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Abstract We prove that for a coarse space X the ideal S(X) of small subsets of X coincides
with the ideal D<(X) = {A ⊂ X : asdim(A) < asdim(X)} provided that X is coarsely
equivalent to a Euclidean space R

n . Also we prove that for a locally compact Abelian group
X , the equality S(X) = D<(X) holds if and only if the group X is compactly generated.
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1 Introduction

In this paper we study the interplay between the ideal S(X) of small subsets of a coarse space
X and the ideal D<(X) of subsets of asymptotic dimension less than asdim(X) in X . We
show that these two ideals coincide in spaces that are coarsely equivalent to R

n , in particular,
they coincide in each compactly generated locally compact abelian group.

Let us recall that a coarse space is a pair (X, E) consisting of a set X and a coarse structure
E on X , which is a family of subsets of X × X (called entourages) satisfying the following
axioms:
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(A) each ε ∈ E contains the diagonal �X = {(x, y) ∈ X2 : x = y} and is symmetric in the
sense that ε = ε−1 where ε−1 = {(y, x) : (x, y) ∈ ε};

(B) for any entourages ε, δ ∈ E there is an entourage η ∈ E that contains the composition
δ ◦ ε = {(x, z) ∈ X2 : ∃y ∈ X with (x, y) ∈ ε and (y, z) ∈ δ};

(C) a subset δ ⊂ X2 belongs to E if �X ⊂ δ = δ−1 ⊂ ε for some ε ∈ E .

A subfamily B ⊂ E is called a base of the coarse structure E if

E = {ε ⊂ X2 : ∃δ ∈ B with �X ⊂ ε = ε−1 ⊂ δ}.
A family B of subsets of X2 is a base of a (unique) coarse structure if and only if it satisfies
the axioms (A), (B).

Each subset A of a coarse space (X, E) carries the induced coarse structure EA = {ε∩ A2 :
ε ∈ E}. Endowed with this structure, the space (A, EA) is called a subspace of (X, E).

For an entourage ε ⊂ X2, a point x ∈ X , and a subset A ⊂ X let B(x, ε) = {y ∈ X :
(x, y) ∈ ε} be the ε-ball centered at x , B(A, ε) = ⋃

a∈A B(a, ε) be the ε-neighborhood of
A in X , and diam(A) = A × A be the diameter of A. For a family U of subsets of X we put
mesh(U) = ⋃

U∈U diam(U ).
Now we consider two basic examples of coarse spaces. The first of them is any metric

space (X, d) carrying the metric coarse structure whose base consists of the entourages
{(x, y) ∈ X2 : d(x, y) < ε} where 0 ≤ ε < ∞. A coarse space is metrizable if its coarse
structure is generated by some metric.

The second basic example is a topological group G endowed with the left coarse structure
whose base consists of the entourages {(x, y) ∈ G2 : x ∈ yK } where K = K −1 runs over
compact symmetric subsets of G that contain the identity element 1G of G. Let us observe
that the left coarse structure on G coincides with the metric coarse structure generated by
any left-invariant continuous metric d on G which is proper in the sense that each closed
ball B(e, R) = {x ∈ G : d(x, e) ≤ R} is compact. In particular, the coarse structure on
R

n , generated by the Euclidean metric coincides with the left coarse structure of the Abelian
topological group R

n .
Now we recall the definitions of large and small sets in coarse spaces. Such sets were

introduced in [4] and studied in [13, §11] and [2]. A subset A of a coarse space (X, E) is
called

• large if B(A, ε) = X for some ε ∈ E ;
• small if for each large set L ⊂ X the set L \ A remains large in X .

It follows that the family S(X) of small subsets of a coarse space (X, E) is an ideal. A
subfamily I ⊂ P(X) of the power-set of a set X is called an ideal if I is additive (in the
sense that A ∪ B ∈ I for all A, B ∈ I) and downwards closed (which means that A ∩ B ∈ I
for all A ∈ I and B ⊂ X ).

Small sets can be considered as coarse counterparts of nowhere dense subsets in topo-
logical spaces, see [2]. It is well-known [8, 7.4.18] that the ideal of nowhere dense subsets
in a Euclidean space R

n coincides with the ideal generated by closed subsets of topolog-
ical dimension < n in R

n . The aim of this paper is to prove a coarse counterpart of this
fundamental fact.

For this we need to recall [14, 9.4] the definition of the asymptotic dimension asdim(X)

of a coarse space X .

Definition 1.1 The asymptotic dimension asdim(X) of a coarse space (X, E) is the smallest
number n ∈ ω such that for each entourage ε ∈ E there is a cover U of X such that
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mesh(U) ⊂ δ for some δ ∈ E and each ε-ball B(x, ε), x ∈ X , meets at most n + 1 sets
U ∈ U . If such a number n ∈ ω does not exist, then we put asdim(X) = ∞.

In Theorem 2.7 we shall prove that

asdim(A ∪ B) ≤ max{asdim(A), asdim(B)}
for any subspaces A, B of a coarse space X . This implies that for every number n ∈ ω∪{∞}
the family {A ⊂ X : asdim(A) < n} is an ideal in P(X). In particular, the family

D<(X) = {A ⊂ X : asdim(A) < asdim(X)}
is an ideal in P(X). According to [5, 9.8.4], asdim(Rn) = n for every n ∈ ω.

The main result of this paper is:

Theorem 1.2 For every n ∈ N the ideal S(X) of small subsets in the space X = R
n coincides

with the ideal D<(X).

Theorem 1.2 will be proved in Sect. 5 with help of some tools of Combinatorial Topology.
In light of this theorem the following problem arises naturally:

Problem 1.3 Detect coarse spaces X for which S(X) = D<(X).

It should be mentioned that the class of coarse spaces X with S(X) = D<(X) is closed
under coarse equivalences.

A function f : X → Y between two coarse spaces (X, EX ) and (Y, EY ) is called

• coarse if for each δX ∈ EX there is εY ∈ EY such that for any pair (x, y) ∈ δX we get
( f (x), f (y)) ∈ εY ;

• a coarse equivalence if f is coarse and there is a coarse map g : Y → X such that
{(x, g ◦ f (x)) : x ∈ X} ⊂ εX and {(y, f ◦ g(y)) : y ∈ Y } ⊂ εY for some entourages
εX ∈ EX and εY ∈ EY .

Two coarse spaces X, Y are called coarsely equivalent if there is a coarse equivalence f :
X → Y .

Proposition 1.4 Assume that coarse spaces X, Y are coarsely equivalent. Then

(1) asdim(X) = asdim(Y );
(2) D<(X) = S(X) if and only if D<(Y ) = S(Y ).

This proposition will be proved in Sect. 3. Combined with Theorem 1.2 it implies:

Corollary 1.5 If a coarse space X is coarsely equivalent to a Euclidean space R
n, then

D<(X) = S(X).

Problem 1.3 can be completely resolved for locally compact Abelian topological groups
G, endowed with their left coarse structure. First we establish the following general fact,
which will be proved in Sect. 4.

Theorem 1.6 For each topological group X endowed with its left coarse structure we get
D<(X) ⊂ S(X).

We recall that a topological group G is compactly generated if G is algebraically generated
by some compact subset K ⊂ G.
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Theorem 1.7 For an Abelian locally compact topological group X the following conditions
are equivalent:

(1) S(X) = D<(X);
(2) X is compactly generated;
(3) X is coarsely equivalent to the Euclidean space R

n for some n ∈ ω.

This theorem will be proved in Sect. 6.

Remark 1.8 The equivalence (1)⇔(2) in Theorem 1.7 does not hold beyond the class of
Abelian groups. The simplest counterexample is the free group F2 with two generators,
endowed with the discrete topology. Any infinite cyclic subgroup Z ⊂ F2 has infinite index
in F2 and hence is small, yet asdim(Z) = asdim(F2) = 1.

A less trivial example is the wreath product A � Z of a non-trivial finite abelian group A
and Z. The group A � Z has asymptotic dimension 1 (see [9]) and the subgroup Z is small in
A � Z and has asdim(Z) = 1 = asdim(A � Z). Let us recall that the group A � Z consists of
ordered pairs ((ai )i∈Z, n) ∈ ( ⊕Z A) × Z and the group operation on A � Z is defined by

((ai ), n) ∗ ((bi ), m) = ((ai+m + bi ), n + m).

The group A � Z is finitely-generated and meta-abelian but is not finitely presented, see [3].
Groups which are coarsely equivalent to abelian groups were studied in [1].

Problem 1.9 Is S(X) = D<(X) for each connected Lie group X? For each discrete poly-
cyclic group X?

2 The asymptotic dimension of coarse spaces

In this section we present various characterizations of the asymptotic dimension of coarse
spaces. First we fix some notation. Let (X, E) be a coarse space, ε ∈ E and A ⊂ X . We shall
say that A has diameter less than ε if diam(A) ⊂ ε where diam(A) = A × A. A sequence
x0, . . . , xm ∈ X is called an ε-chain if (xi , xi+1) ∈ ε for all i < m. In this case the finite
set C = {x0, . . . , xm} also will be called an ε-chain. A set C ⊂ X is called ε-connected if
any two points x, y ∈ C can be linked by an ε-chain x = x0, . . . , xm = y. The maximal
ε-connected subset C(x, ε) ⊂ X containing a given point x ∈ X is called the ε-connected
component of x . It consists of all points y ∈ X that can be linked with x by an ε-chain
x = x0, . . . , xm = y.

A family U of subsets of X is called ε-disjoint if (U × V ) ∩ ε = ∅ for any distinct sets
U, V ∈ U . Each natural number n is identified with the set {0, . . . , n − 1}.

We shall study the interplay between the asymptotic dimension introduced in Definition 1.1
and the following modification:

Definition 2.1 The colored asymptotic dimension asdimcol(X) of a coarse space (X, E) is
the smallest number n ∈ ω such that for every entourage ε ∈ E there is a cover U of X such
that mesh(U) ⊂ δ for some δ ∈ E and U can be written as the union U = ⋃

i∈n+1 Ui of
n + 1 many ε-disjoint subfamilies Ui . If such a number n ∈ ω does not exist, then we put
asdimcol(X) = ∞.

Without lost of generality we can assume that the cover U = ⋃
i∈n+1 Ui in the above

definition consists of pairwise disjoint sets. In this case we can consider the coloring χ :
X → n + 1 = {0, . . . , n} such that χ−1(i) = ⋃

Ui for every i ∈ n + 1. For this coloring
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every χ-monochrome ε-connected subset C ⊂ X lies in some U ∈ U and hence has diameter
diam(C) ⊂ diam(U ) ⊂ mesh(U) ⊂ δ. A subset A ⊂ X is χ-monochrome if χ(A) is a
singleton. Thus we arrive to the following useful characterization of the colored asymptotic
dimension.

Proposition 2.2 A coarse space (X, E) has asdimcol(X) ≤ n for some number n ∈ ω if and
only if for any ε ∈ E there are a coloring χ : X → n + 1 and an entourage δ ∈ E such that
each χ-monochrome ε-chain C ⊂ X has diam(C) ⊂ δ.

Proof The “only if” part follows from the above discussion. To prove the “if” part, for every
ε ∈ E we need to construct a cover U = ⋃

i∈n+1 Ui such that mesh(U) ∈ E and each family
Ui is ε-disjoint. By our assumption, there is a coloring χ : X → n + 1 and an entourage
δ ∈ E such that each χ-monochrome ε-chain C ⊂ X has diam(C) ⊂ δ.

For each x ∈ X let Cχ (x, ε) be the set of all points y ∈ X that can be linked with x by
a χ-monochrome ε-chain x = x0, x1, . . . , xm = y. It follows that diam(Cχ (x, ε)) ⊂ δ. For
every i ∈ n + 1 consider the ε-disjoint family Ui = {Cχ (x, ε) : x ∈ χ−1(i)}. It is clear that
U = ⋃

i∈n+1 Ui is a cover with mesh(U) ⊂ δ ∈ E , witnessing that asdimcol(X) ≤ n. ��
Now we are ready to prove the equivalence of two definitions of asymptotic dimension.

For metrizable coarse spaces this equivalence was proved in [5, 9.3.7].

Proposition 2.3 Each coarse space (X, E) has asdim(X) = asdimcol(X).

Proof To prove that asdim(X) ≤ asdimcol(X), put n = asdimcol(X) and take any entourage
ε ∈ E . By Definition 2.1, for the entourage ε◦ε ∈ E we can find a cover U = ⋃

i∈n+1 Ui with
mesh(U) ∈ E such that each family Ui is ε ◦ ε-disjoint. We claim that each ε-ball B(x, ε),
x ∈ X , meets at most one set of each family Ui . Assuming that B(x, ε) meets two distinct
sets U, V ∈ Ui , we can find points u ∈ U and v ∈ V with (x, u), (x, v) ∈ ε and conclude
that (u, v) ∈ ε ◦ ε, which is not possible as Ui is ε ◦ ε-disjoint. Now we see that the ball
B(x, ε) meets at most n + 1 element of the cover U and hence asdim(X) ≤ n.

The proof of the inequality asdimcol(X) ≤ asdim(X) is a bit longer. If the dimension
n = asdim(X) is infinite, then there is nothing to prove. So, we assume that n ∈ ω. To prove
that asdimcol(X) ≤ n, fix an entourage ε ∈ E . Let ε0 = �X and εk+1 = εk ◦ ε for k ∈ ω.
Since asdim(X) ≤ n, for the entourage εn+1 ∈ E we can find a cover U of X such that
δ = mesh(U) ∈ E and each εn+1-ball B(x, εn+1) meets at most n + 1 many sets U ∈ U . For
every i ≤ n+1 and x ∈ X consider the subfamily U(x, εi ) = {U ∈ U : B(x, εi )∩U �= ∅} of
U . It follows that 1 ≤ |U(x, εi )| ≤ |U(x, εi+1)| ≤ n + 1 for every 0 ≤ i ≤ n. Consequently,
|U(x, εi )| = i for some i ≤ n + 1. Let χ(x) be the maximal number k ≤ n such that
|U(x, εk+1)| = k +1. In such a way we have defined a coloring χ : X → n+1 = {0, . . . , n}.

To finish the proof it suffices to show that any χ-monochrome ε-chain C = {x0, . . . , xm} ⊂
X has diam(C) ⊂ δ ◦ εn+1. Let k = χ(x0) be the color of the chain C . It follows that
|U(xi , ε

k+1)| = k+1 for all xi ∈ C . We claim thatU(xi , ε
k+1) = U(xi+1, ε

k+1) for all i < m.
Assuming the converse, we would get that |U(xi , ε

k+1) ∪ U(xi+1, ε
k+1)| ≥ k + 3 and then

the family U(xi , ε
k+2) ⊃ U(xi , ε

k+1)∪U(xi+1, ε
k+1) has cardinality |U(xi , ε

k+2)| ≥ k +3,
which implies that |U(xi , ε

i )| = i for some k + 3 ≤ i ≤ n + 1. But this contradicts
the definition of k = χ(xi ). Hence U(xi , ε

k+1) = U(x0, ε
k+1) for all i ≤ m and then

C ⊂ B(U, εk+1) for every U ∈ U(x0, ε
k+1). Now we see that diam(C) ⊂ diam(U )◦εk+1 ⊂

δ ◦ εn+1. ��
Propositions 2.2 and 2.3 imply:
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Corollary 2.4 A coarse space (X, E) has asymptotic dimension asdim(X) ≤ n for some
n ∈ ω if and only if for any ε ∈ E there are δ ∈ E and a coloring χ : X → n + 1 such that
any χ-monochrome ε-chain C ⊂ X has diam(C) ⊂ δ.

This corollary can be generalized as follows (cf. [6]).

Proposition 2.5 A coarse space (X, E) has asdim(X) ≤ n for some n ∈ ω if and only if for
any entourage ε ∈ E there is an entourage δ ∈ E such that for any finite set F ⊂ X there is
a coloring χ : F → n + 1 such that each χ-monochrome ε-chain C ⊂ F has diam(C) ⊂ δ.

Proof This proposition will follow from Corollary 2.4 as soon as for any ε ∈ E we find δ ∈ E
and a coloring χ : X → n + 1 such that each χ-monochrome ε-chain in X has diameter less
that δ.

By our assumption, there is an entourage δ ∈ E such that for every finite subset F ⊂ X
there is a coloring χF : F → n+1 such that each χF -monochrome ε-chain in F has diameter
less that δ. Extend χF to a coloring χ̃F : X → n + 1.

Let F denote the family of all finite subsets of X , partially ordered by the inclusion relation
⊂. The colorings χ̃F , F ∈ F , can be considered as elements of the compact Hausdorff space
K = {0, . . . , n}X endowed with the Tychonoff product topology. The compactness of K
implies that the net {χ̃F }F∈F has a cluster point χ ∈ K , see [8, 3.1.23]. The latter means
that for each finite set F0 ∈ F and a neighborhood O(χ) ⊂ K there is a finite set F ∈ F
such that F ⊃ F0 and χ̃F ∈ O(χ).

We claim that the coloring χ : X →n +1 has the required property: each χ-monochrome
ε-chain C ⊂ X has diam(X) ⊂ δ. Observe that the finite set C determines a neighborhood
OC (χ)={ f ∈ K : f |C =χ |C}, which contains a coloring χ̃F for some finite set F ⊃ C .
The choice of the coloring χF = χ̃F |F guarantees that the set C ⊂ F has diam(C) ⊂ δ. ��

Proposition 2.5 admits the following self-generalization.

Theorem 2.6 A coarse space (X, E) has asdim(X) ≤ n for some n ∈ ω if and only if for
any entourage ε ∈ E there is an entourage δ ∈ E such that for any finite ε-connected subset
F ⊂ X there is a coloring χ : F → n + 1 such that each χ-monochrome ε-chain C ⊂ F
has diam(C) ⊂ δ.

Finally, let us prove Addition Theorem for the asymptotic dimension. For metrizable
spaces this theorem is well known; see [14, 9.13] or [5, 9.7.1].

Theorem 2.7 For any subspaces A, B of a coarse space (X, E) we get

asdim(A ∪ B) ≤ max{asdim(A), asdim(B)}.
Proof Only the case of finite n = max{asdim(A), asdim(B)} requires the proof. Without
loss of generality the sets A and B are disjoint. To show that asdim(A ∪ B) ≤ n we shall
apply Corollary 2.4. Fix any entourage ε ∈ E . Since asdim(A) ≤ n there are an entourage
δA ∈ E and a coloring χA : A → n + 1 such that each χ-monochrome ε-chain in A has
diameter less that δA. Since asdim(B) ≤ n, for the entourage εB = ε ◦ δA ◦ ε there are
an entourage δB ∈ E and a coloring χB : A → {0, . . . , n} such that each χ-monochrome
εB -chain in B has diameter less that δB .

The union of the colorings χA and χB yields the coloring χ : A∪B → {0, . . . , n} such that
χ |A = χA and χ |B = χB . We claim that each χ-monochrome ε-chain C = {x0, . . . , xm} ⊂
A ∪ B has diam(C) ⊂ δ where δ = δA ◦ ε ◦ δB ◦ ε ◦ δA. Without loss of generality, the points
x0, . . . , xm of the chain C are pairwise distinct.
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If C ⊂ A, then C , being a χA-monochrome ε-chain in A has diam(C) ⊂ δA ⊂ δ and we
are done. So, we assume that C �⊂ A. In this case b = |C ∩ B| ≥ 1 and we can choose a
strictly increasing sequence 0 ≤ k1 < k2 < · · · < kb ≤ m such that {xk1 , . . . , xkb } = C ∩ B.
Then {x0, . . . , xk1−1}, being a χA-monochrome ε-chain in A, has diameter less that δA.
Consequently, the ε-chain {x0, . . . , xk1} has diameter less that δA ◦ ε ⊂ εB . By the same
reason the ε-chain {xkb , . . . , xm} has diameter less that ε ◦ δA ⊂ εB and for every 1 ≤ i < b
the ε-chain {xki , . . . , xki+1} ⊂ {xki } ∪ A ∪ {xki+1} has diameter less than ε ◦ δA ◦ ε = εB .
Then {xk1 , . . . , xkb }, being a χB -monochrome εB -chain in B, has diameter less that δB . Now
we see that the ε-chain C = {x0, . . . , xm} has diam(C) ⊂ δA ◦ ε ◦ δB ◦ ε ◦ δA = δ. ��

The characterization Theorem 2.6 will be applied to prove the following theorem which
was known [7, 2.1] in the context of countable groups.

Theorem 2.8 If G is a topological group endowed with its left coarse structure, then

asdim(G) = sup {asdim(H) : H is a compactly generated subgroup ofG}.
Proof Let n = sup {asdim(H) : H is a compactly generated subgroup ofG}. It is clear that
n ≤ asdim(G). The reverse inequality asdim(G) ≤ n is trivial if n = ∞. So, we assume that
n < ∞. To prove that asdim(G) ≤ n, we shall apply Theorem 2.6. Let E be the left coarse
structure of the topological group G. Given any entourage ε ∈ E , we should find an entourage
δ ∈ E such that for each finite ε-connected subset F ⊂ G there is a coloring χ : F → n + 1
such that each χ-monochrome ε-chain C ⊂ F has diam(C) ⊂ δ.

By the definition of the coarse structure E , for the entourage ε ∈ E there is a compact
subset Kε = K −1

ε ⊂ G such that ε ⊂ {(x, y) ∈ G2 : x ∈ yKε}. Let H be the subgroup of G
generated by the compact set Kε, EH be the left coarse structure of H , and εH = {(x, y) ∈
H2 : x ∈ yKε} ∈ EH . Since asdimcol(H) = asdim(H) ≤ n, by Proposition 2.2, there is
a coloring χH : H → n + 1 and an entourage δH ∈ EH such that each χH -monochrome
ε-chain C ⊂ H has diameter diam(C) ⊂ δH . By the definition of the coarse structure EH ,
there is a compact subset Kδ = K −1

δ � 1H of H such that {(x, y) ∈ H × H : x ∈ yKδ}.
We claim that the entourage δ = {(x, y) ∈ G × G : x ∈ yKδ} satisfies our requirements.

Let F be a finite ε-connected subset of G. Then for each point x0 ∈ F we get F ∈ x0 H and
hence x−1

0 F ⊂ H . So, we can define a coloring χ : F → n + 1 letting χ(x) = χH (x−1
0 x)

for x ∈ F . If C ⊂ F is a χ-monochrome ε-chain, then x−1
0 C is a χH -monochrome εH -chain

in H and hence diam(x−1
0 C) ⊂ δH . The latter means that for any points c, c′ ∈ C we get

(x−1
0 c, x−1

0 c′) ∈ δH ⊂ {(x, y) ∈ H × H : x ∈ yKδ} and hence x−1
0 c ∈ x−1

0 c′Kδ and
c ∈ c′Kδ , which means that (c, c′) ∈ δ and hence diam(C) ⊂ δ. ��

3 Proof of Proposition 1.4

Let f : X → Y be a coarse equivalence between two coarse spaces (X, EX ) and (Y, EY ).
Then there is a coarse map g : Y → X such that {(x, g ◦ f (x)) : x ∈ X} ⊂ ηX and
{(y, f ◦ g(y)) : y ∈ Y } ⊂ ηY for some entourages ηX ∈ EX and ηY ∈ EY . It follows that
B( f (X), ηX ) = Y and B(g(Y ), ηX ) = X .

1. First we prove that asdim(X) = asdim(Y ). Actually, this fact is known [14, p.129] and
we present a proof for the convenience of the reader. By the symmetry, it suffices to show
that asdim(X) ≤ asdim(Y ). This inequality is trivial if n = asdim(Y ) is infinite. So,
assume that n < ∞. By Propositions 2.2 and 2.3, the inequality asdim(X) ≤ n will be
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proved as soon as for each εX ∈ EX we find δX ∈ EX and a coloring χX : X → n + 1
such that each χX -monochrome εX -chain C ⊂ X has diameter diam(C) ⊂ δX .

Since the map f : X → Y is coarse, for the entourage εX there is an entourage εY such
that {( f (x), f (x ′)) : (x, x ′) ∈ εX } ⊂ εY . Since asdim(Y ) = n, for the entourage εY there
is an entourage δY ∈ EY and a coloring χY : Y → n + 1 such that each χY -monochrome
εY -chain CY ⊂ Y has diameter diam(CY ) ⊂ δY .

Since the function g : Y → X is coarse, for the entourage δY there is an entourage δ′
X such

that {(g(y), g(y′)) : (y, y′) ∈ δY } ⊂ δ′
Y . Put δX = ηX ◦ δ′

X ◦ ηY and consider the coloring
χX = χY ◦ f : X → n +1 of X . We claim that each χX -monochrome εX -chain CX ⊂ X has
diameter diam(CX ) ⊂ δX . Then choice of εY guarantees that the set CY = f (CX ) is an εY -
chain. Being χX -monochrome, it has diameter diam(CY ) ⊂ δY . Then the set C ′

X = g(CY )

has diameter diam(C ′
X ) ⊂ δ′

X . Now take any two points c, c′ ∈ CX and observe that the pairs
(c, g ◦ f (c)) and (c′, g ◦ f (c′)) belong to the entourage ηX . Consequently,

(c, c′) ∈ {(c, g ◦ f (c))} ◦ {(g ◦ f (c), g ◦ f (c′)} ◦ {(g ◦ f (c′), c′)} ⊂ ηX ◦ δ′
X ◦ ηX = δX

which means that the εX -chain CX has diameter diam(CX ) ⊂ δX . So, asdim(X) ≤ n.

2. The second statement of Proposition 1.4, follows Claims 3.1 and 3.4 proved below.

Claim 3.1 A subset A ⊂ X and its image f (A) ⊂ Y have the same asymptotic dimension
asdim(A) = asdim( f (A)).

Proof This claim follows from Proposition 1.4(1) proved above, since A and f (A) are
coarsely equivalent. ��
Claim 3.2 A subset A ⊂ X is large in X if and only if its image f (A) is large in Y .

Proof If A is large in X , then B(A, εX ) = X for some εX ∈ EX . Since f is coarse, there
exists εY ∈ EY such that for each (x0, x1) ∈ εX we get ( f (x0), f (x1)) ∈ εY . It follows that
B( f (A), εY ) ⊃ f (Y ) and B( f (A), εY ◦ ηY ) = B(B( f (A), εY ), ηY ) ⊃ B( f (X), ηY ) = Y ,
which means that f (A) is large.

Now assume conversely that the set f (A) is large in Y . Then g ◦ f (A) is large in X . Since
g ◦ f (A) ⊂ B(A, ηX ), we conclude that A in large in X . So, A is large in X if and only if
f (A) is large in Y . ��
Claim 3.3 A subset A ⊂ X is small if and only if for each entourage εX ∈ EX the set
B(A, εx ) is small.

Proof The “if” part is trivial. To prove the “only if” part, assume that the set A is small in X . To
show that B(A, εX ) is small in X , it is necessary to check that for each large subset L ⊂ X the
complement L\B(A, εX ) is large in X . Consider the set L ′ = (L\B(A, εX ))∪ A and observe
that L ⊂ B(L ′, εX ) and hence L ′ is large in X . Since A is small, the set L ′ \ A = L \ B(A, εX )

is large in X . ��
Claim 3.4 A subset A ⊂ X is small in X if and only if its image f (A) is small in Y .

Proof Assume that A is small in X . To prove that f (A) is small in Y , we need to check
that for any large subset L ⊂ Y the complement L \ f (A) is large in Y . Claim 3.2 implies
that the set g(L) is large in X . By Claim 3.3, the set B(A, ηX ) is small in X and hence
the complement g(L) \ B(A, ηX ) remains large in X . By Claim 3.2 f (g(L) \ B(A, ηX ))
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is large in Y . We claim that f (g(L) \ B(A, ηX )) ⊂ B(L \ f (A), ηY ). Indeed, given point
y ∈ f (g(L) \ B(A, ηX )), find a point x ∈ g(L) \ B(A, ηX ) such that y = f (x) and a point
z ∈ L such that x = g(z). We claim that z /∈ f (A). Assuming conversely that z ∈ f (A), we
get x = g(z) ∈ g ◦ f (A) ⊂ B(A, ηX ), which contradicts the choice of x . So, z ∈ L \ f (A)

and y = f ◦ g(z) ∈ B(z, ηY ) ⊂ B(L \ f (A), ηY ).
Taking into account that the set f (g(L) \ B(A, ηX )) ⊂ B(L \ f (A), ηY ) is large in Y ,

we conclude that the set L \ f (A) is large in Y and hence f (A) is small in Y .
Now assume that the set f (X) is small in Y . Then the set g ◦ f (A) is small in X and so

are the sets B(g ◦ f (A), ηX ) ⊃ A. ��

4 Proof of Theorem 1.6

Let G be a topological group and E be its left coarse structure. The inclusion D<(G) ⊂ S(G)

will follow as soon as we prove that each non-small subset A ⊂ G has asymptotic dimension
asdim(A) = asdim(G). We divide the proof of this fact into 3 steps.

Claim 4.1 There is an entourage εA ∈ E such that the set G\B(A, εA) is not large in G.

Proof Since A is not small, there is a large set L ⊂ X such that the complement L\A is not
large. Since L is large in X , there is an entourage εA ∈ E such that B(L , εA) = G. We claim
that the set G\B(A, εA) is not large. Assuming the opposite, we can find an entourage δ ∈ E
such that B(G\B(A, εA), δ) = G. Then for each x ∈ G the ball B(x, δ) meets G \ B(A, εA)

at some point y. By the choice of εA, the ball B(y, εA) meets the large set L at some point
z. It follows from y /∈ B(A, εA) that z ∈ L ∩ B(y, ε) ⊂ L ∩ (X\A) = L\A and hence
x ∈ B(L\A, εA ◦ δ), which means that L \ A is large in X . This is a required contradiction.

��
Claim 4.2 asdim(B(A, εA)) = asdim(A).

Proof Observe that the identity embedding i : A → B(A, εA) is a coarse equivalence. The
coarse inverse j : B(A, εA) → A to i can be defined by choosing a point j (x) ∈ B(x, εA)∩A
for each x ∈ B(A, εA). Now we equality asdim(B(A, εA)) = asdim(A) follows from the
invariance of the asymptotic dimension under coarse equivalences, see Proposition 1.4. ��
Claim 4.3 asdim(G) = asdim(A).

Proof The inequality asdim(A) ≤ asdim(G) is trivial. So, it suffices to check that
asdim(G) ≤ n where n = asdim(A) = asdim(B(A, εA)). If n is infinite, then there is
nothing to prove. So, we assume that n ∈ ω.

For the proof of the inequality asdim(G) ≤ n, we shall apply Theorem 2.6. Given any
ε ∈ E we should find δ ∈ E such that for each finite ε-connected subset F ⊂ G there is a
coloring χ : F → n+1 such that each χ-monochrome ε-chain C ⊂ F has diam(C) ⊂ δ. By
the definition of the left coarse structure E we lose no generality assuming that ε = {(x, y) ∈
G × G : x ∈ yKε} for some compact subset Kε = K −1

ε ⊂ G containing the neutral element
1G of G. In this case the entourage ε is left invariant in the sense that for each pair (x, y) ∈ ε

and each z ∈ G the pair (zx, zy) belongs to ε.
Since asdimcol(B(A, εA)) = asdim(B(A, εA)) ≤ n, for the entourage ε ∈ E , there are

an entourage δ ∈ E and a coloring χA : B(A, εA) → n + 1 such that each χ-monochrome
ε-chain C ⊂ B(A, εA) has diam(C) ⊂ δ, see Proposition 2.2. By the definition of the left
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coarse structure E , we lose no generality assuming that δ = {(x, y) ∈ G × G : x ∈ yKδ} for
some compact set Kδ = K −1

δ � 1G of G, which implies that the entourage δ is left invariant.
Now take any finite ε-connected subset F ⊂ G. Replacing F by F ∪ F−1 ∪ {1G} we

can assume that F = F−1 � 1G . Since the set G \ B(A, εA) is not large, there is a point
z /∈ (G \ B(A, εA))F . Then zF−1 is disjoint with G \ B(A, εA) and hence zF = zF−1 ⊂
B(A, εA). So, it is legal to define a coloring χ : F → n + 1 by the formula χ(x) = χA(zx)

for x ∈ F . Taking into account the left invariance of the entourages ε and δ, it is easy to see
that each χ-monochrome ε-chain C ⊂ F has diameter diam(C) ⊂ δ. By Propositions 2.2
and 2.3, asdim(G) = asdimcol(G) ≤ n = asdim(A). ��

5 Proof of Theorem 1.2

We need to prove that a subset A ⊂ R
n is small if and only if it has asymptotic dimension

asdim(A) < asdim(Rn) = n. The “if” part of this characterization follows from the inclusion
D<(Rn) ⊂ S(Rn) proved in Theorem 1.6. To prove the “only if” part, we need to recall some
(standard) notions of Combinatorial Topology [10,12].

On the Euclidean space R
n we shall consider the metric generated by the sup-norm ‖x‖ =

maxi∈n |x(i)|.
By the standard n-dimensional simplex we understand the compact convex subset

� =
{

(x0, . . . , xn) ∈ [0, 1]n+1 :
n∑

i=0

xi = 1

}

⊂ R
n+1

of the Euclidean space R
n+1 endowed with the sup-norm. For each i ≤ n by vi : n + 1 →

{0, 1} ⊂ R we denote the vertex of � defined by v−1
i (1) = {i}. For each vertex vi of �

consider its star

St�(vi ) = {x ∈ � : x(i) > 0}
and its barycentric star

St ′�(vi ) =
{

x ∈ � : x(i) = max
j≤n

x( j)

}

⊂ St�(vi ).

It is clear that
⋃n

i=0 St ′�(vi ) = � while
⋂n

i=0 St ′�(vi ) = {b�} is the singleton containing
the barycenter

b� = 1
n+1

n∑

i=0

vi

of the simplex �.

Claim 5.1
⋂n

i=0 B(St ′�(vi ), ε) ⊂ B(b�, nε) for each positive real number ε.

Proof Given any vector x ∈ ⋂n
i=0 B(St ′�(vi ), ε), for every i ≤ n we can find a vector

y ∈ St ′�(vi ) with ‖x − y‖ < ε. Then |xi − yi | ≤ ‖x − y‖ < ε and hence xi > yi − ε =
max j≤n y j − ε ≥ 1

n+1 − ε. On the other hand,

xi = 1 −
∑

j �=i

x j < 1 −
∑

j �=i

(
1

n + 1
− ε

)

= 1 − n

n + 1
+ nε = 1

n + 1
+ nε.

So, ‖x − b�‖ < nε. ��
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Now we are going to generalize Claim 5.1 to arbitrary simplexes. By an n-dimensional
simplex in R

n we understand the convex hull σ = conv(σ (0)) of an affinely independent
subset σ (0) ⊂ R

n of cardinality |σ (0)| = n + 1. Each point v ∈ σ (0) is called a vertex of the
simplex σ . The arithmetic mean

bσ = 1

n + 1

∑

v∈σ (0)

v

of the vertices is called the barycenter of the simplex σ . By ∂σ we denote the boundary of
the simplex σ in R

n . Observe that the homothetic copy 1
2 bσ + 1

2σ = { 1
2 bσ + 1

2 x : x ∈ σ } of
σ is contained in the interior σ \ ∂σ of σ . For each vertex v ∈ σ (0) let

Stσ (v) = σ \ conv(σ (0)\{v})
be the star of v in σ .

In fact, n-dimensional simplexes can be alternatively defined as images of the standard
n-dimensional simplex � under injective affine maps f : � → R

n .
A map f : � → R

n is called affine if f (t x + (1 − t)y) = t f (x) + (1 − t) f (y) for
any points x, y ∈ � and a real number t ∈ [0, 1]. It is well-known that each affine function
f : � → R

n is uniquely defined by its restriction f |�(0) to the set �(0) = {vi }i≤n of vertices
of �.

A map f : � → R
n will be called b�-affine if for every i ≤ n the restriction

f |conv({b�}∪�(0)\{vi }) is affine. A b�-affine function f : � → R
n is uniquely deter-

mined by its restriction f |�(0) ∪ {b�}.
A function f : X → Y between metric spaces (X, dX ) and (Y, dY ) is called Lipschitz if

it its Lipschitz constant

Lip( f ) = sup

{
dY ( f (x), f (x ′))

dX (x, x ′)
: x, x ′ ∈ X, x �= x ′

}

is finite. A bijective function f : X → Y is bi-Lipschitz if f and f −1 are Lipschitz.

Claim 5.2 For any n-dimensional simplex σ in R
n there is a real constant L such that each

b�-affine function f : � → σ with f (�(0)) = σ (0) and f (b) ∈ 1
2 bσ + 1

2σ is bijective,
bi-Lipschitz and has Lip( f ) · Lip( f −1) ≤ L.

This claim can be easily derived from the fact that each b�-affine function f : � → σ

with f (�(0)) = σ (0) is Lipschitz and its Lipschitz constant Lip( f ) depends continuously
on f (b�).

Given an n-dimensional simplex σ ⊂ R
n and a point b′ ∈ σ \ ∂σ in its interior, fix a

b�-affine function f : � → σ such that f (�(0)) = σ (0) and f (b�) = b′. For each vertex
v ∈ σ (0) consider its b′-barycentric star

St ′σ,b′(v) = f
(
St ′�( f −1(v))

) ⊂ Stσ (v).

It is easy to see that the set Stσ,b′(v) does not depend on the choice of the b�-affine function f .

Claim 5.3 For any n-dimensional simplex σ in R
n there is a real constant L such that for

each point b′ ∈ 1
2 bσ + 1

2σ and each ε > 0 we get σ ∩ ⋂
v∈σ (0) B(St ′

σ,b′(v), ε) ⊂ B(b′, Lε).

Proof By Claim 5.2, there is a real constant C such that each bijective b�-affine function
f : � → σ with f (�(0)) = σ (0) and f (b�) ∈ 1

2 bσ + 1
2σ has Lip( f ) · Lip( f −1) ≤

C . Put L = nC . Given any point b′ ∈ 1
2 bσ + 1

2σ , choose a bijective b�-affine function
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f : � → σ such that f (�(0)) = σ (0) and f (bσ ) = b′. The choice of C guarantees that
Lip( f ) · Lip( f −1) ≤ C . Now observe that

σ ∩
⋂

v∈σ (0)

B(St ′σ,b′(v), ε) =
⋂

v∈σ (0)

f ◦ f −1
(

B(St ′σ,b′(v), ε)
)

⊂
⋂

v∈σ (0)

f
(

B( f −1(St ′σ,b′(v)), Lip( f −1)ε)
)

=
⋂

v∈σ (0)

f
(
B(St ′�( f −1(v)), Lip( f −1)ε)

)

= f

⎛

⎝
⋂

v∈�(0)

B
(
St ′�(v), Lip( f −1)ε

)
⎞

⎠

⊂ f
(
B(b�, nLip( f −1)ε)

) ⊂ B
(

f (b�), Lip( f )Lip( f −1)nε
)

= B(b′, Cnε) = B(b′, Lε).

��
Now consider the binary unit cube K = {0, 1}n ⊂ R

n endowed with the partial ordering
≤ defined by x ≤ y iff x(i) ≤ y(i) for all i < n. Given two vectors x, y ∈ {0, 1}n , we write
x < y if x ≤ y and x �= y.

For every increasing chain v0 < v1 < . . . < vn of points of the binary cube K = {0, 1}n ,
consider the simplex conv{v0, . . . , vn} and let TK be the (finite) set of these simplexes. Next,
consider the family T = {σ + z : σ ∈ TK , z ∈ Z

n} of translations of the simplexes from
the family TK , and observe that

⋃
T = R

n . For each point v ∈ Z
n let

StT (v) =
⋃

{Stσ (v) : v ∈ σ ∈ T }
be the T -star of v in the triangulation T of the space R

n .
Now we are able to prove the “only if” part of Theorem 1.2. Assume that a subset A ⊂ R

n

is small. Then there is a function ϕ : (0,∞) → (0,∞) such that for each δ ∈ (0,∞) and
a point x ∈ R

n there is a point y ∈ R
n with B(y, δ) ⊂ B(x, ϕ(δ)) \ A. The inequality

asdim(A) < n will follow as soon as given any δ < ∞ we construct a cover U of A with
finite mesh(U) = supU∈U diam(U ) such that each δ-ball B(a, δ), a ∈ A, meets at most n
elements of the cover U .

By Claim 5.3, there is a constant L such that for each simplex σ ∈ T , each point b′ ∈
1
2 bσ + 1

2σ and each ε > 0 we get σ ∩ ⋂
v∈σ (0) B(St ′

σ,b′(v), ε) ⊂ B(b′, Lε).
Given any δ < ∞, choose ε > 0 so small that for any simplex σ ∈ T the following

conditions hold:

(1) B
(
bσ , εϕ(Lδ)

) ⊂ 1
2 bσ + 1

2σ ;
(2) for any b′ ∈ 1

2 bσ + 1
2σ and any vertex v ∈ σ (0) the 2εδ-neighborhood B(St ′

σ,b′(v), 2εδ)

lies in the T -star StT (v) of v.

Now consider the closed cover

T̃ = { 1
ε
σ : σ ∈ T

}

of the space R
n and observe that for each simplex σ ∈ T̃ we get

(1ε) B
(
bσ , ϕ(Lδ)

) ⊂ 1
2 bσ + 1

2σ ;
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(2ε) for any b′ ∈ 1
2 bσ + 1

2σ and any vertex v ∈ σ (0) the 2δ-neighborhood B(St ′
σ,b′(v), 2δ)

lies in the T̃ -star StT̃ (v) of v.

By the choice of the function ϕ, for each simplex σ ∈ T̃ , there is a point b′
σ ∈ R

n such
that B(b′

σ , Lδ) ⊂ B(bσ , ϕ(Lδ)) \ A. The condition (1ε) guarantees that

b′
σ ∈ B(bσ , ϕ(Lδ)) ⊂ 1

2 bσ + 1
2σ.

For every point v ∈ 1
ε
Z

n consider the set

St ′(v) =
⋃ {

Stσ,b′
σ
(v) : σ ∈ T̃ , v ∈ σ (0)

}
⊂ StT̃ (v)

and observe that U = {St ′(v) : v ∈ 1
ε
Z

n} is a cover of the Euclidean space R
n . It follows

that

mesh(U) = sup
v∈ε−1Zn

diam(St ′(v)) ≤ 2 sup
v∈ε−1Zn

diam(σ ) ≤ 2ε−1diam([0, 1]n) < ∞.

It remains to check that each ball B(a, δ), a ∈ A, meets at most n sets U ∈ U .
Assume conversely that there are a point a ∈ A and a set V ⊂ ε−1

Z
n of cardinality

|V | = n + 1 such that B(a, δ) ∩ St ′(v) �= ∅ for each v ∈ V . Then a ∈ ⋂
v∈V B(St ′(v), δ).

It follows from a ∈ ⋂
v∈V B(St ′(v), δ) ⊂ ⋂

v∈V StT̃ (v) that V coincides with the set σ (0)

of vertices of some simplex σ ∈ T̃ and a lies in the interior of the simplex σ .
Next, we show that a ∈ B(St ′

σ,b′
σ
(v), δ) for each v ∈ V . In the opposite case, a ∈

B(St ′
τ,b′

τ
(v), δ) ⊂ B(τ, δ) for some simplex τ ∈ T̃ \ {σ } such that v ∈ τ (0) \ σ (0). Choose

a vertex u ∈ σ (0) \ τ (0) and observe that the condition (2ε) implies that a ∈ B(St ′(u), δ) ∩
B(τ, δ) = ∅, which is a contradiction.

Finally, the choice of L and b′
σ yields the desired contradiction

a ∈ σ ∩
⋂

v∈σ (0)

B(St ′σ,b′
σ
(v), δ) ⊂ B(b′

σ , Lδ) ⊂ R
n \ A,

completing the proof of the theorem.

6 Proof of Theorem 1.7

Given an Abelian locally compact topological group G endowed with its left coarse structure,
we need to prove the equivalence of the following statements:

(1) S(G) = D<(G);
(2) G is compactly generated;
(3) G is coarsely equivalent to a Euclidean space R

n for some n ∈ ω.

We shall prove the implications (1)⇒(2)⇒(3)⇒(1). The implication (3)⇒(1) follows
from Corollary 1.5.

To prove that (2)⇒(3), assume that the group G is compactly generated. By Theorem 24
[11, p.85], G is topologically isomorphic to the direct sum R

n × Z
m × K for some n, m ∈ ω

and a compact subgroup K ⊂ G. Since the projection R
n × Z

m × K → R
n × Z

m and the
embedding Z

n × Z
m → R

n × Z
m are coarse equivalences, we conclude that G is coarsely

equivalent to Z
n+m and to R

n+m .
To prove that (1)⇒(2), assume that S(G) = D<(G). First we prove that G has finite

asymptotic dimension. By the Principal Structure Theorem 25 [11, p.26], G contains an
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open subgroup G0 that is topologically isomorphic to R
n × K for some n ∈ ω and some

compact subgroup K of G0. The subgroup G0 has asymptotic dimension asdim(G0) =
asdim(Rn) = n < ∞. If asdim(G) = ∞, then the quotient group G/G0 has infinite
asymptotic dimension and hence has infinite free rank. Then the group G/G0 contains a
subgroup isomorphic to the free abelian group ⊕ω

Z with countably many generators. It
follows that G also contains a discrete subgroup H isomorphic to ⊕ω

Z. Replacing H by a
smaller subgroup, if necessary, we can assume that H has infinite index in G and hence is
small in G. Since asdim(H) = ∞ = asdim(G), we conclude that S(G) �= D<(G), which
is a desired contradiction showing that asdim(G) < ∞.

By Theorem 2.8, there is a compactly generated subgroup H ⊂ G with asdim(H) =
asdim(G). Since H /∈ D<(G) = S(G), the subset H is not small in G. Repeating the proof
of Claim 4.1, we can show that the set G \ B(H, ε) is not large for some entourage ε ∈ E .
By the definition of the left coarse structure E , there is a compact subset K ⊂ G such that
B(H, ε) ⊂ H K . We claim that K −1 H K = G. Assuming the opposite, we can find a point
x ∈ G\K −1 H K and consider the finite set F = {x, x−1, xx−1} = F−1. Since the set G\H K
is not large, there is a point z ∈ (G \ H K )F . For this point z we get zF ∩ (G \ H K ) = ∅ and
hence z ∈ zF ⊂ H K . Then x ∈ z−1zF ⊂ z−1 H K ⊂ K −1 H H K = K −1 H K , which is a
contradiction. Now the compact generacy of the subgroup H implies the compact generacy
of the group G = K −1 H K .

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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sytetu Śla̧skiego, Katowice (1994) (in Polish)
11. Morris, S.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge Uni-

versity Press, Cambridge (1977)
12. Pontryagin, L.S.: Foundations of Combinatorial Topology. “Nauka”, Moscow (1986) (in Russian)
13. Protasov, I., Banakh, T.: Ball Structures and Colorings of Graphs and Groups (Matem. Studii. Monograph

Series. 11). VNTL Publ., Lviv (2003)
14. Roe, J.: Lectures on Coarse Geometry. American Mathematical Society, Providence (2003)

123


	Asymptotic dimension and small subsets in locally compact topological groups
	Abstract
	1 Introduction
	2 The asymptotic dimension of coarse spaces
	3 Proof of Proposition 1.4
	4 Proof of Theorem 1.6
	5 Proof of Theorem 1.2
	6 Proof of Theorem 1.7
	References


