A class of analytic functions involving in the Dziok-Srivastava operator

Neng $\mathrm{Xu}^{1 *}$, Ding-Gong Yang ${ }^{2}$ and Janusz Sokół ${ }^{3}$

"Correspondence: xun@cslg.edu.cn Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, People's Republic of China
Full list of author information is available at the end of the article

Abstract

Let \mathcal{A} be a class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{0.1}
\end{equation*}
$$

which are analytic in the open unit disk \mathbb{U}. By means of the Dziok-Srivastava operator, we introduce a new subclass

$$
\mathcal{S}_{m}^{\prime}\left(\alpha_{1}, \alpha, \mu\right) \quad\left(I \leq m+1, I, m \in \mathbb{N} \cup\{0\},-\frac{\pi}{2}<\alpha<\frac{\pi}{2}, \mu>-\cos \alpha\right)
$$

of \mathcal{A}. In particular, $\mathcal{S}_{0}^{1}(2,0,0)$ coincides with the class of uniformly convex functions introduced by Goodman. The order of starlikeness and the radius of α-spirallikeness of order $\beta(\beta<1)$ are computed. Inclusion relations and convolution properties for the class $\mathcal{S}_{m}^{\prime}\left(\alpha_{1}, \alpha, \mu\right)$ are obtained. A special member of $\mathcal{S}_{m}^{\prime}\left(\alpha_{1}, \alpha, \mu\right)$ is also given. The results presented here not only generalize the corresponding known results, but also give rise to several other new results.
MSC: Primary 30C45
Keywords: uniformly convex functions; convex univalent functions; starlike functions; α-spirallike functions; convolution; Dziok-Srivastava operator; subordination

1 Introduction

Let \mathcal{A} be a class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$. For $\beta<1$, a function $f(z) \in \mathcal{A}$ is said to be starlike of order β in \mathbb{U} if

$$
\begin{equation*}
\mathfrak{R} \frac{z f^{\prime}(z)}{f(z)}>\beta \quad(z \in \mathbb{U}) . \tag{1.2}
\end{equation*}
$$

This class is denoted by $\mathcal{S}^{*}(\beta)(\beta<1)$. For $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ and $\beta<1$, a function $f(z) \in \mathcal{A}$ is said to be α-spirallike of order β in \mathbb{U} if

$$
\begin{equation*}
\mathfrak{R}\left\{e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right\}>\beta \cos \alpha \quad(z \in \mathbb{U}) . \tag{1.3}
\end{equation*}
$$

When $0 \leq \beta<1$, it is well known that all the starlike functions of order β and α-spirallike functions of order β are univalent in \mathbb{U}. A function $f(z) \in \mathcal{A}$ is said to be convex univalent in \mathbb{U} if

$$
\begin{equation*}
\mathfrak{\Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

We denote this class by \mathcal{K}. Also, let $\mathcal{U C} \mathcal{V}(\subset \mathcal{K})$ be the class of uniformly convex functions in \mathbb{U} introduced by Goodman [1]. It was shown in [2] that $f(z) \in \mathcal{A}$ is in $\mathcal{U C} \mathcal{V}$ if and only if

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \mathbb{U}) . \tag{1.5}
\end{equation*}
$$

In [2], Rønning investigated the class \mathcal{S}_{p} defined by

$$
\begin{equation*}
\mathcal{S}_{p}=\left\{f(z) \in \mathcal{S}^{*}(0): f(z)=z g^{\prime}(z), g(z) \in \mathcal{U C} \mathcal{V}\right\} . \tag{1.6}
\end{equation*}
$$

The uniformly convex and related functions have been studied by many authors (see, e.g., [$1-10$] and the references therein).
If

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{A} \quad \text { and } \quad g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{A}
$$

then the Hadamard product (or convolution) of $f(z)$ and $g(z)$ is given by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} .
$$

For

$$
\alpha_{j} \in \mathbb{C} \quad(j=1,2, \ldots, l) \quad \text { and } \quad \beta_{j} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\} \quad(j=1,2, \ldots, m),
$$

the generalized hypergeometric function

$$
{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right)
$$

is defined by the following infinite series:

$$
\begin{aligned}
& { }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{l}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{m}\right)_{n}} \frac{z^{n}}{n!} \\
& \quad\left(l \leq m+1 ; l, m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; z \in \mathbb{U}\right),
\end{aligned}
$$

where $(c)_{n}$ is the Pochhammer symbol defined by

$$
(c)_{n}= \begin{cases}1 & (n=0) \\ c(c+1) \cdots(c+n-1) & (n \in \mathbb{N})\end{cases}
$$

Corresponding to the function

$$
z \cdot{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right)
$$

the Dziok-Srivastava operator (see [11])

$$
H\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right): \mathcal{A} \rightarrow \mathcal{A}
$$

is defined by the following Hadamard product:

$$
\begin{aligned}
& H\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right) f(z)=\left(z \cdot{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right)\right) * f(z) \\
& \quad\left(l \leq m+1 ; l, m \in \mathbb{N}_{0} ; z \in \mathbb{U}\right) .
\end{aligned}
$$

If $f(z) \in \mathcal{A}$ is given by (1.1), then we have

$$
\begin{equation*}
H\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right) f(z)=z+\sum_{n=1}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{l}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{m}\right)_{n}} \frac{a_{n+1}}{n!} z^{n+1} \quad(z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

In order to make the notation simple, we write

$$
\begin{equation*}
H_{m}^{l}\left(\alpha_{1}\right)=H\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right) \quad\left(l \leq m+1 ; l, m \in \mathbb{N}_{0}\right) . \tag{1.8}
\end{equation*}
$$

It should also be remarked that the Dziok-Srivastava operator $H_{m}^{l}\left(\alpha_{1}\right)$ is a generalization of several linear operators considered in earlier investigations (see [12-19], also see [20]).

In this paper we introduce and investigate the following subclass of \mathcal{A}.

Definition A function $f(z) \in \mathcal{A}$ is said to be in $\mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ if it satisfies the condition

$$
\begin{equation*}
\mathfrak{R}\left\{e^{i \alpha} \frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}\right\}+\mu>\left|\frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}-1\right| \quad(z \in \mathbb{U}), \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
l \leq m+1, \quad l, m \in \mathbb{N}_{0}, \quad-\frac{\pi}{2}<\alpha<\frac{\pi}{2} \quad \text { and } \quad \mu>-\cos \alpha . \tag{1.10}
\end{equation*}
$$

Note that $f(z)=z \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ and that

$$
\begin{equation*}
\mathcal{S}_{0}^{1}(1, \alpha, 0)=\left\{f(z) \in \mathcal{A}: \mathfrak{\Re}\left\{e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right\}>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|(z \in \mathbb{U})\right\} . \tag{1.11}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\mathcal{S}_{0}^{1}(1,0,0)=\mathcal{S}_{p} \quad \text { and } \quad \mathcal{S}_{0}^{1}(2,0,0)=\mathcal{U C V} \tag{1.12}
\end{equation*}
$$

Throughout this paper we assume, unless otherwise stated, that l, m, α and μ satisfy (1.10).

2 Subordination theorem

Let $f(z)$ and $g(z)$ be analytic in \mathbb{U}. We say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and we write $f(z) \prec g(z)$, if there exists an analytic function $w(z)$ in \mathbb{U} such that

$$
|w(z)| \leq|z| \quad \text { and } \quad f(z)=g(w(z)) \quad(z \in \mathbb{U})
$$

If $g(z)$ is univalent in \mathbb{U}, then

$$
f(z) \prec g(z) \quad \Leftrightarrow \quad f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Theorem 1 A function $f(z) \in \mathcal{A}$ is in $\mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ if and only if

$$
\begin{equation*}
e^{i \alpha} \frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)} \prec h(z) \cos \alpha+i \sin \alpha, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
h(z) & =1+\frac{2}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right)\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2} \\
& =1+\frac{8}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right)\left\{z+\frac{2}{3} z^{2}+\frac{23}{45} z^{3}+\cdots\right\} \quad(z \in \mathbb{U}) . \tag{2.2}
\end{align*}
$$

Proof Let us define $w(z)=u+i v$ by

$$
\begin{equation*}
e^{i \alpha} \frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}=w(z) \cos \alpha+i \sin \alpha \quad(z \in \mathbb{U}) . \tag{2.3}
\end{equation*}
$$

Then $w(0)=1$ and the inequality (1.9) can be rewritten as

$$
\begin{equation*}
u>\frac{\cos \alpha}{2(\cos \alpha+\mu)} v^{2}+\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right) . \tag{2.4}
\end{equation*}
$$

Thus

$$
w(\mathbb{U}) \subset \Omega=\{w=u+i v: u \text { and } v \text { satisfy }(2.4)\} .
$$

It follows from (2.2) that $h(0)=1$. In order to prove the theorem, it suffices to show that the function $w=h(z)$ given by (2.2) maps \mathbb{U} conformally onto the parabolic region Ω.
Note that $\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)<1$. Consider the transformations

$$
\begin{equation*}
w_{1}=\sqrt{w-1}, \quad w_{2}=\exp \left(\pi w_{1} \sqrt{\frac{2 \cos \alpha}{\cos \alpha+\mu}}\right), \quad t=\frac{1}{2}\left(w_{2}+\frac{1}{w_{2}}\right) . \tag{2.5}
\end{equation*}
$$

It is easy to verify that the composite function

$$
\left.t=\operatorname{ch}\left(\pi \sqrt{\frac{2 \cos \alpha(w-1)}{\cos \alpha+\mu}}\right)=g(w) \quad \text { say }\right)
$$

maps $\Omega^{+}=\Omega \cap\{w=u+i v: v>0\}$ conformally onto the upper half-plane $\operatorname{Im}(t)>0$ so that $w=\mathfrak{R}(w) \in\left[\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right),+\infty\right)$ corresponds to $t=\mathfrak{R}(t) \in[-1,+\infty)$ and $w=1$ to $t=1$. With the help of the symmetry principle, the function $t=g(w)$ maps Ω conformally onto the region $G=\{t:|\arg (t+1)|<\pi\}$. Since

$$
\begin{equation*}
t=2\left(\frac{1+z}{1-z}\right)^{2}-1 \tag{2.6}
\end{equation*}
$$

maps \mathbb{U} onto G, we see that

$$
\begin{aligned}
w & =g^{-1}(t)=1+\frac{1}{2 \pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right)\left(\log \left(t+\sqrt{t^{2}-1}\right)\right)^{2} \\
& =1+\frac{2}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right)\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2} \\
& =h(z)
\end{aligned}
$$

maps \mathbb{U} conformally onto Ω. The proof of the theorem is now completed.

Corollary $1 \operatorname{Let} f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$. Then for $z \in \mathbb{U}$,

$$
\begin{equation*}
\left|\left(\frac{H_{m}^{l}\left(\alpha_{1}\right) f(z)}{z}\right)^{\sec \alpha e^{i \alpha}}\right| \leq \exp \left\{\frac{2}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \int_{0}^{1} \frac{1}{\rho}\left(\log \frac{1+\sqrt{\rho|z|}}{1-\sqrt{\rho|z|}}\right)^{2} d \rho\right\} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(\frac{H_{m}^{l}\left(\alpha_{1}\right) f(z)}{z}\right)^{\sec \alpha e^{i \alpha}}\right| \geq \exp \left\{-\frac{8}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \int_{0}^{1} \frac{1}{\rho}(\arctan \sqrt{\rho|z|})^{2} d \rho\right\} . \tag{2.8}
\end{equation*}
$$

The results are sharp.

Proof From Theorem 1 we have

$$
\frac{e^{i \alpha}}{\cos \alpha}\left(\frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}-1\right) \prec h(z)-1
$$

for $f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ and $h(z)$ given by (2.2). Since the function $h(z)-1$ is univalent and starlike (with respect to the origin) in \mathbb{U}, using the result of Suffridge [21, Theorem 3], we get

$$
\frac{e^{i \alpha}}{\cos \alpha} \int_{0}^{z}\left(\frac{\left(H_{m}^{l}\left(\alpha_{1}\right) f(t)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(t)}-\frac{1}{t}\right) d t \prec \int_{0}^{z} \frac{h(t)-1}{t} d t
$$

This implies that

$$
\begin{equation*}
\frac{e^{i \alpha}}{\cos \alpha} \log \frac{H_{m}^{l}\left(\alpha_{1}\right) f(z)}{z}=\int_{0}^{1} \frac{h(\rho w(z))-1}{\rho} d \rho \quad(z \in \mathbb{U}) \tag{2.9}
\end{equation*}
$$

where $w(z)$ is analytic and $|w(z)| \leq|z|$ in \mathbb{U}.
Noting that $h(z)$ maps the disk $|z|<\rho(0<\rho \leq 1)$ onto a region which is convex and symmetric with respect to the real axis, we know that

$$
\begin{equation*}
h(-\rho|z|) \leq \mathfrak{R}\{h(\rho w(z))\} \leq h(\rho|z|) \quad(z \in \mathbb{U}) . \tag{2.10}
\end{equation*}
$$

Now (2.2), (2.9) and (2.10) lead to

$$
\log \left|\left(\frac{H_{m}^{l}\left(\alpha_{1}\right) f(z)}{z}\right)^{\sec \alpha e^{i \alpha}}\right| \leq \frac{2}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \int_{0}^{1} \frac{1}{\rho}\left(\log \frac{1+\sqrt{\rho|z|}}{1-\sqrt{\rho|z|}}\right)^{2} d \rho
$$

and

$$
\begin{aligned}
\log \left|\left(\frac{H_{m}^{l}\left(\alpha_{1}\right) f(z)}{z}\right)^{\sec \alpha e^{i \alpha}}\right| & \geq \frac{2}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \int_{0}^{1} \frac{1}{\rho}\left(\log \frac{1+i \sqrt{\rho|z|}}{1-i \sqrt{\rho|z|}}\right)^{2} d \rho \\
& =-\frac{8}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \int_{0}^{1} \frac{1}{\rho}(\arctan \sqrt{\rho|z|})^{2} d \rho
\end{aligned}
$$

for $z \in \mathbb{U}$. Hence we have (2.7) and (2.8).
Furthermore, for

$$
\alpha_{j} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\} \quad(j=1, \ldots, l),
$$

it is easy to see that the function $f_{0}(z)$ in $\mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$, defined by

$$
\begin{align*}
& H_{m}^{l}\left(\alpha_{1}\right) f_{0}(z) \\
& \quad=z \exp \left\{\frac{2}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \cos \alpha e^{-i \alpha} \int_{0}^{z} \frac{1}{t}\left(\log \frac{1+\sqrt{t}}{1-\sqrt{t}}\right)^{2} d t\right\} \quad(z \in \mathbb{U}), \tag{2.11}
\end{align*}
$$

shows that the estimates (2.7) and (2.8) are sharp.

Corollary 2 Let $f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$, where

$$
\alpha_{j} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\} \quad(j=1,2, \ldots, l) .
$$

Then

$$
\begin{align*}
f(z)= & z \exp \left\{\frac{2 \cos \alpha e^{-i \alpha}}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \int_{0}^{1} \frac{1}{\rho}\left(\log \frac{1+\sqrt{\rho w(z)}}{1-\sqrt{\rho w(z)}}\right)^{2} d \rho\right\} \\
& *\left\{z+\sum_{n=1}^{\infty} \frac{n!\left(\beta_{1}\right)_{n} \cdots\left(\beta_{m}\right)_{n}}{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{l}\right)_{n}} z^{n+1}\right\} \quad(z \in \mathbb{U}), \tag{2.12}
\end{align*}
$$

where $w(z)$ is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$.

Proof From (2.9) and (2.2), we have

$$
\begin{align*}
& H_{m}^{l}\left(\alpha_{1}\right) f(z) \\
& \quad=z \exp \left\{\frac{2 \cos \alpha e^{-i \alpha}}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \int_{0}^{1} \frac{1}{\rho}\left(\log \frac{1+\sqrt{\rho w(z)}}{1-\sqrt{\rho w(z)}}\right)^{2} d \rho\right\} \quad(z \in \mathbb{U}) . \tag{2.13}
\end{align*}
$$

For

$$
\alpha_{j} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\} \quad(j=1,2, \ldots, l),
$$

from (2.13) and (1.7), we obtain (2.12).

3 Properties of the class $\mathcal{S}_{m}^{\prime}\left(\alpha_{1}, \alpha, \mu\right)$

Theorem $2 \operatorname{Let} f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$. Then

$$
\begin{equation*}
H_{m}^{l}\left(\alpha_{1}\right) f(z) \in \mathcal{S}^{*}\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right) \tag{3.1}
\end{equation*}
$$

and the order $\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)$ is sharp.

Proof Let $h(z)$ be given by (2.2). It follows from the proof of Theorem 1 that

$$
\begin{equation*}
\partial h(\mathbb{U})=\left\{w=u+i v: u=\frac{\cos \alpha}{2(\cos \alpha+\mu)} v^{2}+\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right\} . \tag{3.2}
\end{equation*}
$$

By using (3.2), we find that

$$
\min _{|z|=1(z \neq 1)} \mathfrak{R}\left\{e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha)\right\}=\min _{v \in(-\infty,+\infty)} g(v) \cos \alpha+\sin ^{2} \alpha
$$

where

$$
g(v)=\frac{\cos ^{2} \alpha}{2(\cos \alpha+\mu)} v^{2}+\frac{\cos \alpha-\mu}{2}+v \sin \alpha \quad(-\infty<v<+\infty) .
$$

Since

$$
g^{\prime}(v)=\frac{\cos ^{2} \alpha}{\cos \alpha+\mu} v+\sin \alpha, \quad g^{\prime \prime}(v)>0,
$$

the function $g(v)$ attains its minimum value at

$$
v_{0}=-\frac{(\cos \alpha+\mu) \sin \alpha}{\cos ^{2} \alpha} .
$$

Thus

$$
\begin{aligned}
& \min _{|z|=1(z \neq 1)} \mathfrak{R}\left\{e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha)\right\} \\
& \quad=g\left(v_{0}\right) \cos \alpha+\sin ^{2} \alpha
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{\sin ^{2} \alpha(\cos \alpha+\mu)}{2 \cos \alpha}+\frac{\cos \alpha(\cos \alpha-\mu)}{2}+\sin ^{2} \alpha \\
& =\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right) . \tag{3.3}
\end{align*}
$$

If $f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$, then we deduce from Theorem 1 and (3.3) that

$$
\mathfrak{R} \frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}>\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right) \quad(z \in \mathbb{U})
$$

and the order $\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)$ in (3.1) is sharp for the function $f_{0}(z)$ defined by (2.11).
Theorem $3 \operatorname{Let} f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ and $\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right) \leq \beta<1$. Then $H_{m}^{l}\left(\alpha_{1}\right) f(z)$ is α-spirallike of order β in $|z|<\rho$, where

$$
\begin{equation*}
\rho=\rho(\beta, \alpha, \mu)=\left(\tan \left(\frac{\pi}{4} \sqrt{\frac{2 \cos \alpha(1-\beta)}{\cos \alpha+\mu}}\right)\right)^{2} . \tag{3.4}
\end{equation*}
$$

The result is sharp.

Proof From (3.4) and (2.2) we have

$$
0<\rho \leq 1\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right) \leq \beta<1\right)
$$

and

$$
\begin{aligned}
h(-\rho) & =1+\frac{2}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right)\left(\log \frac{1+i \sqrt{\rho}}{1-i \sqrt{\rho}}\right)^{2} \\
& =1-\frac{8}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right)(\arctan \sqrt{\rho})^{2} \\
& =\beta .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\inf _{|z|<\rho} \Re h(z)=h(-\rho)=\beta . \tag{3.5}
\end{equation*}
$$

Let $f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$. Then it follows from Theorem 1 and (3.5) that

$$
\mathfrak{R}\left\{e^{i \alpha} \frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}\right\}>\beta \cos \alpha \quad(|z|<\rho)
$$

that is, $H_{m}^{l}\left(\alpha_{1}\right) f(z)$ is α-spirallike of order β in $|z|<\rho$. Also, the result is sharp for the function $f_{0}(z)$ defined by (2.11).

Setting $\beta=\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)$, Theorem 3 reduces to the following.
Corollary 3 Let $f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$. Then $H_{m}^{l}\left(\alpha_{1}\right) f(z)$ is α-spirallike of order $\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)$ in \mathbb{U}. The result is sharp.

For $\beta \leq 1$, a function $f(z) \in A$ is said to be prestarlike of order β in \mathbb{U} if

$$
\begin{cases}\frac{z}{(1-z) 2^{2(1-\beta)}} * f(z) \in \mathcal{S}^{*}(\beta), & \beta<1 \tag{3.6}\\ \mathfrak{R f \frac { f (z) } { z } > \frac { 1 } { 2 } ,} & \beta=1\end{cases}
$$

(see [20]). We denote this class by $\mathcal{R}(\beta)(\beta \leq 1)$. The following lemma is due to Ruscheweyh [20, p.54].

Lemma 1 Let $\beta \leq 1, f(z) \in \mathcal{R}(\beta)$ and $g(z) \in \mathcal{S}^{*}(\beta)$. Then, for any analytic function $F(z)$ in \mathbb{U},

$$
\frac{f *(F g)}{f * g}(\mathbb{U}) \subset \overline{\operatorname{co}}(F(\mathbb{U}))
$$

where $\overline{\operatorname{co}}(F(\mathbb{U}))$ denotes the convex hull of $F(\mathbb{U})$.

Applying the lemma, we derive Theorems 4 and 5 below.

Theorem 4 Let

$$
\begin{equation*}
\alpha_{1}>0 \quad \text { and } \quad \alpha_{1}^{\prime} \geq \max \left\{\alpha_{1}, 1+\frac{\mu}{\cos \alpha}\right\} . \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathcal{S}_{m}^{l}\left(\alpha_{1}^{\prime}, \alpha, \mu\right) \subset \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right) \tag{3.8}
\end{equation*}
$$

Proof Define

$$
\phi(z)=z+\sum_{n=1}^{\infty} \frac{\left(\alpha_{1}\right)_{n}}{\left(\alpha_{1}^{\prime}\right)_{n}} z^{n+1} \quad(z \in \mathbb{U})
$$

for α_{1} and α_{1}^{\prime} satisfying (3.7). Then $\phi(z) \in \mathcal{A}$ and

$$
\begin{equation*}
\frac{z}{(1-z)^{\alpha_{1}^{\prime}}} * \phi(z)=\frac{z}{(1-z)^{\alpha_{1}}} \quad(z \in \mathbb{U}) \tag{3.9}
\end{equation*}
$$

In view of $\alpha_{1}^{\prime} \geq \alpha_{1}>0$, it follows from (3.9) that

$$
\frac{z}{(1-z)^{\alpha_{1}^{\prime}}} * \phi(z) \in \mathcal{S}^{*}\left(1-\frac{\alpha_{1}}{2}\right) \subset \mathcal{S}^{*}\left(1-\frac{\alpha_{1}^{\prime}}{2}\right)
$$

which implies that

$$
\begin{equation*}
\phi(z) \in \mathcal{R}\left(1-\frac{\alpha_{1}^{\prime}}{2}\right) . \tag{3.10}
\end{equation*}
$$

Also, for $f(z) \in \mathcal{A}$, (3.9) leads to

$$
\left\{\begin{array}{l}
H_{m}^{l}\left(\alpha_{1}\right) f(z)=\phi(z) * H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z) \tag{3.11}\\
z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}=\phi(z) *\left(z\left(H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z)\right)^{\prime}\right)
\end{array}\right.
$$

Let $f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}^{\prime}, \alpha, \mu\right)$. Then, by Theorems 1 and 2 , we have

$$
\left\{\begin{array}{l}
F(z)=\frac{z\left(H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z)} \prec e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha), \tag{3.12}\\
H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z) \in \mathcal{S}^{*}\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right) \subset \mathcal{S}^{*}\left(1-\frac{\alpha_{1}^{\prime}}{2}\right)
\end{array}\right.
$$

for $h(z)$ given by (2.2) and $\alpha_{1}^{\prime} \geq 1+\frac{\mu}{\cos \alpha}$. Since the function $e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha)$ is convex univalent in \mathbb{U}, from (3.10), (3.11), (3.12) and the lemma, we deduce that

$$
\begin{aligned}
\frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)} & =\frac{\phi(z) *\left(z\left(H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z)\right)^{\prime}\right)}{\phi(z) * H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z)} \\
& =\frac{\phi(z) *\left(F(z) H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z)\right.}{\phi(z) * H_{m}^{l}\left(\alpha_{1}^{\prime}\right) f(z)} \\
& \prec e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha) .
\end{aligned}
$$

Therefore, by Theorem $1, f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ and (3.8) is proved.

Theorem $5 \operatorname{Let} f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ and $g(z) \in \mathcal{R}\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right)$. Then

$$
\begin{equation*}
(f * g)(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right) \tag{3.13}
\end{equation*}
$$

Proof Let $f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$. According to Theorems 1 and 2, we have

$$
F(z)=\frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)} \prec e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha)
$$

and

$$
\begin{equation*}
H_{m}^{l}\left(\alpha_{1}\right) f(z) \in \mathcal{S}^{*}\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right) \tag{3.14}
\end{equation*}
$$

If we put $\phi(z)=(f * g)(z)$, then

$$
\begin{align*}
\frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) \phi(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) \phi(z)} & =\frac{g(z) *\left(z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}\right)}{g(z) * H_{m}^{l}\left(\alpha_{1}\right) f(z)} \\
& =\frac{g(z) *\left(F(z) H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)}{g(z) * H_{m}^{l}\left(\alpha_{1}\right) f(z)} \quad(z \in \mathbb{U}) \tag{3.15}
\end{align*}
$$

for $g(z) \in \mathcal{R}\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right)$.
In view of (3.14) and (3.15), an application of the lemma leads to

$$
\frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) \phi(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) \phi(z)} \prec e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha) .
$$

Consequently, by applying Theorem $1, \phi(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ and the proof of (3.13) is completed.

Note that $\mathcal{R}\left(\frac{1}{2}\right)=\mathcal{S}^{*}\left(\frac{1}{2}\right)$. Since $\mathcal{R}\left(\beta_{1}\right) \subset \mathcal{R}\left(\beta_{2}\right)$ for $\beta_{1} \leq \beta_{2} \leq 1$ (see [15, p.49], we have

$$
\mathcal{K}=\mathcal{R}(0) \subset \mathcal{R}\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right) \quad(-\cos \alpha<\mu \leq \cos \alpha)
$$

Thus Theorem 5 yields the following.

Corollary 4

(i) Iff $(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, 0\right)$ and $g(z) \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$, then

$$
(f * g)(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, 0\right)
$$

(ii) Iff $(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ with $-\cos \alpha<\mu \leq \cos \alpha$ and $g(z) \in \mathcal{K}$, then

$$
(f * g)(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)
$$

Theorem 6 The function $f(z) \in \mathcal{A}$ defined by

$$
\begin{equation*}
H_{m}^{l}\left(\alpha_{1}\right) f(z)=\frac{z}{(1-b z)^{2 \cos \alpha e^{-i \alpha}}} \quad(z \in \mathbb{U}) \tag{3.16}
\end{equation*}
$$

belongs to the class $\mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$, where

$$
\alpha_{j} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\} \quad(j=1,2, \ldots, l),
$$

b is complex and

$$
|b| \leq \begin{cases}\frac{\cos \alpha+\mu}{3 \cos \alpha-\mu} & \left(-\cos \alpha<\mu<\frac{\cos \alpha}{3}\right) \tag{3.17}\\ \sqrt{\frac{\mu}{\cos \alpha+\mu}} & \left(\mu \geq \frac{\cos \alpha}{3}\right)\end{cases}
$$

The result is sharp, that is, $|b|$ cannot be increased.

Proof $\operatorname{For} f(z) \in \mathcal{A}$ defined by (3.16) and

$$
\alpha_{j} \in \mathbb{C} \backslash\{0,-1,-2, \ldots\} \quad(j=1,2, \ldots, l),
$$

we easily have

$$
\begin{equation*}
e^{i \alpha} \frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}=\frac{1+b z}{1-b z} \cos \alpha+i \sin \alpha \quad(z \in \mathbb{U}) \tag{3.18}
\end{equation*}
$$

Hence, by Theorem $1, f(z) \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)$ if and only if

$$
\begin{equation*}
\frac{1+b z}{1-b z} \prec h(z) \tag{3.19}
\end{equation*}
$$

where $h(z)$ is given by (2.2). Clearly, (3.19) is equivalent to

$$
\begin{equation*}
\left\{w:\left|w-\frac{1+|b|^{2}}{1-|b|^{2}}\right|<\frac{2|b|}{1-|b|^{2}}\right\} \subset h(\mathbb{U}) \tag{3.20}
\end{equation*}
$$

for $0<|b|<1$. Let

$$
\begin{equation*}
\delta=\min \left\{\left|w-\frac{1+|b|^{2}}{1-|b|^{2}}\right|: w \in \partial h(\mathbb{U})\right\} \tag{3.21}
\end{equation*}
$$

where $\partial h(\mathbb{U})$ is given by (3.2). Then we have

$$
\left\{\begin{array}{l}
\delta=\min \left\{\sqrt{g(u)}: u \geq \frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right\}, \tag{3.22}\\
g(u)=\left(u-\frac{1+|b|^{2}}{1-|b|^{2}}\right)^{2}+2\left(1+\frac{\mu}{\cos \alpha}\right)\left(u-\frac{\cos \alpha-\mu}{2 \cos \alpha}\right) \quad\left(u \geq \frac{\cos \alpha-\mu}{2 \cos \alpha}\right) .
\end{array}\right.
$$

Note that

$$
\begin{equation*}
\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)<\frac{1+|b|^{2}}{1-|b|^{2}}, \quad g^{\prime}(u)=2\left(u-\left(\frac{2|b|^{2}}{1-|b|^{2}}-\frac{\mu}{\cos \alpha}\right)\right) \tag{3.23}
\end{equation*}
$$

(i) If

$$
\begin{equation*}
-\cos \alpha<\mu<\frac{\cos \alpha}{3} \quad \text { and } \quad|b|=\frac{\cos \alpha+\mu}{3 \cos \alpha-\mu}, \tag{3.24}
\end{equation*}
$$

then

$$
\frac{1-|b|}{1+|b|}=\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right), \quad|b|^{2}=\left(\frac{\cos \alpha+\mu}{3 \cos \alpha-\mu}\right)^{2}<\frac{\cos \alpha+\mu}{5 \cos \alpha+\mu}
$$

and so

$$
\begin{equation*}
\frac{2|b|^{2}}{1-|b|^{2}}-\frac{\mu}{\cos \alpha}<\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right) \tag{3.25}
\end{equation*}
$$

From (3.22), (3.23) and (3.25), we have $g^{\prime}(u)>0\left(u \geq \frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right)$, and hence

$$
\begin{equation*}
\delta=\sqrt{g\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right)}=\frac{1+|b|^{2}}{1-|b|^{2}}-\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)=\frac{2|b|}{1-|b|^{2}} . \tag{3.26}
\end{equation*}
$$

(ii) If

$$
\begin{equation*}
-\cos \alpha<\mu<\frac{\cos \alpha}{3} \quad \text { and } \quad \frac{\cos \alpha+\mu}{3 \cos \alpha-\mu}<|b|<\sqrt{\frac{\cos \alpha+\mu}{5 \cos \alpha+\mu}}, \tag{3.27}
\end{equation*}
$$

then

$$
\frac{1-|b|}{1+|b|}<\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right) \quad \text { and } \quad g^{\prime}(u)>0\left(u \geq \frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right) .
$$

Hence

$$
\begin{equation*}
\delta=\sqrt{g\left(\frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)\right)}<\frac{2|b|}{1-|b|^{2}} \tag{3.28}
\end{equation*}
$$

(iii) If

$$
\begin{equation*}
\mu \geq \frac{\cos \alpha}{3} \quad \text { and } \quad|b|=\sqrt{\frac{\mu}{\cos \alpha+\mu}} \tag{3.29}
\end{equation*}
$$

then

$$
|b|^{2}=\frac{\mu}{\cos \alpha+\mu} \geq \frac{\cos \alpha+\mu}{5 \cos \alpha+\mu}
$$

and so

$$
\frac{2|b|^{2}}{1-|b|^{2}}-\frac{\mu}{\cos \alpha} \geq \frac{1}{2}\left(1-\frac{\mu}{\cos \alpha}\right)
$$

Thus $g(u)$ attains its minimum value at

$$
u_{0}=\frac{2|b|^{2}}{1-|b|^{2}}-\frac{\mu}{\cos \alpha}
$$

and

$$
\begin{equation*}
\delta=\sqrt{g\left(u_{0}\right)}=2|b| \sqrt{\frac{\cos \alpha+\mu}{\cos \alpha\left(1-|b|^{2}\right)}}=\frac{2|b|}{1-|b|^{2}} . \tag{3.30}
\end{equation*}
$$

(iv) If

$$
\begin{equation*}
\mu \geq \frac{\cos \alpha}{3} \quad \text { and } \quad \sqrt{\frac{\mu}{\cos \alpha+\mu}}<|b|<1 \tag{3.31}
\end{equation*}
$$

then from (iii) we easily have

$$
\begin{equation*}
\delta=\sqrt{g\left(u_{0}\right)}<\frac{2|b|}{1-|b|^{2}} . \tag{3.32}
\end{equation*}
$$

Now, by virtue of (3.19), (3.20), (3.21), and (i)-(iv), we have proved the theorem.

Theorem 7 Let

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)
$$

where

$$
\alpha_{j} \in \mathbb{C} \backslash\{0,-1,-2,-3, \ldots\} \quad(j=1,2, \ldots, l) .
$$

Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{8(\cos \alpha+\mu)}{\pi^{2}}\left|\frac{\beta_{1} \cdots \beta_{m}}{\alpha_{1} \cdots \alpha_{l}}\right| . \tag{3.33}
\end{equation*}
$$

The result is sharp.

Proof It can be easily verified that, for $z \in \mathbb{U}$,

$$
\begin{equation*}
\frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}=1+\frac{\alpha_{1} \cdots \alpha_{l}}{\beta_{1} \cdots \beta_{m}} a_{2} z+\cdots \tag{3.34}
\end{equation*}
$$

and

$$
\begin{align*}
h(z) & =1+\frac{8 z}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right)\left(\sum_{n=1}^{\infty} \frac{z^{n-1}}{2 n-1}\right)^{2} \\
& =1+\frac{8}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{v=0}^{n-1} \frac{1}{2 v+1}\right) z^{n} \\
& =1+\frac{8}{\pi^{2}}\left(1+\frac{\mu}{\cos \alpha}\right) z+\cdots \tag{3.35}
\end{align*}
$$

where

$$
f(z)=z+a_{2} z^{2}+\cdots \in \mathcal{S}_{m}^{l}\left(\alpha_{1}, \alpha, \mu\right)
$$

and $h(z)$ is given by (2.2). From (3.34), (3.35) and Theorem 1, we obtain

$$
\begin{align*}
\frac{\pi^{2} e^{i \alpha}}{8(\cos \alpha+\mu)}\left(\frac{z\left(H_{m}^{l}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{m}^{l}\left(\alpha_{1}\right) f(z)}-1\right) & =\frac{\pi^{2} e^{i \alpha} \alpha_{1} \cdots \alpha_{l}}{8(\cos \alpha+\mu) \beta_{1} \cdots \beta_{m}} a_{2} z+\cdots \\
& \prec \frac{\pi^{2} \cos \alpha}{8(\cos \alpha+\mu)}(h(z)-1) \in \mathcal{K} . \tag{3.36}
\end{align*}
$$

It is the well-known Rogosinski result (cf. [22, p.195]) that if

$$
g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}
$$

is analytic in $\mathbb{U}, g(z) \prec \phi(z)$ and $\phi(z) \in \mathcal{K}$, then $\left|b_{n}\right| \leq 1(n \in \mathbb{N})$. Hence (3.33) follows from (3.36) at once.

The estimate (3.33) is sharp since equality is attained for the function $f_{0}(z)$ defined by (2.11).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors did not provide this information

Author details

${ }^{1}$ Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, People's Republic of China ${ }^{2}$ Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, People's Republic of China. ${ }^{3}$ Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, Rzeszów, 35-959, Poland.

Acknowledgements

Dedicated to Professor Hari M Srivastava.
This work was partially supported by the National Natural Science Foundation of China (Grant No. 11171045).

References

1. Goodman, AW: On uniformly convex functions. Ann. Polon. Math. 56, 87-92 (1991)
2. Rønning, F: Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 118, 189-196 (1993)
3. Gangadharan, A, Shanmugam, TN, Srivastava, HM: Generalized hypergeometric function associated with k-uniformly convex functions. Comput. Math. Appl. 44, 1515-1526 (2002)
4. Goodman, AW: On uniformly starlike functions. J. Math. Anal. Appl. 155, 364-370 (1991)
5. Kanas, S, Srivastava, HM: Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 9, 121-132 (2000)
6. Kanas, S, Wiśniowska, A: Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105, 327-336 (1999)
7. Kanas, S, Yaguchi, T: Subclasses of k-uniformly convex and starlike functions defined by generalized derivative. Indian J. Pure Appl. Math. 32, 1275-1282 (2001)
8. Owa, S: On uniformly convex functions. Math. Japon. 48, 377-384 (1998)
9. Rønning, F: A survey on uniformly convex and uniformly starlike functions. Ann. Univ. Mariae Curie-Skłodowska, Sec. A 47, 123-134 (1993)
10. Rønning, F: On uniform starlikeness and related properties of univalent functions. Complex Variables Theory Appl. 24 233-239 (1994)
11. Dziok, J, Srivastava, HM: Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 103, 1-13 (1999)
12. Bernardi, SD: Convex and starlike univalent functions. Trans. Amer. Math. Soc. 135, 429-446 (1969)
13. Carlson, BC, Shaffer, DB: Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 15, 737-745 (1984)
14. Owa, S, Srivastava, HM: Univalent and starlike generalized hypergeometric functions. Canad. J. Math. 39, 1057-1077 (1987)
15. Ruscheweyh, S: New criteria for univalent functions. Proc. Amer. Math. Soc. 49, 109-115 (1975)
16. Sokół, J: On some applications of the Dziok-Srivastava operator. Appl. Math. Comp. 201, 774-780 (2008)
17. Sokół, J, Piejko, K: On the Dziok-Srivastava operator under multivalent analytic functions. Appl. Math. Comp. 177, 839-843 (2006)
18. Sokót, J: Classes of multivalent functions associated with a convolution operator. Comp. Math. Appl. 60, 1343-1350 (2010)
19. Srivastava, HM, Yang, D-G, Neng, X: Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator. Integral Transforms Spec. Funct. 20, 581-606 (2009)
20. Ruscheweyh, S: Convolutions in Geometric Function Theory. Sem. Math. Sup., vol. 83. Presses University Montreal, Montreal (1982)
21. Suffridge, TJ: Some remarks on convex maps of the unit disk. Duke Math. J. 37, 775-777 (1970)
22. Duren, PL: Univalent Functions. Springer, New York (1983)

doi:10.1186/1029-242X-2013-138

Cite this article as: Xu et al.: A class of analytic functions involving in the Dziok-Srivastava operator. Journal of Inequalities and Applications 2013 2013:138.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```

