponents. We also use this idea when applying data ab-

straction: each component is analysed separately and the

results are combined to yield a solution for the entire

specification. Thus, before abstracting types, we convert

each component into a process and capture the entire be-

haviour by the parallelism of such processes, considering

all events from the Interface. This follows the same idea

as that presented in [18], where parallelism captures con-

junction of specifications. The correspondence between

the original and the compound CSP representation of a Z

specification is formalised by Theorem 3.1.

Theorem 3.1 Let Zspec = (State, Init,Ops), Zdi
spec =

(Statedi, Initdi,Opsdi) and Zdd
spec = (Statedd, Initdd,Opsdd)

be Z specifications such that Zdi
spec and Zdd

spec form a simple
bi-partition of Zspec. Let PZ ,Pdi

Z and Pdd
Z be CSP processes

capturing the behaviours of Zspec, Zdi
spec and Zdd

spec, respec-
tively. Then,

PZ(State) = Pdi
Z (Statedi) ||

αPZ
Pdd

Z (Statedd) ♦

Using Theorem 3.1 in Equation 1, and the associativ-

ity of the parallel operator [18], we obtain

PCSPZ (State)=(PCSP ||
αPZ

Pdi
Z (Statedi)) ||

αPZ
Pdd

Z (Statedd) (3)

Note that Equation 3 separates a CSPZ process

into two component processes: one data indepen-

dent (PCSP ||
I

Pdi
Z (Statedi)) and another data dependent

(Pdd
Z (State)). This allows the application of data indepen-

dence to the first component and data abstraction to the

second one [16]. The results of this separated analysis

can be compositionally combined to yield the abstraction

for the entire process. Of course, because communicated

data are abstracted, we must consider a more restricted

set of events performed by the abstract process (an ab-

stract interface); it is calculated by applying a special

renaming (interface abstraction) to the concrete events.

As events are associated to channels, we use a renaming

function (rev) for each typed channel ev to map events in-

volving values from an infinite domain (the type of the

channel) to values from a finite one (the abstract type);

if the channel is non-typed, the corresponding renam-

ing is the identity over its name. For example, suppose

that N is the type of ev and hev : N →→ {0}, where →→
stands for total surjections, is given by hev(x) = 0. Then,
rev = {x : N • ev.x �→ ev.hev(x)}.

The union of all renaming functions of a process orig-

inates a renaming for the entire interface, as captured by

the following definition.

Definition 3.5 Let PZ be the process representation of a
Z specification. Let chs be the channels of PZ and rev a
renaming function for the channel ev (ev ∈ chs). The
interface abstraction of PZ is given by

R =
⋃

ev ∈ chs rev ♦

The interface abstraction maps concrete events into

abstract ones, by only restricting data (channel names are

preserved). Its use in Equation 3 allows one to define the
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abstract version of a CSPZ process, expressed as a par-

allelism of a data independent and a data dependent pro-

cesses considering ranR as the abstract interface. This is

formalised in [16] and reproduced in Theorem 3.2.

Theorem 3.2 Let PCSP be a CSPZ process with interface
I. Let Pdi and Pdd be CSP processes such that Pdd is data
dependent, Pdi is data independent, and P = Pdi ||

I
Pdd.

Let PA
dd be an optimal abstraction for Pdd with interface

abstraction R. If R preserves Pdi’s behaviour, then

PA
CSPZ

= Pdi ||
ran R

PA
dd ♦

According to Theorem 3.2 the abstract version of

Equation 3 (obtained by Step 3 of Figure 8) is given by

PA
CSPZ
(State)=(PCSP ||

ran R
Pdi

Z (Statedi)) ||
ran R

Pdd
Z

A
(Statedd) (4)

It is worth pointing out that the partitioning strategy

focuses on originating components whose schemas are

disjoint (they do not have variables in common). Never-

theless, this is not true in general. In the next section we

show how to deal with this for a specific (but significant)

class of problems.

3.1. EXTENDING THE PARTITIONING STRATEGY
In the ideal scenario, the components originated by

the partitioning strategy are disjoint and valid (all expres-

sions in the predicate part of each schema refer to vari-

ables occurring in the declaration part). Nevertheless, this

is not true in general. If there exist at least one schema

whose components are non-disjoint, our data abstraction

approach cannot be applied. On the other hand, if an ex-

pression of a component refers to a variable of the other

(disjoint) component, we can still abstract domains, as

long as the expression is data independent with respect to

the type of the variable. Furthermore, we have to check,

at the end, if the abstract domain respects the minimum

cardinality required by the expression.

To validate two disjoint component schemas, we need

to adjust them by adding a new declaration and applying

a syntactic substitution. For example, consider the fol-

lowing state schemas Statedi and Statedd (invy is a data

dependent invariant over y), and the operation schema op,
which contains a data dependent predicate py with respect

to the type Ty.

Statedi

x : Tx

Statedd

y : Ty

invy

op
x : Tx

y : Ty

x′ = y
py

When partitioning op, the predicate py is placed into

the data dependent component (opdd) and the predicate

x′ = y is placed into opdi.

opdi

x : Tx

x′ = y

opdd

y : Ty

py

Note that opdi is not a valid schema because y has not

been declared. To fix this problem we introduce a new

input variable (in? : Statedd) in the declaration part opdi

and replace all occurrences of y in the predicate part with

in?.y; this is achieved through the syntactic substitution

[in?.y/y]. Dually, the schema opdd also receives Statedi

as an input parameter that is not used in the predicate

part. This is similar to the idea adopted in [3], where

new events between decomposed operations are created

to solve dependencies and to maintain the original seman-

tics (action refinement). In this work we just exchange the

states between the component operations. Thus, opdi and

opdd become

opdi

x : Tx

in? : Statedd

x′ = in?.y

opdd

y : Ty

in? : Statedi

py

We also point out that this technique is possible be-

cause x′ = y is a data independent expression with respect

to Ty. Therefore, the values of y can be abstracted and

must respect the minimum cardinality required by x′ = y.
On the other hand, if an expression of a component is data

dependent with respect to the type of the variable placed

in the other partition, this adjustment cannot be applied.

This is pointed as a topic for future work in Section 6.

To make the CSP representation of the Z part uniform,

we consider the extended normal form given in Defini-

tion 3.6. It is obtained by substituting PZ with PZext in

Definition 2.1 and by adding a new event before offering

all enabled events.

Definition 3.6 Let PZ(State) be the process repre-
senting the Z specification (State, Init,Ops). Let
(Statedi, Initdi,Opsdi) and (Statedd, Initdd,Opsdd) be
Z specifications that form a simple bi-partition of
(State, Init,Ops). The extended normal form of
PZ(State) is given by,

PZext(State)=communicate.Statedi.Statedd →
PZ(State)[PZext/PZ ] ♦

The purpose of communicate.Statedi.Statedd is only

to communicate the components of State. Its occur-

rence does not affect the compound form of a simple bi-

partition, as stated by Theorem 3.3.
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Theorem 3.3 Let Zspec = (State, Init,Ops), Zdi
spec =

(Statedi, Initdi,Opsdi) and Zdd
spec = (Statedd, Initdd,Opsdd)

be Z specifications such that Zdi
spec and Zdd

spec form a sim-
ple bi-partition of Zspec. Let PZext ,P

di
Zext

and Pdd
Zext

be CSP
processes in the extended normal form capturing the be-
haviour of Zspec, Zdi

spec and Zdd
spec, respectively. Then,

PZext(State) = Pdi
Zext
(Statedi) ||

αPZext
Pdd

Zext
(Statedd) ♦

In Theorem 3.3, Pdi
Zext
(Statedi) and Pdd

Zext
(Statedd) are re-

spectively given by

communicate!Statedi?sdd → �ev∈chs •
pre com evdi & ev → Pdi

Zext
(com evdi(Statedi, sdd))

and

communicate?sdi!Statedd → �ev∈chs •
pre com evdd & ev→Pdd

Zext
(com opdd(sdi, Statedd))

The way communicate.Statedi.Statedd is used in Pdi
Zext

allows the process to output its state (!Statedi) and input

the state of the data dependent component (?sdd). Dually,

it also allows Pdd
Zext

to input the state of the data indepen-

dent component (?sdi) and output its state (!Statedd). Al-

though an operation com ev has two disjoint states as pa-

rameters, it yields a new state for its corresponding com-

ponent. Furthermore, as the events occurring on channel

communicate are limited to the scope of Pdi
Zext

||
αPZext

Pdd
Zext

,

they can be hidden. Therefore, Theorem 3.1 is still valid

when considering the extended normal form (no internal

actions, failures or divergences are originated). That is,

there is a correspondence between PZext\{|communicate |}
and PZ (Theorem 3.4).

Theorem 3.4 Let PZext and PZ be CSP process represen-
tations for the Z specification (State, Init,Ops) such that
PZ is in the normal form and PZext is in the extended nor-
mal form. Then,

PZext\{| communicate |} = PZ ♦

In the next section we show the application of the

splitting strategy to the process Telemetry.

3.2. THE SPLITTING OF TELEMETRY
Considering the schema State of the process Telemetry

(Figure 7), we analyse two declarations. As the invariant

involves the variable STM in a data dependent operation,

we place currMsg into Statedi and STM into Statedd.

Statedi

currMsg : Message

Statedd

STM : seqMessage

#STM ≤ 3

Regarding the initialisation, we expand State′ and ob-

serve that the predicate of the invariant involves STM′.
Therefore, the initialisation splitting yields

Initdi

currMsg′ : Message

currMsg′ = nullMsg

Initdd

STM′ : seqMessage

STM′ = 〈 〉
#STM′ ≤ 3

Concerning operations, com emptyTM is split into

two schemas (com emptyTMdi and com emptyTMdd) that

do not change their respective states. The variable in? is

not used by the com emptyTMdi because they are disjoint

and do not access variables placed in com emptyTMdd

(and vice-versa).

com emptyTMdi

currMsg : Message
currMsg′ : Message
in? : Statedd

currMsg′ = currMsg

com emptyTMdd

STM : seqMessage
STM′ : seqMessage
in? : Statedi

STM = 〈〉
STM′ = STM
#STM ≤ 3
#STM′ ≤ 3

In com FTR TM the declarations currMsg : Message,
currMsg′ : Message and msg? : Message and the pred-

icate currMsg′ = msg? are placed into com FTR TMdi,

whereas the remaining declarations and predicates be-

long to com FTR TMdd. This means that only Statedi is

changed by the input msg?.

com FTR TMdi

currMsg : Message
currMsg′ : Message
msg? : Message
in? : Statedd

currMsg′ = msg?

com FTR TMdd

STM : seqMessage
STM′ : seqMessage
in? : Statedi

STM′ = STM
#STM ≤ 3
#STM′ ≤ 3

The splitting of the operation com sendEarth yields

com sendEarthdi

currMsg : Message
currMsg′ : Message
msg! : Message
in? : Statedd

msg! = head STM
currMsg′ = currMsg

com sendEarthdd

STM : seqMessage
STM′ : seqMessage
in? : Statedi

STM �= 〈〉
#STM ≤ 3
#STM′ ≤ 3
STM′ = tail STM
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Note that com sendEarthdi and com sendEarthdd are

disjoint but the former is not valid because it uses a vari-

able (STM) declared in the latter. To fix this, we re-

place all occurrences of STM in the predicate part with

in?.STM. This is possible because head STM is a poly-

morphic (data independent) operation. Thus,

com sendEarthdi

currMsg : Message
currMsg′ : Message
msg! : Message
in? : Statedd

msg! = head in?.Statedd

currMsg′ = currMsg

com sendEarthdd

STM : seqMessage
STM′ : seqMessage
in? : Statedi

STM �= 〈〉
#STM ≤ 3
#STM′ ≤ 3
STM′ = tail STM

The splitting of com storeTMFull and

com storeTMNotFull also needs this adjustment.

com storeTMFulldi

currMsg : Message
currMsg′ : Message
in? : Statedd

currMsg′ = currMsg

com storeTMFulldd

STM : seqMessage
STM′ : seqMessage
in? : Statedi

#STM = 3

STM �= 〈〉
STM′= tail STM�〈in?.currMsg〉

com storeTMNotFulldi

currMsg : Message
currMsg′ : Message
in? : Statedd

currMsg′ = currMsg

com storeTMNotFulldd

STM : seqMessage
STM′ : seqMessage
in? : Statedi

#STM < 3

STM′ = STM�〈in?.currMsg〉

After partitioning the process Telemetry, we translated

the components to CSP, using the extended normal form

(Definition 3.6) for the Z part. Then we represented the

entire process according to Equation 3.

The analysis of PCSP ||
I

Pdi
Z (Statedi) by data indepen-

dence revealed that tld(PCSP ||
I

Pdi
Z (Statedi),Message)=1.

The application of data abstraction to Pdd
Z (Statedd) pro-

duced MessageA={nullMsg} as abstract domain, the ab-

stract process Pdd
Z

A
and the interface abstraction given by

R = {emptyTM �→ emptyTM,moreTM �→ moreTM}∪
{storeTMFull �→ storeTMFull}∪
{storeTMNotFull �→ storeTMNotFull}∪
{x :Message•sendEarth.x �→ sendEarth.h(x)}∪

{x : Message • FTR TM.x �→ FTR TM.h(x)}
where the abstraction function h : Message → MessageA

(also calculated by the approach) is given by

h(m) = nullMsg

Because Message is communicated on channel

FTR TM and #({FTR TM} −� R}) ≥ 1, R preserves the

behaviour of PCSP ||
I

Pdi
Z (Statedi). The abstract version of

Telemetry is then given by

PA
CSPZ
(State) = PCSP ||

ran R
Pdi

Z (Statedi) ||
ran R

Pdd
Z (Statedd)A

where the types of the channels FTR TM and sendEarth
were changed from Message to MessageA.

The abstract version of the components of

com FTR TM are given by

com FTR TMdiA

currMsg : MessageA

currMsg′ : MessageA

msg? : MessageA

in? : StateddA

currMsg′ = h(msg?)

com FTR TMddA

STM : seqMessageA

STM′ : seqMessageA

in? : StatediA

STM′ = STM
#STM ≤ 3
#STM′ ≤ 3

We have verified safety and liveness properties of

Telemetry using FDR [10] (see Figure 9). The Teleme-

try partitioned and renamed is the process

TelemetryPartRen =
((main ||

Interface
Pdi

Z (Statedi)) ||
Interface

Pdd
Z (Statedd))[[R]]

And the abstract Telemetry partitioned is given by

AbsTelemetryPart =
(main ||

ran R
Pdi

Z (StatediA)) ||
ran R

Pdd
Z

A(StateddA)

Both processes were deadlock-free, livelock-free and

equivalent in FD.

To provide a mechanisation of the partitioning strat-

egy, we propose an algorithm that originates a simple bi-

partition of the Z part of a CSPZ specification.

4. A PARTITIONING ALGORITHM
The partitioning strategy presented in the previous

section is systematic and syntactic-based. In this section

we describe it algorithmically.

We use some auxiliary functions. The most impor-

tant function determines if a given expression is data in-

dependent with respect to a given type. The function

is di : Exp × T → Boolean (Figure 10) implements

the data independence classification according to Defini-

tion 3.1. Note that is di could also be described in terms
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Figure 9. Analysis of Telemetry in FDR

of syntactic analysis of expressions, as proposed in the lit-

erature of compilers [1]. However, such a representation

would require a detailed description of all kinds of ex-

pressions that are allowed (a subset of the Z grammar). In

this work we use a natural language style for conciseness.

We assume that schemas are normalised [22]; that is,

declarations have the form v : Tv where v is a variable of

type Tv, and all constraint information (including the in-

variant) appears in the predicate part, which must be in the

conjunctive normal form. This is necessary because the

declaration and the predicate parts are split, originating

schemas whose conjunction must be equal to the original

one (Definition 3.4). This is established by the semantics

of the schema conjunction [22], where declarations are

merged and predicates are combined by conjunction.

For a given normalised schema sch =̂ [D | P], the
functions decl(sch) and pred(sch) give the declaration

(D) and the predicate (P) parts of sch, respectively, as sets.
The elements of decl(sch) have the form v : Tv and each

element of pred(sch) is any kind of expression allowed

in the predicate part. Thus, pred(sch) contains all con-

juncts (propositional components of a conjunction) of the

predicate part. For example,

Op
x1 : Tx

x′
1 : Tx

x2 : Tx

z : Tz

x1 < x2 ∧ x1 > z
x′
1 = x1

decl(Op)={x1 :Tx, x′
1 :Tx,

x2 :Tx, z :Tz}

pred(Op)={x1<x2,
x1>z,
x′
1=x1}

New declarations and predicates are inserted into

decl(Op) and pred(Op) by using set inclusion. For exam-

ple, decl(Op)← decl(Op)∪ {d} means the declaration d
is included into decl(Op).

The function include (Figure 11) includes a schema

sch into a Z specification (State,Init,Ops). The state

schema (sch= State) is placed into the first component,

the initialisation (sch= Init) is placed into the second one,

and operations are included into Ops. We use the func-

tions fst, snd and trd to capture the first, the second and the

third components of a Z specification, respectively. Thus,

fst(Zspec)=State, snd(Zspec)= Init and trd(Zspec)=Ops.
The algorithm is presented in Figure 12 and starts

by considering only the Z part of the given specifica-

tion (line 1). Initially, the partitions Zdi and Zdd (line

2) are empty (without state, initialisation and operations)

and each original schema sch (line 3) is analysed subse-

quently. For each analysed schema, the corresponding

data independent (schdi) and data dependent (schdd) com-

ponents are initialised as empty schemas (line 4). Then

the declarations of the current schema are analysed (line

5). The type of the declared variable (Tv) is taken (line

6) and used to classify all expressions of the predicate

part (line 7). We point out that there may be many ex-

pressions in the predicate part for a same declared vari-

able. Because we analyse expressions separately, it may

originate non-disjoint schemas (the same declaration is

placed into different components). Thus, if the analysed

expression is data independent with respect to Tv (line

8), both the declaration and the expression are placed

into schdi (lines 9 and 10). If the analysed expression

is data dependent with respect to Tv, we check (line 13)

if the schemas are disjoint (that is, if the declaration has

not already been placed into schdi). If so, the declara-

tion and the expression are placed into the data depen-

dent schema schdd (lines 14 and 15). Otherwise, schdi

and schdd are non-disjoint and the algorithm returns an er-

ror (line 18). Independently of schdi and schdd being dis-

joint or not, the algorithm solves the dependence between

variables and expressions placed into different schemas

(lines 11 and 16) by calling the function link (Figure 13),

which is defined in a pattern matching style and uses the

function vars : Exp → P VarName to obtain the set of

all variables occurring in an expression. For example,

vars(x′ = x+ y? ∗ 100) = {x′, x, y?}.
The function link receives a schema (schdi or schdd),

a declaration (d) and an expression (e). If the declared

variable is referred by e and has not been declared in the

schema, a new declaration (in? : Statedd or in? : Statedi)

is inserted and the substitution [in?.v/v] is applied to the

predicate part.

We point out that the disjointness check performed by

the algorithm can also be achieved by pre-processing the
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is di(e, T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

true, e does not present constants of type T and
e can present only input/output variables of

type T or
e is an equality test or a polymorphic operation

over type T or
e is defined in terms of equality tests and

polymorphic operations over type T
false, otherwise

Figure 10. The function is di

include(sch, Zspec) =

if sch = State then
Zspec ← (sch, snd(Zspec), trd(Zspec))

else if sch = Init then
Zspec ← (fst(Zspec), sch, trd(Zspec))

else
Zspec ← (fst(Zspec), snd(Zspec), trd(Zspec) ∪ {sch})

Figure 11. The function include

input: a CSPZ specification Spec
output: a simple bi-partition (Zdi and Zdd) of the Z part of Spec or an

error if the Z part does not satisfy Definition 3.4

1. let (State, Init,Ops) be the Z part of Spec in
2. let Zdi = Zdd = ([ ], [ ],∅) in
3. ∀ sch ∈ (State, Init,Ops) •
4. let schdi = schdd = [ ] in
5. ∀ d ∈ decl(sch) •
6. let v : Tv = d in
7. ∀ e ∈ pred(sch) •
8. if is di(e, Tv) then
9. decl(schdi)← decl(schdi) ∪ {d}

10. pred(schdi)← pred(schdi) ∪ {e}
11. link(schdi, d, e)
12. else
13. if d �∈ decl(schdi) then
14. decl(schdd)← decl(schdd) ∪ {d}
15. pred(schdd)← pred(schdd) ∪ {e}
16. link(schdd, d, e)
17. else
18. return error: schemas are not disjoint
19. if-end
20. ∀-end
21. let-end
22. ∀-end
23. let-end
24. include(schdi, Zdi)

25. include(schdd, Zdd)
26. ∀-end
27. let-end
28. let-end
29. return (Zdi, Zdd)

Figure 12. Partitioning algorithm
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link(schdi, d, e) =
let v : Tv = d in

if v ∈ vars(e) ∧ d �∈ decl(schdi) then
decl(schdi)← decl(schdi) ∪ {in? : Statedd}
pred(schdi)← pred(schdi)[in?.v/v]

let-end

link(schdd, d, e) =
let v : Tv = d in

if v ∈ vars(e) ∧ d �∈ decl(schdd) then
decl(schdd)← decl(schdd) ∪ {in? : Statedi}
pred(schdd)← pred(schdd)[in?.v/v]

let-end

Figure 13. The function link

specification. However, this requires the same loops used

in the partitioning. We perform the splitting and the dis-

jointness check in the same processing.

After processing all schemas, the schdi and the schdd

instances are placed into the suitable partitions (lines 24

and 25), and the algorithm considers another schema. The

final result is a pair of Z specifications that form a simple

bi-partition of the Z part of a CSPZ specification (line 29).

It is worth pointing out that our algorithm always ter-

minates when analysing a CSPZ specification. This is a

direct consequence of the finiteness of Z specifications;

they have a finite number of schemas, where each one also

contains a finite number of declarations and predicates.

Hence, the loops of lines 3, 5 and 7 have finite iterations.

The other statements involve declarations, initialisations,

set inclusion, set intersection, comparisons and the func-

tions is di, include, link, vars, fst, snd and trd; they do not

introduce non-termination.

5. RELATED WORK
When abstracting systems, property preservation can

be total or partial. In property-guided approaches, the

abstract model depends on the properties to be verified.

An example is predicate abstraction [11], which has been

used in automatic verification [2, 4, 12]. In our approach,

by using a refinement theory, the abstract model does not

depend on the properties to be verified. Thus, more prop-

erties (safety and liveness) can be verified. Nevertheless,

this makes automation much more difficult to achieve.

Compositional analysis is the focus of several works.

In [20], safety and liveness properties can be composi-

tionally verified in a network of CSP-B processes, whose

components contain a control and a data part. The ap-

proach is based on the analysis of the control part of each

process and on the analysis of each CSP-B component

separately; it does not address any abstraction on data do-

mains. Thus, if a CSP-B component presents state explo-

sion, the entire network (and the component itself) cannot

be directly verified. In this sense, we use compositional-

ity differently from [20]; while that work focuses on all

processes of a network, we focus on a single component.

However, our approach can also be used in a network of

CSPZ processes, as long as the abstracted values are irrel-

evant in communications between components.

The strategy proposed in [15] combines splitting,

symmetry and data type reductions (a specific kind of ab-

stract interpretation) to deal with verification of structures

of infinite size. It has been used in hardware verification

and requires that the user specify refinement relations be-

tween the implementation and the abstract model. In our

approach, the abstract model is equivalent (modulo re-

naming) to the original one by construction [16] and user

interaction to define refinement relations is unnecessary.

The approach presented in [7] handles infinite com-

munications by using the notion of IO transformers: spe-

cial operations defined over inputs/outputs that map infi-

nite domains to finite ones. Their constructions are based

on an abstraction function that must be given by the user.

The approach does not allow relations between state and

output variables (outputs must depend only on the inputs).

Moreover, abstractions can be calculated in terms of for-
ward or backward simulations [22]. In our work, we con-

sider only abstractions based on forward simulation and

allow relations between state and communication vari-

ables. We also do not require user assistance to give the

abstraction function explicitly; it is mechanically deter-

mined.

6. CONCLUSIONS
This work further extends a previous data abstraction

approach [8, 16] to deal with CSPZ processes that present

infinite and data independent communications. Using the

data independence criteria, we apply an internal partition-

ing to the Z part of a CSPZ specification (Definition 3.4).

This originates two components—a data independent (DI)

and a data dependent (DD). Then we convert the entire

specification (the CSP part and the components of the bi-

partition) to CSP and use data independence and data ab-

straction to analyse data independent and the data depen-

dent parts of the resulting process. This yields abstraction

functions that are used to calculate the abstract domains

and the abstract versions of all operations (of the DI and

the DD components). As long as the abstract domains sat-

isfy the minimum cardinality of the parallel composition

of the CSP and the DI component, the abstract process is

valid and can be analysed in FDR. In this sense, data inde-

pendence is used to factor out the Z part and to determine

the minimal bounds on the relevant data types of its data
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independent components. The data dependent one is data

abstracted systematically.

We showed that, even when partitioned, the Z part can

be represented as a process (Theorem 3.1). Moreover, af-

ter all sub-processes (PCSP conjointly with Pdi
Z and Pdd

Z )

have been analysed, the results can be combined in a com-

positional way to build the abstraction for the entire pro-

cess (Theorem 3.2). The resulting abstraction is equiva-

lent (modulo renaming) to the original specification [16].

We have also identified a particular kind of depen-

dence between the components of the partition originated

by our partitioning strategy. To solve this dependence we

extended the normal form of the process representation

of a Z specification (Definition 3.6) in such a way that the

partitioning is still valid (Theorem 3.3). To assure this, we

have proved that both process representations (according

to Definitions 2.1 and 3.6) are equivalent when making

their interfaces equal (Theorem 3.4).

We have proposed an algorithm to implement the par-

titioning strategy. The algorithm receives an original

CSPZ specification and gives a simple bi-partition of its

Z part; it decomposes schemas according to the data in-

dependence property of their internal expressions.

We point out that the splitting strategy is orthogonal

to the technique used to analyse the data dependent par-

tition. Thus, our approach allows the use of different

techniques to abstract domains of the resulting partition.

For example, in this work we used an existing mechani-

cal data abstraction approach [8, 16] to analyse the data

dependent partition because user intervention is required

only to prove internal theorems automatically generated

by that strategy. However, the technique presented in [7]

could be used alternatively to increase the class of prob-

lems (data dependent and infinite communications), but it

would require user intervention to be applied (calculation

of the abstraction functions, calculation of the IO trans-

formers, construction of the abstract schemas, etc.).

There might also be other kinds of dependencies be-

tween the components of a bi-partition that require a

more elaborate analysis. For example, data dependence

of expressions in one component with respect to variables

placed into the other component has not been addressed

by this work. We intend to investigate techniques that al-

low to deal with such a class of problems in the future.

This improvement will certainly lead to a more general

and elegant approach to abstract data types.

Concerning mechanisation, we intend to implement

our syntactic-based splitting in the tool presented in [8].

Actually, this will require a module to apply the partition-

ing and a module to apply data independence. The data

abstraction module is already implemented in [8].
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A. AUXILIARY LEMMAS
This appendix provides auxiliary laws and lemmas

that are necessary to prove Theorems 3.1, 3.3 and 3.4.

Laws A.1 to A.8 are reproduced from [18]. We have

proposed and proved laws A.9 to A.11.

Law A.1 states how the generalised parallel operator

works. In summary, there are three options of behaviour:

both processes progress together, only one of them is non-

deterministically chosen to progress, or only one of them

is deterministically chosen to progress.

Law A.1 Let P =?x : A → P′ and Q =?x : B → Q′ be
CSP processes. Then

P ||
X

Q =?x : C→(P′ ||
X

Q′) <| x ∈ X |>
(((P′ ||

X
Q) � (P ||

X
Q′)) <| x ∈ A ∩ B |>

((P′ ||
X

Q) <| x ∈ A |> (P ||
X

Q′)))

where C = (X ∩ A ∩ B) ∪ (A\X) ∪ (B\X). ♦

Law A.2 states the commutativity of parallelism and

Law A.3 establishes deadlock as the result of synchronis-

ing any process with STOP.

Law A.2 P ||
X

Q = Q ||
X

P ♦

Law A.3 STOP ||
X

P = STOP, (αP ⊆ X) ♦

Law A.4 establishes the behaviour of an external

choice. It offers the initial events of both left- and right-

hand-side processes. If the processes have any initial ac-

ceptance in common and the environment is ready to en-

gage on it, the external choice behaves nondeterministi-

cally (�). Otherwise, the external choice engages on some

initial event and behaves accordingly.

Law A.4 (?x : A → P) � (?x : B → Q) =
?x : A ∪ B → ((P � Q)

<| x ∈ A ∩ B |>
(P <| x ∈ A |> Q)) ♦

Law A.5 defines the process STOP as the unit element

of the external choice operator.

Law A.5 STOP � P = P ♦

Laws A.6 and A.7 establish the semantics of the con-

ditional choice based on the trivial values of its condition.

Law A.6 P <| true |> Q = P ♦

Law A.7 P <| false |> Q = Q ♦

Law A.8 establishes the way the hide operator works

for processes defined by prefixing.

Law A.8 (a → P)\X =
{

P\X if a ∈ X
a → (P\X) if a �∈ X ♦

Law A.9 states the use of hiding in a guarded process.

Law A.9 (c & ev → P)\X = c & ev → (P\X)
provided ev �∈ X ♦

Proof. By case analysis.

• For ¬ c: the hiding has no effect (STOP\X = STOP).

• For c:
(ev → P)\X
= ev → (P\X) (by Law A.8)
= c & ev → (P\X) (because c)

�

Law A.10 states the idempotence of generalised par-

allelism, as also informally addressed in [18].
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Law A.10 Let P be a deterministic CSP process. Let X
be a set of events such that αP ⊆ X. Then,

P ||
X

P = P ♦

Proof. By case analysis where P is deterministic:

- P = STOP: trivial.

- P = SKIP: trivial.

- P is an arbitrary deterministic process. From [18], we can
write P as ?x :initials(P) → P′. By induction, the law is
valid for a context P′ (hypothesis) and we must prove for
the next context ?x : initials(P)→P′ (thesis):

(?x : initials(P)→ P′) ||
X
(?x : initials(P)→ P′)

=?x : initials(P)→ (P′ ||
X

P′) (by Law A.1)

=?x : initials(P)→ P′ (by hypothesis)
= P (by definition of P)

�

Prefixing a conditional choice is similar to prefixing

each branch of the conditional choice (Law A.11).

Law A.11 a→(P<| b |>Q)=(a → P)<| b |>(a → Q) ♦

Proof. By case analysis.

• For b:
a → (P <| true |> Q)

= a → P (by Law A.6)
= (a → P) <| true |> (a → Q) (by Law A.6)
= (a → P) <| b |> (a → Q) (because b)

• For ¬ b:
a → (P <| false |> Q)

= a → Q (by Law A.7)
= (a → P) <| false |> (a → Q) (by Law A.7)
= (a → P) <| b |> (a → Q) (because ¬ b)

�

In the following we present some useful lemmas.

Lemma A.1 allows one to represent a guarded process by

using parallelism of the same process with weaker guards.

Lemma A.1 Let a and b be conditionals and ev be a CSP
event. Let P,Pa and Pb be the processes given by

P = (a ∧ b) & ev → P
Pa = a & ev → Pa

Pb = b & ev → Pb

Then, P = Pa ||
αP

Pb ♦

Proof. By case analysis on the conditionals. We call Pa
||

αP
Pb

by Pab and use Law A.1 to show that Pab=((a ∧ b) & ev →
P)[Pab/P].

• For a ∧ b:

Pab

= Pa ||
αP

Pb (by definition of Pab)

= a & ev→Pa ||
αP

b & ev→Pb (by definition of Pa and Pb)

= ev→Pa ||
αP

ev→Pb (because a ∧ b)

= ev→(Pa ||
αP

Pb) (by Law A.1)

= ev→Pab (by definition of Pab)

= (a ∧ b) & ev→Pab (because a ∧ b)

Thus, (a ∧ b) & ev→Pab = (a ∧ b) & ev→P[Pab/P].

• For a ∧ ¬b:

Pab

= Pa
||

αP
Pb (by definition of Pab)

= a & ev→Pa ||
αP

b & ev→Pb (by definition of Pa and Pb)

= ev→Pa ||
αP

STOP (because a ∧ ¬ b)

= STOP (by Law A.3)

= (a ∧ b) & ev→Pab (because a ∧ ¬ b)

Thus, (a ∧ b) & ev→Pab = (a ∧ b) & ev→P[Pab/P].

• For ¬a ∧ b: it is similar to a ∧ ¬b.

• For ¬a ∧ ¬ b:

Pab

= Pa ||
αP

Pb (by definition of Pab)

= a & ev→Pa
||

αP
b & ev→Pb (by definition of Pa and Pb)

= STOP ||
αP

STOP (because ¬ a ∧ ¬ b)

= STOP (by Law A.3)

= (a ∧ b) & ev→Pab (because ¬ a ∧ ¬ b)

Thus, (a ∧ b) & ev→Pab = (a ∧ b) & ev→P[Pab/P].

�

The external choice of processes without common ini-

tial acceptances can be represented as a conditional. If the

environment is ready to engage into an event offered by

the external choice, only one of the component processes

will progress. This is precisely stated by Lemma A.2.

Lemma A.2 Let P =?a : initials(P) → P′ and Q =?c :
initials(Q)→Q′ be deterministic CSP processes such that
initials(P) ∩ initials(Q) = ∅. Let x be an event from
initials(P) ∪ initials(Q). Then,

P � Q = P <| x ∈ initials(P) |> Q ♦
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Proof. Direct consequence of Law A.4, where A = initials(P)
and B = initials(Q). We consider I = initials(P) ∪ initials(Q).

P � Q
=?x : I → ((P′ � Q′)

<| x ∈ initials(P) ∩ initials(Q) |>
(P′ <| x ∈ initials(P) |> Q′)) (by Law A.4)

=?x : I → (P′ <| x ∈ initials(P) |> Q′)
(because initials(P) ∩ initials(Q) = ∅)

= (?x : I → P′) <| x ∈ initials(P) |> (?x : I → Q′)
(by Law A.11)

=?xp : initials(P)→P′ <| x∈ initials(P) |>?xq : initials(Q)→Q′

(because initials(P) ∩ initials(Q) = ∅)
= P <| x ∈ initials(P) |> Q (by definition of P and Q)

�

Lemma A.3 states the distribution of � over ||
X
.

Lemma A.3 Let P, Q and R be deterministic CSP pro-
cesses such that αQ = αR, initials(Q) = initials(R) and
initials(P) ∩ initials(Q) = initials(P) ∩ initials(R) = ∅.
Then,

P � (Q ||
I

R) = (P � Q) ||
αP ∪ αQ

(P � R) ♦

Proof. From Law A.1 we calculate initials(P) ∪ initials(Q)
as the initial acceptances of (P � Q) ||

αP ∪ αQ
(P � R). As

initials(P) ∩ initials(Q)=∅, we have two options to analyse:

• For x ∈ initials(P): by Law A.1, Q and R become unavail-

able and (P � Q) ||
αP ∪ αQ

(P � R) behaves like

P ||
αP ∪ αQ

P

= P (by Law A.10)

• For x �∈ initials(P): by Law A.1, P becomes unavailable

and (P � Q) ||
αP ∪ αQ

(P � R) behaves like

Q ||
αP ∪ αQ

R

= Q ||
αQ

R (because events outside αQ are irrelevant)

From the above case analysis we conclude that

P <| x ∈ initials(P) |> Q ||
αQ

R

= P � (Q ||
αQ

R) (by Lemma A.2)

�

When two external choices involving guarded pro-

cesses are put into parallel, the guards are interchange-

able. Lemma A.4 states this.

Lemma A.4 Let P, Q, R1 and R2 be deterministic pro-
cesses such that αP=αQ, αR1=αR2, αP∩αR1=∅ and
initials(P) ∩ initials(R1) = initials(Q) ∩ initials(R2) =
∅. Let c1, c2 be conditionals. Then,

(P � c1 & R1) ||
αP ∪ αR1

(Q � c2 & R2)

=
(P � c2 & R1) ||

αP ∪ αR1
(Q � c1 & R2) ♦

Proof. By case analysis on the conditionals. Moreover, because
αP=αQ, αR1 =αR2 and αP ∩ αR1 =∅, we have that αQ ∩
αR1 = αP ∩ αR2 = ∅.

• For c1 ∧ c2:

(P � R1) ||
αP ∪ αR1

(Q � R2)

= (P � c2 & R1) ||
αP ∪ αR1

(Q � c1 & R2)

(because c1 ∧ c2)

• For ¬ c1 ∧ ¬ c2:

(P � STOP) ||
αP ∪ αR1

(Q � STOP)

= (P � c2 & R1) ||
αP ∪ αR1

(Q � c1 & R2)

(because ¬ c1 ∧ ¬ c2)

• For c1 and ¬ c2:

(P � R1) ||
αP ∪ αR1

(Q � STOP)

= (P � R1) ||
αP ∪ αR1

Q (by Law A.5)

= P ||
αP ∪ αR1

Q

(because initials(P) ∩ initials(R1)=αQ ∩ αR1=∅)

= P ||
αP ∪ αR1

Q � R2

(because initials(Q) ∩ initials(R2)=αP ∩ αR2=∅)

= P � STOP ||
αP ∪ αR1

Q � R2 (by Law A.5)

= P � c2 & R1
||

αP ∪ αR1
Q � c1 & R2

(because c1 ∧ ¬ c2)

• For ¬ c1 and c2: similar to c1 and ¬ c2.

�

Recall from Lemma A.1 that a guarded process can be

written as a parallelism of the same process with weaker

guards. Analogously, the external choice of guarded pro-

cesses can also be expressed as a parallelism of external

choices. In this sense, Lemma A.5 extends Lemma A.1.

Lemma A.5 Let P, Pa and Pb be CSP processes given by

P = �i • (ai ∧ bi) & evi → P
Pa = �i • ai & evi → Pa

Pb = �i • bi & evi → Pb

where ai and bi are conditionals and evi is an event. Then,

P = Pa ||
αP

Pb ♦

Proof. By induction on the index of the external choice.

Base Case: i = 1. Guaranteed by Lemma A.1.

Inductive Case. The lemma is valid for i = n (hypothesis) and
we prove for i = n+ 1 (thesis). We rewrite the process P when
i = n+ 1 to use the hypothesis. Thus,

(�i=n • (ai ∧ bi) & evi→P) � (an+1 ∧ bn+1) & evn+1→P
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= (�i=n • (ai ∧ bi)& evi→P) �

(an+1&evn+1→Pa ||
αP

bn+1&evn+1→Pb) (by Lemma A.1)

= ((�i=n • ai & evi → Pa) ||
αP
(�i=n • bi & evi → Pb)) �

(an+1&evn+1→Pa
||

αP
bn+1&evn+1→Pb) (by hypothesis)

= (�i=n • ai & evi → Pa) � an+1 & evn+1 → Pa
||

αP
(�i=n • bi & evi → Pb) � an+1 & evn+1 → Pa

||
αP
(�i=n • ai & evi → Pa) � bn+1 & evn+1 → Pb

||
αP
(�i=n • bi & evi → Pb) � bn+1 & evn+1 → Pb

(by applying Lemma A.3 twice)
= (�i=n • ai & evi → Pa) � an+1 & evn+1 → Pa

||
αP
(�i=n • bi & evi → Pb) � bn+1 & evn+1 → Pa

||
αP
(�i=n • ai & evi → Pa) � an+1 & evn+1 → Pb

||
αP
(�i=n • bi & evi → Pb) � bn+1 & evn+1 → Pb

(by Lemma A.4)
= (�i=n+1 • ai & evi → Pa)

||
αP
(�i=n+1 • bi & evi → Pb)

||
αP
(�i=n+1 • bi & evi → Pb)

||
αP
(�i=n+1 • ai & evi → Pa) (by grouping �i)

= (�i=n+1 • ai & evi → Pa)
||

αP
(�i=n+1 • ai & evi → Pa)

||
αP
(�i=n+1 • bi & evi → Pb)

||
αP
(�i=n+1 • bi & evi → Pb) (by Law A.2)

= (�i=n+1 • ai & evi → Pa) ||
αP
(�i=n+1 • bi & evi → Pb)

(by Law A.10)

= Pa ||
αP

Pb (by definition of Pa and Pb)

�

Lemma A.6 allows one to distribute hide over an in-

dexed external choice, as long as the hidden events are not

initially accepted by the options.

Lemma A.6 Let P be a CSP process and X a set of
events. Let ci be a conditional and evi an event such that
evi �∈ X. Then,

(�i • (ci & evi → P))\X = �i • (ci & evi → P\X) ♦

Proof. By induction on the index of the external choice.

Base Case: i = 1. Guaranteed by Law A.8.

Inductive Case. The lemma is valid for i = n (hypothe-
sis) and we prove for i = n + 1 (thesis). By rewriting
(�i=n+1 • (ci & evi → P))\X to use the hypothesis, we have

((�i=n • ci & evi→P) � cn+1 & evn+1→P)\X
= (�i=n • ci & evi→P)\X � (cn+1 & evn+1→P)\X

(because evi and evn+1 �∈ X)
= (�i=n • ci & evi→P\X) � (cn+1 & evn+1→P)\X

(by hypothesis)
= (�i=n • ci & evi→P\X) � (cn+1 & evn+1→P\X)

(by Law A.9)

= �i=n+1 • ci & evi→P\X (by grouping �i)
�

Nowwe present the proof of Theorem 3.1. It is related

to the process representation of a simple bi-partition. We

point out that, because the component specifications of a

simple bi-partition are disjoint, the preconditions of each

schema and the state are also disjoint. As the theorem is

related to behaviour, the state information is irrelevant in

the proof and, therefore, can be omitted.

Theorem 3.1 Let Zspec = (State, Init,Ops), Zdi
spec =

(Statedi, Initdi,Opsdi) and Zdd
spec = (Statedd, Initdd,Opsdd)

be Z specifications such that Zdi
spec and Zdd

spec form a simple
bi-partition of Zspec. Let PZ ,Pdi

Z and Pdd
Z be CSP processes

capturing the behaviour of Zspec, Zdi
spec and Zdd

spec, respec-
tively. Then,

PZ(State) = Pdi
Z (Statedi) ||

αPZ
Pdd

Z (Statedd) ♦

Proof. From Definition 3.4 we know that PZ ,Pdi
Z and Pdd

Z have
the same set of operations and the same alphabets. Thus,

PZ

= �com ev∈Ops • pre com ev & ev → PZ (by Definition 2.1)

= �com ev∈Ops • (pre com evdi∧ pre com evdd) & ev → PZ

(by Definition 3.4)
= �com ev∈Ops • (pre com evdi & ev → Pdi

Z
||

αPZ

pre com evdd & ev→Pdd
Z ) (by Lemma A.1)

= (�com ev∈Ops • pre com evdi & ev → Pdi
Z )

||
αPZ

(�com ev∈Ops • pre com evdd & ev → Pdd
Z ) (by Lemma A.5)

= Pdi
Z

||
αPZ

Pdd
Z (by Definition 2.1)

�

In the following we show the proof of Theorem 3.3,

which is related to the compound form of PZ using the

extended normal form (Definition 3.6).

Theorem 3.3. Let Zspec = (State, Init,Ops), Zdi
spec =

(Statedi, Initdi,Opsdi) and Zdd
spec = (Statedd, Initdd,Opsdd)

be Z specifications such that Zdi
spec and Zdd

spec form a sim-
ple bi-partition of Zspec. Let PZext ,P

di
Zext

and Pdd
Zext

be CSP
processes in the extended normal form capturing the be-
haviour of Zspec, Zdi

spec and Zdd
spec, respectively. Then,

PZext(State) = Pdi
Zext
(Statedi) ||

αPZext
Pdd

Zext
(Statedd) ♦

Proof. It starts by considering PZext (State).

PZext (State)

= communicate.Statedi.Statedd → PZ(State)[PZext/PZ ]
(by Definition 3.6)

= communicate.Statedi.Statedd →
(Pdi

Z (Statedi) ||
αPZ

Pdd
Z (Statedd)[PZext/PZ ] (by Theorem 3.1)

= communicate.Statedi.Statedd →
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( �com ev∈Ops •pre com evdi & ev → Pdi
Z (com evdi(Statedi))

||
αPZ

�com ev∈Ops •pre com evdd & ev→Pdd
Z (com evdd(Statedd))

)[PZext/PZ ] (by Definition 2.1)

= communicate.Statedi.Statedd →
(�com ev∈Ops •pre com evdi & ev → Pdi

Zext (com evdi(Statedi))
||

αPZext

�com ev∈Ops •pre com evdd&ev→Pdd
Zext (com evdd(Statedd)))

(by replacing PZ with PZext )
= communicate.Statedi.Statedd →

�com ev∈Ops •pre com evdi & ev → Pdi
Zext (com evdi(Statedi))

||
αPZext

communicate.Statedi.Statedd →
�com ev∈Ops •pre com evdd&ev→Pdd

Zext (com evdd(Statedd))
(by Law A.1)

= Pdi
Zext (Statedi)) ||

αPZext
Pdd

Zext (Statedd)) (by Definition 3.6)

�
In the following we present the proof of Theorem 3.4.

Theorem 3.4. Let PZext and PZ be processes representa-
tions for the Z specification (State, Init,Ops) such that PZ

in the normal form and PZext is in the extended normal
form. Then,

PZext\{| communicate |} = PZ ♦

Proof. From Definition 2.1 we know that αPZ = αPdi
Z =αPdd

Z
and from Definition 3.6 we know that αPZext=αPdi

Zext=αPdd
Zext =

αPdi
Z ∪ {| communicate |}. We represent {| communicate |}

by X and base the proof on syntactical equality, which means
process equivalence [18].

PZext (s)\X

= (communicate.sdi.sdd→ PZ(s)[PZext/PZ ])\X
(by Definition 3.6)

= (communicate.sdi.sdd→ �com ev ∈ Ops • pre com ev &
ev → PZ(s′))[PZext/PZ ]\X (by Definition 2.1)

= (communicate.sdi.sdd→ �com ev ∈ Ops • pre com ev &
ev → PZext (s

′))\X (by replacing PZ with PZext )
= (�com ev ∈ Ops • pre com ev & ev → PZext (s

′))\X
(by Law A.8)

= �com ev ∈ Ops • pre com ev & ev → PZext (s
′)\X

(by Lemma A.6)

Note that�com ev∈Ops • pre com ev& ev → PZext (s
′)\X can also

be given by �ev∈chs • pre com ev & ev → PZ(s′)[PZext\X/PZ ].
This simple syntactic substitution establishes the equality (and
equivalence) between PZext\X and PZ . �
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