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1 Introduction

Strong interactions are described by QCD. As it is well known, the coupling varies with the

energy. At high energies the coupling is small and the theory can be treated perturbatively

giving rise to the asymptotic freedom. At low energies perturbation theory does not work

and one needs alternative approaches. Gauge/string dualities provide an important tool

to study non perturbative aspects of strong interactions.

The connection between string and gauge theories started with the seminal work [1]

relating planar diagrams of non abelian gauge theories to string theory. More recently, a

remarkable duality between ten-dimensional string theory or eleven-dimensional M-theory
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and a conformal gauge theory on the corresponding spacetime boundary was found in [2].

This so called AdS/CFT correspondence relates, in particular, string theory in AdS5 × S5

space to four-dimensional SU(Nc) Yang-Mills gauge theory with large Nc and extended

N = 4 supersymmetry. String theory at low energies is described by a supergravity theory.

In this case, the AdS/CFT correspondence implies a gauge/gravity duality from which one

can calculate correlation functions for gauge-field operators [3, 4].

In this work we are interested in finite temperature properties of vector mesons. So,

we will consider the finite temperature version of the AdS/CFT correspondence in the

supergravity regime. This is obtained by considering a black hole embedded in an AdS

spacetime [5]. A prescription to calculate retarded propagators at finite temperature in the

gauge theory in Minkowski space was found in [6] (see also refs. [7–9]). This formulation

involves purely incoming-wave condition for the fields at the horizon, and such a condition

represents the total absorption by the black hole without any emission.

In the AdS/CFT correspondence the gauge theory is conformal. So, to describe strong

interactions one needs to break this symmetry. This is done in various phenomenological

models known as AdS/QCD where an infrared cut-off is introduced. An example is the

hard-wall model which introduces a hard cut-off on the bulk geometry [10–12]. This model

was also studied at finite temperature for example in [13].

An alternative AdS/QCD model, that leads to linear Regge trajectories for vector

mesons and glueballs [14–16], is the soft-wall model. In this case one introduces a scalar

field in the AdS geometry. This non uniform field works as a smooth infrared cut-off for

the dual gauge theory. The soft-wall model can also be considered at finite temperature.

In this case, there are two coexisting geometries, with and without a black hole. At high

temperatures the black hole geometry is (globally) stable, while the geometry without the

black hole is stable for low temperatures. The transition between these two regimes is a

Hawking-Page phase transition [17] and was studied for the soft-wall model in [18, 19].

We will study here the spectrum of vector mesons at finite temperature in the soft-wall

model considering, for all temperatures, a black hole embedded in the soft-wall background.

As discussed in [20], at intermediate and low temperatures this corresponds respectively

to the (supercooled) metastable and unstable phases of the plasma where the black hole is

still present. Studying the supercooled phase of the plasma we will mimic the formation

of vector mesons when the strong interacting plasma formed in heavy ion collisions cools

down. At the high temperatures produced when the plasma is formed, there is initially

only a deconfined phase. During the cooling process the hadrons are formed. These two

separate confined and deconfined phases have been studied using gauge/gravity duality.

Here we study the transition between these two phases for the case of vector mesons.

The gravitational dual of the vector mesons is a gauge field in the soft-wall background.

From the action of this gauge field we obtain the finite temperature retarded Green’s func-

tions of vector meson operators using numerical and analytical techniques. The imaginary

part of the retarded Green’s function gives the spectral function. The spectral function in

the soft-wall model was calculated for vector mesons in [21] and for scalar glueballs and

scalar mesons in [22]. For spectral functions of other holographic models, see for example,

refs. [23–28].
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Then we study the quasinormal modes (QNM) of the bulk gauge field. These modes

are identified with the spectrum of vector mesons. We perform numerical analysis to obtain

the real and imaginary parts of the quasinormal frequencies. At high temperatures a good

convergence is achieved using the power series method [29] while at low temperatures the

Breit-Wigner resonance method [30] works better. As expected, we find that the poles

of the Fourier-transformed retarded correlation functions correspond to the black hole

quasinormal (QN) frequencies. Quasinormal modes in the AdS/CFT correspondence have

been reviewed recently in refs. [31, 32].

2 Vector mesons in the soft-wall model at finite temperature

2.1 The soft-wall model

According to the AdS/CFT dictionary, normalizable solutions of the bulk fields are dual

to states of the boundary gauge theory. One assumes that this type of duality also holds

for the AdS/QCD models. In the soft-wall model the conformal invariance is broken by

the introduction of an infrared cut-off consisting of a background scalar field. This model

was proposed in ref. [14] to reproduce the approximate linear Regge trajectories for vector

mesons. It is defined at zero temperature in a five-dimensional AdS spacetime, whose

metric is given by

ds2 = gMNdx
MdxN =

R2

ζ2
(
ηµνdx

µdxν + dζ2
)
, (2.1)

where ηµν = (−1, 1, 1, 1) and R is the AdS space radius. The action for a five dimensional

gauge field in this model is

S =
1

4g25

∫
d5x

√−g e−Φ(ζ) FMNF
MN , (2.2)

where g25 = 16π2R/N2
c and Φ(ζ) is the background scalar field with the form Φ(ζ) = cζ2.

This field plays the role of an infrared cut-off where
√
c represents a mass scale. This

implies a discrete mass spectrum given by

m2
n = 4c(n+ 1) , (2.3)

where n is called radial quantum number [14].

It is important to remark that the five dimensional background of the soft-wall model

does not arise from a solution of the 5D Einstein equations. However it reproduces quite

well the hadronic phenomenology, in particular the hadronic spectra.

At finite temperature one replaces in the action the metric (2.1) by the metric of an

asymptotically AdS black hole

ds2 =
R2

ζ2

[
− f(ζ)dt2 + dx2 + dy2 + dz2

]
+

R2

ζ2f(ζ)
dζ2, (2.4)

where f(ζ) = 1 − (ζ/ζh)
4. The coordinate ζ is defined in the interval 0 ≤ ζ ≤ ζh, ζ = 0

corresponds to the boundary of the space and ζh is the position of the horizon. The black

hole temperature T is given by T = 1/πζh which is also the temperature of the boundary

field theory.
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2.2 Equations of motion

We now study the equations of motion that come from the action (2.2) with the metric (2.4).

We choose the radial gauge Aζ = 0 and, without any loss of generality, look for plane wave

solutions of the form: Aµ(ζ, x, y, z, t) = e−iωt+iqz Aµ(ζ, ω, q) propagating in the z direction

with wave vector kµ = (−ω, 0, 0, q). The equations take the form

∂2ζAt −
(
1

ζ
+ 2c ζ

)
∂ζAt −

q

f
(qAt + ωAz) = 0, (2.5)

∂2ζAα +

(
∂ζ lnf − 1

ζ
− 2c ζ

)
∂ζAα +

1

f2
(
ω2 − q2f

)
Aα = 0, (α = x, y) (2.6)

∂2ζAz +

(
∂ζ lnf − 1

ζ
− 2c ζ

)
∂ζAz +

ω

f2
(qAt + ωAz) = 0, (2.7)

ω∂ζAt + qf∂ζAz = 0. (2.8)

The corresponding equations for the electric field components Ex = ωAx , Ey = ωAy ,

Ez = ωAz + qAt , are

∂2ζEz +

(
ω2∂ζ lnf(ζ)

ω2 − q2f
− 1

ζ
− 2c ζ

)
∂ζEz +

ω2 − q2f

f2
Ez = 0, (2.9)

∂2ζEα +

(
∂ζ lnf − 1

ζ
− 2c ζ

)
∂ζEα +

ω2 − q2f

f2
Eα = 0, (α = x, y). (2.10)

Note that equation (2.9) for the longitudinal component is singular for ζ = 0 , ±ζh,
±
(

4
√
1− ω2/q2

)
ζh, while equation (2.10) for the transverse components is singular at

ζ = 0, ±ζh, ±∞.

Now we perform a Bogoliubov transformation in the longitudinal component of the

electric field: Ez = eB/2ψz, where B = cζ2 + ln
[
ζ(ω2 − q2f )/R

]
. We also introduce the

tortoise coordinate [20, 29] defined as

r∗ =
ζh
2

[
− arctan

(
ζ

ζh

)
+

1

2
ln

(
ζh − ζ

ζh + ζ

)]
, (2.11)

such that ∂r∗ = −f(ζ)∂ζ . Then we obtain a Schrödinger like equation for the transformed

longitudinal component

∂2r∗ψz + ω2ψz = VL ψz, (2.12)

where the effective potential VL is given by

VL = q2f + eB/2 ∂2r∗e
−B/2. (2.13)

Following the same procedure for the transverse electric field components, with the

Bogoliubov transformation Eα = eA /2ψα where A = cζ2+ln(ζ/R), we find the Schrödinger

like equation

∂2r∗ψα + ω2ψα = VT ψα, (2.14)

where the effective potential VT is given by

VT = q2f + eA /2 ∂2r∗e
−A /2. (2.15)
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2.3 The asymptotic wave functions

Let us investigate now the asymptotic behavior of the solutions of the Schrödinger like

equations (2.12) and (2.14). At the horizon the potentials vanish and one has free particle

solutions. Then, when ζ → ζh we have the approximate solutions

ψj ∼ Cj e
−iωr∗ +Dj e

+iωr∗ (j = x, y, z), (2.16)

that corresponds to the superposition of incoming and outgoing waves. Near the hori-

zon, the incoming ψ(−)

j and outgoing ψ(+)

j solutions for the Schrödinger equations (2.12)

and (2.14) have the form

ψ(±)

j (ζ) = e±iωr∗

[
1 + a(±)

1j

(
1− ζ

ζh

)
+ a(±)

2j

(
1− ζ

ζh

)2

+ · · ·
]
, (2.17)

where

a(±)

1j =
1

4± 2iωζh

[
2

(
1 + 4

q2

ω2
δjz

)
+
(
q2 + 4c

)
ζ2h

]
,

a(±)

2j = − 1

16± 4iωζh

[
1− 12a(±)

1j + 16cζ2h

(
1− 1

4
cζ2h − q2

ω2
δjz

)
+ 16

q2

ω2

(
4− 5

q2

ω2

)
δjz

]
,

(2.18)

and δjz is the Kronecker delta.

On the other hand, near the boundary the Schrödinger equations (2.12) and (2.14) can

be solved in terms of normalizable ψ(1)

j and non-normalizable ψ(2)

j solutions, which have

the asymptotic forms

ψ(1)

j =

(
ζ

ζh

)3/2 [
1 + b2j

(
ζ

ζh

)2

+ b4j

(
ζ

ζh

)4

+ · · ·
]
, (2.19)

ψ(2)

j =

(
ζ

ζh

)−1/2 [
1 + c2j

(
ζ

ζh

)2

+ c4j

(
ζ

ζh

)4

+ · · ·
]
+ 2dj ψ

(1)

j ln

(
ζ

ζh

)
, (2.20)

where the coefficients c2j are arbitrary and, for convenience, we can choose c2j = 0. The

other coefficients appearing in eqs. (2.19) and (2.20) are given by

b2j = −1

8
(ω2 − q2)ζ2h,

b4j =
1

192

[
64 + 8c2ζ4h +

(
ω2 − q2

)2
ζ4h − 32q2

ω2 − q2
δjz

]
,

c4j =
1

64

[
8c2ζ4h − 3

(
ω2 − q2

)2
ζ4h − 32q2

ω2 − q2
δjz

]
,

dj = −1

4
(ω2 − q2)ζ2h .

(2.21)

The ingoing and outgoing wave functions can be represented using the normalizable

and non-normalizable solutions as basis,

ψ(±)

j = A
(±)

j ψ(2)

j +B
(±)

j ψ(1)

j . (2.22)
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The inverse relations are given by

ψ(1)

j = C
(1)

j ψ(−)

j +D
(1)

j ψ(+)

j , ψ(2)

j = C
(2)

j ψ(−)

j +D
(2)

j ψ(+)

j , (2.23)

and, as a consequence, the connection coefficients are related by

(
A

(−)

j B
(−)

j

A
(+)

j B
(+)

j

)
=

(
C

(2)

j D
(2)

j

C
(1)

j D
(1)

j

)−1

. (2.24)

We will need to compute numerically these coefficients in order to obtain the vector meson

spectral functions in the next section.

The asymptotic behavior of the electric field components can be determined

from the solutions of the Schrödinger equations (2.19) and (2.20) using the

Bogoliubov transformations

Ez = eB/2 ψz, Eα = eA /2 ψα (α = x, y). (2.25)

Near the horizon the electric field components have the same decomposition in terms

of incoming and outgoing waves as in eq. (2.16). Classically black branes only absorb

radiation. So we just have incoming electric field components at the horizon. The solutions

near the boundary for the electric field can be written in terms of ψ(1)

j and ψ(2)

j as

E(−)

j = ec ζ
2/2
(
ω2 − q2f

) 1
2
δjz
[
A

(−)

j ψ(2)

j +B
(−)

j ψ(1)

j

]( ζ
R

)1/2

(j = x, y, z), (2.26)

where the superscript (−) indicates that E(−)

j satisfies the incoming wave condition at the

horizon. These results will be used in the section 3, to find the correlation functions in the

dual field theory.

2.4 An analysis of the effective potentials

Now we will study the longitudinal and transverse potentials that appear respectively in

the Schrödinger equations (2.12) and (2.14) in a similar way as it was done in refs. [33–35].

In terms of ζ, the potentials VT and VL can be written explicitly as

VT =
f

ζ2

[
q2ζ2 +

3

4
+

(
5

4
+ 4cζ2

)(
ζ

ζh

)4

+ c2ζ4f

]
, (2.27)

VL = VT +
4q2f

ζ2(ω2 − q2f)2

[
q2f + cζ2f(ω2 − q2f)− ω2

(
1− 3

ζ4

ζ4h

)](
ζ

ζh

)4

. (2.28)

Let us consider some important particular cases for the temperature, for the parameter

c and for the wave number q. At zero temperature these expressions reproduce the original

soft-wall potential of [14],

VL(ζ)
∣∣
T=0

= VT (ζ)
∣∣
T=0

=
1

ζ2

[
q2ζ2 +

3

4
+ c2ζ4

]
. (2.29)
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On the other hand, in the limit of vanishing infrared cut off c, the potentials become

V
T
(ζ)
∣∣
c=0

=
f

ζ2

[
q2ζ2 +

3

4
+

5

4

(
ζ

ζh

)4 ]
, (2.30)

VL(ζ)
∣∣
c=0

= VT (ζ)
∣∣
c=0

+
4q2f

(ω2 − q2f)2

[
q2f − ω2

(
1− 3

ζ4

ζ4h

)](
ζ

ζh

)4

, (2.31)

which are the potentials governing the evolution of electromagnetic perturbations in the

spacetime of a planar AdS5 black hole.

Another interesting case corresponds to vanishing wave number q, for which the po-

tential (2.27) coincides with the longitudinal case given in eq. (2.28). Then we define:

V (ζ) ≡ VT (ζ)
∣∣
q=0

= VL(ζ)
∣∣
q=0

, (2.32)

so that

V (ζ) =
f

ζ2

[
3

4
+

(
5

4
+ 4cζ2

)(
ζ

ζh

)4

+ c2ζ4f

]
. (2.33)

Note that in this particular case the potential does not depend on the energy ω. Further-

more, this case can be interpreted as the potential associated with quasiparticles at rest in

the dual gauge theory.

Now we want to analyse the form of the potential of eq. (2.33) for different temperature

regimes. For this purpose it is convenient to work with dimensionless quantities. The

potentials that appear in the Schrödinger like equations (2.12) and (2.14) have dimension

of energy squared. So we can write dimensionless equations by dividing V by c. This leads

us naturally to the dimensionless coordinates
√
c ζ and

√
c r∗ . Then the corresponding

dimensionless temperature is T̃ = πT/
√
c . The high temperature regime corresponding to

T̃ 2 > 1 is characterized by the potential shape of an infinite barrier as shown in figure 1.

One also observes that the potential increases with the temperature and with the tortoise

coordinate. As discussed in the next section, there are no quasiparticle states in the dual

theory in this regime.

For smaller values of T̃ the behavior of the potential changes. Below the critical value

T̃ 2
c = 0.538 the potential presents a well as illustrated in figure 2. The depth of the well

increases as the temperature decreases. One can also see that there is an infinite barrier

localized near the boundary (r∗ = 0). In this regime there are quasiparticle states in the

dual theory, corresponding to vector mesons at finite temperature (see section 3 below).

The probability of vector meson formation increases when the temperature decreases.

To analyse the low temperature regime it is convenient to write V (ζ) as a power series

expansion in T̃ . Changing ζh by T = 1/πζh in (2.33), the potential takes the form

V =
3

4ζ2
+ c2ζ2 +

(
1

2
+ 4cζ2 − 2c2ζ4

)
π4ζ2T 4 −

(
5

4
+ 4cζ2 − c2ζ4

)
π8ζ6T 8. (2.34)

We can also express this potential in terms of the tortoise coordinate (2.11) which, near

the boundary, can be written as [20]

ζ = −r∗
[
1− r4∗

5ζ4h

]
, (2.35)
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Figure 1. Potential at zero wave number for high temperatures. We also show the potential at

the critical value T̃ 2

c
= 0.538 in the detail.
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Figure 2. Potential at zero wave number for low temperatures.

so that keeping only the leading order term on the temperature we have

V =
3

4r2∗
+ c2r2∗ +

4

5

(
1 + 5cr2∗ − 3c2r4∗

)
π4r2∗T

4. (2.36)

One notes that this potential is a sum of terms that correspond to: an infinite barrier

localized at r∗ → 0, a harmonic oscillator like term r2∗, and the temperature contributions.

The superposition of these terms gives the potential with the form shown in figure 2.

3 The retarded Green’s functions

3.1 Definitions and analytical results

In a quantum field theory at finite temperature, the Fourier-transformed retarded Green’s

functions of conserved symmetry currents are defined as

GR
µν(k) = −i

∫
d4xe−ik·xθ(t) 〈[Jµ(x), Jν(0)]〉 . (3.1)
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The functions GR
µν(k) can be separated into transverse and longitudinal parts [36],

GR
µν(k) = P T

µν Π
T (k0,k

2) + PL
µν Π

L(k0,k
2) , (3.2)

where ΠT (k0,k
2) and ΠL(k0,k

2) are independent scalar functions and the projectors are

given by

Pµν = ηµν −
kµkν
k2

, PL
µν = Pµν − P T

µν ,

P T
00 = 0 , P T

0i = 0, P T
ij = δij −

kikj
k2

.

(3.3)

Note that these projectors satisfy kµP T
µν = kµPL

µν = 0, implying current conservation.

We can consider, without loss of generality, that the wave vector has the form kµ =

(−ω, 0, 0, q), corresponding, as considered in the previous section, to the propagation in

the z direction. Then the non vanishing components of the current-current correlation

function are

GR
xx(k) = GR

yy(k) = ΠT (ω, q) , (3.4)

GR
tt(k) =

q2

ω2 − q2
ΠL(ω, q), GR

tz(k) = − qω

ω2 − q2
ΠL(ω, q), GR

zz(k) =
ω2

ω2 − q2
ΠL(ω, q).

(3.5)

On the other side, these correlation functions of the four dimensional field theory can

be obtained from the dual bulk fields. As an illustration, for scalar fields, following the

prescriptions of ref. [6] one writes the on shell action in the form

S =

∫
d4k

(2π)4
φ0(−k)F(k, ζ)φ0(k)

∣∣∣∣
ζ=ζh

ζ=ζB

, (3.6)

where φ0(k) is the boundary value of the field. The “flux factor” F is

F(k, ζ) = K
√−g gζζf−k(ζ)∂ζfk(ζ), (3.7)

where fk(ζ) = φ(ζ, k)/φ0(k) satisfies an incoming-wave condition at the horizon and, by

definition, is normalized to unity at the boundary. According to this prescription, the

retarded Green’s function is related to the flux factor by

GR(k) ≡ −2F(k, ζ)
∣∣∣
ζB
, (3.8)

where ζB is the value of the coordinate ζ at the boundary, which in the present case is zero.

In our case, for the vector field, we start writing the action (2.2) in terms of the Fourier

transforms of the components of the vector field in the radial gauge Aζ = 0,

S =
R

2g25

∫
dωdq

(2π)2

[
e−Φ

ζ

{
At(ζ,−k)∂ζAt(ζ, k)− fA(ζ,−k) · ∂ζA(ζ, k)

}]ζh

0

.

Expressing this action in terms of the electric field components we have

S = − N2
c

32π2

∫
dωdq

(2π)2

[
e−Φ

ζ

f

ω2

∑

j

(
1− q2

ω2
f

)−δjz

Ej(ζ,−k) ∂ζ Ej(ζ, k)

]ζh

0

, (3.9)
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where above we have used the relation R/2g25 = N2
c /32π

2. The bulk electric field compo-

nents can be written in terms of their boundary values E0
j as

E(−)

j (ζ, k) = Ej(ζ, k)E0
j (k), (j = x, y, z), (3.10)

where the functions Ej(ζ, k) are defined so that Ej(0, k) = 1 and the superscript (−)

indicates that E(−)

j (ζ, k) satisfies the ingoing wave condition at the horizon, as required

by the Lorentzian Son-Starinets prescription [6]. Substituting (3.10) in the action (3.9)

one finds

S = − N2
c

32π2

∫
dωdq

(2π)2

[
e−Φ

ζ

f

ω2

∑

j

(
1− q2

ω2
f

)−δjz

E0
j (−k)Ej(ζ,−k) ∂ζ Ej(ζ, k)E0

j (k)

]ζh

0

.

(3.11)

In terms of the boundary values of the potential this action reads

S =
N2

c

32π2

∫
dωdq

(2π)2

[
e−Φ

ζ
f

(
ω2

ω2 − q2f

{
A0

z(−k)A0
z(k) +

q

ω
A0

z(−k)A0
t (k)

+
q

ω
A0

t (−k)A0
z(k) +

q2

ω2
A0

t (−k)A0
t (k)

}
Ez(ζ,−k)∂ζEz(ζ, k)

+
∑

α

A0
α(−k)A0

α(k)Eα(ζ,−k)∂ζEα(ζ, k)
)]ζh

0

.

(3.12)

Using the Son-Starinets (3.8) prescription for the vector field case we find the current-

current correlators GR
µν(k) ≡ −2 ηµλ ηνκFλκ(k, ζ)

∣∣
ζ=0

, so that

GR
tt

q2
= −G

R
tz

ωq
= −G

R
zt

ωq
=
GR

zz

ω2
= − N2

c

16π2(ω2 − q2)
lim
ζ→0

1

ζ
∂ζ Ez(ζ, k),

GR
xx = − N2

c

16π2
lim
ζ→0

1

ζ
∂ζ Ex(ζ, k), GR

yy = − N2
c

16π2
lim
ζ→0

1

ζ
∂ζ Ey(ζ, k).

(3.13)

Considering the form of the electric field near the boundary given in eq. (2.26) one then finds

Ej = ec ζ
2/2

(
ω2 − q2f

ω2 − q2

) 1
2
δjz
[
ψ(2)

j +
B

(−)

j

A
(−)

j

ψ(1)

j

](
ζ

ζh

)1/2

. (3.14)

Substituting (3.14) in (3.13) and comparing the resulting expressions with (3.4) and (3.5)

we get the longitudinal and transversal parts of the current-current correlators

ΠL(ω, q) = −N
2
c T

2

8

{
1

2
cζ2h + d

[
1 + 2 ln

(
ǫ

ζh

)]
+

B
(−)
z

A
(−)
z

}
, (3.15)

ΠT (ω, q) = −N
2
c T

2

8

{
1

2
cζ2h + d

[
1 + 2 ln

(
ǫ

ζh

)]
+

B
(−)
x

A
(−)
x

}
, (3.16)

where d ≡ dj = −(ω2 − q2)ζ2h/4 and ǫ is an ultraviolet regulator. The coefficient d is

an analytic function of ω and q, and so the terms containing d in (3.15) and (3.16) are

contact terms that can be removed from the Green’s functions by means of a holographic

renormalization [37], i.e., the addition of boundary counterterms to the action (2.2).
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3.2 Spectral functions at finite temperature

3.2.1 General procedure

The imaginary parts of the retarded Green’s functions give us the spectral functions. Par-

ticularly, in the case of GR
zz and GR

xx, the corresponding spectral functions are given by

Rzz(ω, q) ≡ −2 ImGR
zz(ω, q) =

N2
c T

2

4

(
ω2

ω2 − q2

)
Im

(
B

(−)
z

A
(−)
z

)
, (3.17)

Rxx(ω, q) ≡ −2 ImGR
xx(ω, q) =

N2
c T

2

4
Im

(
B

(−)
x

A
(−)
x

)
. (3.18)

Now we have to find out the above quantities in terms of the solutions of the equations

of motion (2.12) and (2.14). So we will need the power series expressions for the normal-

izable and non-normalizable solutions of the Schrödinger like equations (2.12) and (2.14),

that means, eqs. (2.19) and (2.20) and also the corresponding derivatives with respect to

ζ that read:

∂ζψ
(1)

j (ζnb) =
1

2

(
ζnb
ζh

)1/2[
3 + 7 b2j

(
ζnb
ζh

)2

+ 11 b4j

(ζnb
ζh

)4]
, (3.19)

∂ζψ
(2)

j (ζnb) =
1

2

(
ζnb
ζh

)−3/2[
− 1 + 7 c4j

(
ζnb
ζh

)4]

+2dj

[
∂ζψ

(1)

j (ζnb) ln

(
ζnb
ζh

)
+
ζh
ζnb

ψ(1)

j (ζnb)

]
, (3.20)

where ζnb is a value for ζ near the boundary and the coefficients b2j , b4j , c4j and dj were

determined in eq. (2.21).

We will perform a numerical integration of the Schrödinger equations (2.12) and (2.14),

using ψ(1)

j (ζnb), ψ
(2)

j (ζnb) and their derivatives as “initial” conditions, and integrating from a

point near the boundary ζnb to a point near the horizon ζnh. Then we express the functions

ψ(1)

j and ψ(2)

j in terms of the ingoing and outgoing solutions using eq. (2.23) at the point

ζnh in the form

(
ψ(a)

j (ζnh)

∂ζψ
(a)

j (ζnh)

)
=

(
ψ(−)

j (ζnh) ψ(+)

j (ζnh)

∂ζψ
(−)

j (ζnh) ∂ζψ
(+)

j (ζnh)

)(
C

(a)

j

D
(a)

j

)
(a = 1, 2). (3.21)

The coefficients C(a)

j and D
(a)

j can then be determined as

(
C

(a)

j

D
(a)

j

)
=

(
ψ(−)

j (ζnh) ψ(+)

j (ζnh)

∂ζψ
(−)

j (ζnh) ∂ζψ
(+)

j (ζnh)

)−1(
ψ(a)

j (ζnh)

∂ζψ
(a)

j (ζnh)

)
(a = 1, 2). (3.22)

Finally, from eqs. (2.24) and (3.22) we obtain the ratio

B
(−)

j

A
(−)

j

= −
D

(2)

j

D
(1)

j

= −
∂ζψ

(−)

j ψ(2)

j − ψ(−)

j ∂ζψ
(2)

j

∂ζψ
(−)

j ψ(1)

j − ψ(−)

j ∂ζψ
(1)

j

∣∣∣∣∣
ζ=ζnh

(3.23)

that we need in order to determine the spectral functions, as in eqs. (3.17) and (3.18).
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Figure 3. Spectral function at zero wave number as a function of the energy for different values

of the temperature T̃ 2 = (πT )2/c.

3.2.2 Numerical results

We performed the numerical analysis of the spectral functions Rxx and Rzz, focusing

especially on the longitudinal component of the gauge field. We used the dimensionless

quantities ω̃ = ω/
√
c, q̃ = q/

√
c and the previously defined T̃ = πT/

√
c. We show in

figure 3 the vector meson spectral function for a vanishing wave number. As discussed in

the subsection 2.4, the longitudinal and transverse potentials are equal for q = 0, so that

R0(ω) ≡ Rxx(ω, 0) = Ryy(ω, 0) = Rzz(ω, 0). (3.24)

The peaks shown in figure 3 indicate that the corresponding retarded Green’s functions

present poles. These poles are related to the frequencies of the electromagnetic quasinormal

modes of the black brane. In the dual gauge theory, these quasinormal modes correspond to

quasiparticle states of vector mesons. The frequencies of these quasinormal modes present

real (ω̃R) and imaginary (ω̃I) parts. The real part is related to the mass of the vector

mesons when q = 0, while the imaginary part to the decay rate of the quasiparticle states

formed near the confining/deconfining transition. One notes that when the temperature

increases, the width of the peaks increases and the mean life τ = 2π/ω̃I decreases. These

results are in agreement with the analysis obtained from the effective potentials presented

in the previous section. It is interesting to mention that the peaks in figure 3 are localized

according to ω̃2 ≈ 4n, where n = 1, 2, 3 . . . , for low temperatures. Near the peaks, one can

approximate the spectral function by a Breit-Wigner distribution [20–22]:

R0(ω) =
A ω̃ b

(ω̃ − ω̃R)2 + ω̃2
I

, (3.25)

where ω̃R is the frequency of the peak and ω̃I is its width. The quantities A and b are

adjustable constants that vary with the temperature and the position of the peak in the

frequency axis. For T̃ 2 = 0.0441, A = 0.0281463 and b = 0.109005 for the peak of lower

– 12 –
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Figure 4. Spectral function Rzz(ω, q) at T̃ 2 = 0.0484 as a function of the energy for different

values of the wave number.

frequency, whileA = 5.65799×10−9 and b = 11.3886 for the second peak of lower frequency.

One can also note from figure 3 that the peaks of the spectral function depend on the

temperature. For temperatures higher than T̃ 2
c = 2.3864 there are no peaks. Decreasing

the temperature the peaks are formed at frequencies near the zero temperature values.

We also studied the spectral function Rzz(ω, q) at non vanishing wave number. We

show in figure 4 the results obtained for the fixed temperature T̃ 2 = 0.0484. We note in this

figure that the height of the peaks decreases as the wave number increases. Furthermore,

the width of the peaks increases with the wave number and the frequency. This can be

interpreted as meaning that quasiparticle states with momenta (q 6= 0) are more unstable

than those at rest (q = 0). The localization of the peaks in terms of the frequency also

changes with the wave number. This was expected from the approximate dispersion relation

ω̃ 2 ≈ ω̃ 2
0 + q̃ 2, where ω̃0 is the frequency at zero wave number [21].

4 Quasinormal modes

The solutions for classical field perturbations on a black hole geometry subjected to an

absorption condition at the horizon and a regularity condition at the spacetime boundary

are called quasinormal modes (QNMs) (see refs. [31, 32] for reviews and refs. [38–44] as

examples). For an AdS black hole, the absorption condition corresponds to a pure incoming

wave at the horizon and the regularity at the boundary is guaranteed by imposing Dirichlet

conditions on the solutions.

In this section we are going to obtain the quasinormal modes for electromagnetic

perturbations by solving the equations of motion using first perturbative methods and

then numerical methods.

4.1 Perturbative analytical solutions

Here we are going to solve the equations of motion in the so called hydrodynamic regime,

that corresponds to low frequencies and low wave numbers compared to the Hawking

– 13 –
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temperature of the black hole. We use the notation w = ω/(πT ) and q = q/(πT ), so that

in this regime: w ≪ 1 and q ≪ 1.

4.1.1 Longitudinal perturbations

For the longitudinal sector we write Ez = f−iw/4Fz and substitute in the differential

equation (2.9) obtaining

∂2ζFz −
[
1 + 2cζ2 +

(
4az − 2iw

f

)
ζ4

ζ4h

]
1

ζ
∂ζFz

+
w

ζ2hf
2

[
2if(1− 2cζ2)

ζ2

ζ2h
+
{
4i(1− az)−w

}ζ6
ζ6h

+
w

az

]
Fz = 0,

(4.1)

where az ≡ w2/(w2 − q2f). Now we solve this equation using the multiscale perturba-

tive method

Fz = F (0)
z +wF (1)

z + q 2G(1)
z + q 2wH (1)

z + · · · . (4.2)

Imposing the incoming wave condition at the horizon one finds, for the first two perturba-

tive terms,

F (0)
z = Cz, (4.3)

F (1)
z =

1

2
iCz

[
γ +

2q2

cζ2hw
2

{
1− ec(ζ

2−ζ2h)
}
+ e−2cζ2h

{
Ei
(
cζ2 + cζ2h

)
− Ei

(
2cζ2h

)}

− Ei
(
cζ2 − cζ2h

)
+ ln

(
1

2
cζ2h f

)]
, (4.4)

where γ is the Euler constant, Ei(u) ≡ −
∫
∞

−u dt t
−1e−t is the exponential integral function

and Cz is an arbitrary constant. Then the longitudinal component of the electric field, Ez,

takes the form

E(−)
z =

1

2
Czf

−iw/4

(
2 +

[
γ +

2q2

cζ2hw
2

{
1− ec(ζ

2−ζ2h)
}
− Ei

(
cζ2 − cζ2h

)

+ e−2cζ2h
{
Ei
(
cζ2 + cζ2h

)
− Ei

(
2cζ2h

)}
+ ln

(
1

2
cζ2h f

)]
iw+O(w2, q2)

)
.

(4.5)

The Dirichlet condition on the AdS boundary, E(−)
z (ζ)

∣∣
ζ=0

= 0, implies that

ω = −i
(
1− e−cζ2h

)

2cζh
q2 +O(q3). (4.6)

This is the fundamental quasinormal frequency for this problem.

It is interesting to see that this frequency coincides with the pole of the retarded

Green’s function for the longitudinal component. In order to see this explicitly, we can use

the series expansion for the longitudinal field near the boundary

E(−)
z = 1 +

i(1− e−cζ2h)

2cζ2h w
q2 +

ie−cζ2h(w2 − q2)

2w

(
ζ

ζh

)2

+ · · · , (4.7)
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where above we have chosen Cz = 1. Comparing this expression with eq. (2.26) we find

A(−)
z = 1 +

i(1− e−cζ2h)

2cζ2h w
q2 + · · · , (4.8)

B(−)
z = − i

4w
e−cζ2h

[
q2 − 2w2 + ecζ

2
h
(
q2 − 2icζ2hw

)]
+ · · · , (4.9)

where the dots denote terms of second or higher order in w and q. Thus, in the hydrody-

namic limit, the longitudinal scalar function ΠL(ω, q) reduces to

ΠL(ω, q) =
N2

c T

16π

e−c/(πT )2(ω2 − q2)

(iω −Dq2)
+ · · · (4.10)

and the associated current-current correlation functions take the form

GR
tt

q2
= −G

R
tz

ωq
= −G

R
zt

ωq
=
GR

zz

ω2
=
N2

c T

16π

e−c/(πT )2

(iω −Dq2)
+ · · · , (4.11)

with

D =
πT

2c

[
1− e−c/(πT )2

]
. (4.12)

This value of D coincides with a result obtained in an early study of black-hole electro-

magnetic perturbations in the soft-wall model [45]. It is also in accordance with the result

obtained in [46] in the limit of vanishing c, and with the result of [47], when the electric

charge Q of the black hole is zero.

The correlation functions (4.11) have a pole at ω = −iDq2, that is the fundamental

quasinormal frequency obtained in eq. (4.6). In the dual field theory, this pole corresponds

to charge diffusion with diffusion coefficient D.

4.1.2 Transverse perturbations

The solution of equation (2.10) for the transversal component of the gauge field is deter-

mined in a similar way as in the longitudinal case. Imposing the incoming wave condition

at the horizon, we obtain the following solution for E(−)
α (α = x, y) in the hydrodynami-

cal limit:

E(−)
α =

1

4
Cαf

−iw/4

(
4 +

[
γ + e−2cζ2h

{
Ei
(
cζ2 + cζ2h

)
− Ei

(
2cζ2h

)}

− Ei
(
cζ2 − cζ2h

)
+ ln

(
1

2
cζ2h f

)]
iw+O(w2, q2)

)
.

(4.13)

where the Cα’s are arbitrary constants. The Dirichlet condition on the AdS boundary,

E(−)
α |ζ=0 = 0, leads to an algebraic equation that does not have solutions compatible with

the hydrodynamic approximation w, q ≪ 1. So, we conclude that ΠT (ω, q) does not present

poles in this regime.

We can check that the correlation functions GR
xx and GR

yy do not present poles in the

hydrodynamic limit, expanding eq. (4.13) near the boundary

E(−)
α = 1 +

1

2
i e−cζ2h

(
ζ

ζh

)2

w+ · · · , (4.14)
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where we have chosen Cα = 1. Comparing this equation with the result (2.26) one finds

A(−)
α = 1 + · · · , B(−)

α = −1

2
cζ2h +

1

2
i e−cζ2h w · · · , (4.15)

where the dots denote terms of second or higher order in w and q. Thus, the transversal

scalar function ΠT (ω, q) reads

ΠT (ω, q) =
N2

c T

16π

[ c

πT
+ ie−c/(πT )2ω

]
+ · · · , (4.16)

which shows that the retarded correlation functions GR
xx = GR

yy = ΠT (ω, q) indeed present

no poles.

4.2 Numerical solutions

4.2.1 Power series method

In order to look for more general solutions valid not only in the hydrodynamical limit, we

now use numerical methods. Classical arguments tell us that black branes do not emit

radiation. Using this information, we only consider the incoming wave solutions at the

horizon. So, we write ψj = e−iωr∗ϕj (j = x, y, z) in the Schrödinger like equations (2.12)

and (2.14) obtaining

Pj
d2ϕj

dζ2
+Qj

dϕj

dζ
+Rj ϕj = 0, (4.17)

where

Pj = fζ2(ω2 − q2f)2, Qj = ζ2(ω2 − q2f)2 {∂ζf + 2iω} ,

Rj = −(ω2 − q2f)2
ζ2

f
VT − 4q2δjz

[
q2f + cζ2f(ω2 − q2f)− ω2

(
1− 3

ζ4

ζ4h

)](
ζ

ζh

)4

,

and VT is the transverse potential (2.27). We will solve equation (4.17) numerically using

the Horowitz-Hubeny method [29]. Since the wave functions ψj satisfy an incoming wave

condition at the horizon, the variables ϕj tend to constants as ζ → ζh. Then we look for

solutions of (4.17) in the form of a simple power series near the horizon:

ϕ(−)

j (ζ) =
∞∑

n=0

a(−)

nj

(
1− ζ

ζh

)n

, (4.18)

where the first few coefficients of these series are shown in (2.18). Substituting the foregoing

expression in eq. (4.17) one obtains a recurrence relation for the coefficients a(−)

jn . These

coefficients depend on the frequency (ω̃), on the wave number (q̃) and the temperature

(T̃ ) normalized by the parameter
√
c. Note that in general the frequency is a complex

number ω̃ = ω̃R − iω̃I , where the real part is related to the localization of the peak of the

corresponding spectral function and the imaginary part to the peak width.

The quasinormal mode solution must also satisfy the Dirichlet condition on the AdS

boundary, so that
∞∑

n=0

a(−)

jn (ω̃, q̃, T̃ ) = 0 (j = x, y, z). (4.19)
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The roots of these equations represent the frequencies of the quasinormal modes produced

by the electromagnetic perturbations of the black hole (2.4) in the AdS/QCD soft-wall

model. Numerically, the infinite series (4.19) are truncated at a finite order, and the order

of truncation is chosen adopting the criterion that the fractional difference between the

roots of two successive partial sums is smaller than a certain value.

4.2.2 Breit-Wigner resonance method

The power series method is suitable to find quasinormal frequencies in the intermediate

and high temperature regimes (T̃ & 1). However, its convergence gets poor at very low

temperatures (T̃ ≪ 1). In this regime, the behavior of the effective potentials VT/L(r∗)

enable us to use the Breit-Wigner approach. This method was originally developed to

calculate scattering amplitudes in quantum mechanics. Then it was used to study quasi-

normal modes of ultrarelativistic stars [48–51]. Recently, it has been used to calculate

quasinormal modes of AdS black holes [20, 30].

We take the normalizable solutions ψ(1)

j of the Schrödinger like equations (2.12)

and (2.14) that can be written as linear combinations of the near horizon solutions

ψ(1)

j = C
(1)

j e−iωr∗ +D
(1)

j e+iωr∗ = αj(ω) cos(ωr∗)− βj(ω) sin(ωr∗) . (4.20)

At the quasinormal mode frequency C
(1)

j = 0. We analyse the behavior of the solutions in

a neighborhood of these frequencies, where C
(1)

j ∼ (ω− ωQNM) with ωQNM = ωR − iωI . This

implies that

α2
j + β2j = 4C(1)

j D
(1)

j ≈ const.×
[
(ω − ωR)

2 + ω2
I

]
. (4.21)

The quasinormal frequencies are determined first minimizing this equation considering ω

real. Then the imaginary part can be obtained adjusting a parabola to eq. (4.21). On the

other hand the imaginary part can also be obtained imposing the incoming wave condition

on the complex solutions of eqs. (2.12) and (2.14) with complex frequency [49]:

ωc = ω − i ωI , ψjc = ψj − i ψjI . (4.22)

Substituting this complex solution in the differential equations (2.12) and (2.14) we find

∂2r∗ψj − V ψj + (ω2 − ω2
I )ψj − 2ω ωI ψjI = 0, (4.23)

∂2r∗ψjI − V ψjI + (ω2 − ω2
I )ψjI + 2ω ωI ψj = 0, (4.24)

where V = VT for j = x, y and V = VL for j = z. Considering that ωI ≪ ω, we find that

the complex solution can be written in the form

ψjc =
1

2
[(αj + ωI∂ωβj)− i(ωI∂ωαj − βj)]e

iωr∗

+
1

2
[(αj − ωI∂ωβj)− i(ωI∂ωαj + βj)]e

−iωr∗ .

(4.25)

Imposing the incoming wave condition at the horizon one obtains the imaginary part of

the frequency as

ωI = − αj

∂ωβj
=

βj
∂ωαj

, (4.26)

where ∂ω is the derivative with respect to the frequency evaluated at ω = ωR [49] .
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Figure 5. Numerical results for the quasinormal frequencies. On the left panel we show the real

part, associated with mass of the vector mesons. On the right panel we show the imaginary part

associated with the decay time of the quasiparticle states.

4.2.3 Numerical results

The quasinormal frequencies were determined as a function of the temperature, for the

case of zero wave number q = 0. In the region of high temperatures, the frequencies show a

linear behavior that is in agreement with [36]. In this region the infrared cutoff is negligible

and the frequencies have the form ω̃2
R/I = 4(n+ 1)2T̃ 2 with n = 0, 1, 2, . . . .

We show in figure 5 the results for the square of the real and of the imaginary parts

of the frequencies in terms of T̃ 2 = (πT )2/c for the first five modes n = 0, 1, . . . , 4 with

q = 0. The convergence of the power series method depends on the excitation number n.

For the first mode the power series method has a nice convergence up to the temperature

T̃ 2 = 0.0438. For lower temperatures we used the Breit-Wigner resonance method. So, the

two methods are complementary. This works well for the first two modes. For the other

excited states the convergence is poor for intermediate temperatures for both methods.

That is the reason why the curves are discontinuous.

From figure 5 one notes that in the zero temperature limit, the real part of the QN

frequencies coincide with the corresponding vector-meson mass spectrum of eq. (2.3). One

also notes that at low temperature the behavior is not linear, thanks to the effect of the

infrared soft-wall cutoff. Then, for the first two modes, increasing the temperature ω̃2
R

decrease until they reach a minimum value at some critical temperatures. For higher tem-

peratures, ω̃R increases approaching a linear dependence on the temperature. On the other

hand, we observe in figure 5 that the square of the imaginary part of the frequencies ω̃2
I

increase monotonically with the square of the temperature approaching constant slopes.

These results for the real and imaginary parts of the frequencies of the vector-meson quasi-

normal modes are similar to what was found for scalar glueballs in ref. [20].

4.3 Dispersion relations

In this subsection, we investigate the momentum dependence of the electromagnetic quasi-

normal frequencies for both the longitudinal and transverse sectors.

– 18 –
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Figure 6. The dispersion relation of the hydrodynamic QNM for a fixed value of temperature

(πT )2/c = 2.39. As shown in the last subsection, this kind of quasinormal mode appears only in

the longitudinal sector of perturbations.

4.3.1 Longitudinal perturbations

The longitudinal sector of perturbations is characterized by the presence of a hydrody-

namic quasinormal mode, which reduces to the diffusion mode (4.6) in the limit of small

frequencies and wavenumbers in comparison to the temperature. Figure 6 show the an-

alytical approximation (4.6) and the numerical results for the dispersion relation of this

hydrodynamic QNM.

The variation of the non-hydrodynamic QNM frequencies with the wavenumber is

shown in figure 7 for q̃ ≤ 0.8. We do not present the results for higher values of wavenumber,

because the convergence of the methods is very poor for q̃ > 0.8. As one can see, the real

part of the frequencies increases with q̃. Such a behavior is consistent with the results

shown in figure 3, where the position of the peaks of the spectral function shifts to higher

energies when the wavenumber value increases. A similar thing happens with the imaginary

part of the quasinormal frequencies (width of the peaks), which increases with q̃ for small

values of temperature (T̃ 2 = 0.0708). In the intermediate- and high-temperature regimes,

the spectral functions do not present peaks, and so the quasinormal frequencies cannot

be associated with quasiparticle excitations in the plasma. As the plasma gets hotter

(T̃ 2 = 0.2), the behavior of the imaginary part of the frequencies change, and ω̃2
I decreases

with q̃. These results are in accordance with previous works [36, 52] on the electromagnetic

perturbations of AdS black holes without the presence of the dilaton Φ(ζ) = cζ2.

Some selected numerical results for the quasinormal frequencies are shown in table 1.

We also list in this table some values of the quantity

∆q ≡
∣∣ωR(q)−

√
(ω0

R)
2 + q2

∣∣
√
(ω0

R)
2 + q2

, (4.27)

which is a measure of the fractional difference between the real part of the QNM frequencies
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Figure 7. Numerical results for the dispersion relations of the first non-hydrodynamic quasinormal

mode of longitudinal perturbations. The real part of the frequencies is shown on the left side, and

the imaginary part on the right side.

q̃ = 0.05 q̃ = 0.8

T̃ 2 ω̃R ω̃I ∆q ω̃R ω̃I ∆q

0.0708 1.94536 0.00365 1.20416× 10−6 2.10249 0.00388 1.67812× 10−4

0.1000 1.89170 0.05207 9.58394× 10−6 2.05006 0.04825 1.58542× 10−3

0.1500 1.85643 0.16959 1.50934× 10−5 2.01499 0.16118 2.90839× 10−3

0.2000 1.85855 0.27943 1.46131× 10−5 2.01677 0.26643 2.99261× 10−3

Table 1. Numerical results of the first non-hydrodynamic longitudinal QNM for q̃ = 0.05 and

q̃ = 0.8 and selected values of temperature.

and the results obtained from the relativistic dispersion relation ω =
√

(ω0
R)

2 + q2, where

ω0
R ≡ ωR(q)|q=0 can be regarded as the vector-meson mass for very low temperatures.

4.3.2 Transverse perturbations

We show in figure 8 the numerical results obtained for the quasinormal frequencies of

transverse perturbations in function of the wavenumber q̃. On one hand, the real part

of the QNM frequencies have a similar behavior to that of the longitudinal sector. On

the other hand, (the negative of) the imaginary part of ω̃ increases with the momentum

for small temperatures and small values of q̃. In the intermediate- and high-temperature

regimes, ω̃I decreases with the wavenumber (see figure 9). These results resemble those for

the QNM spectrum associated to scalar glueballs in the soft-wall model [20].

Some numerical results for ω̃ = ω̃R − i ω̃I and for the fractional difference of ωR with

respect to
√
(ω0

R)
2 + q2 are listed in table 2. As expected, the value of ∆q increases with

the momentum and goes to zero in the limit of zero temperature. In fact, the non-zero

value of ∆q, indicating a departure of the standard relativistic dispersion relation, is a

finite-temperature effect.

– 20 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
8

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0  0.5  1  1.5  2  2.5  3

ω
R

/c
1/

2

q/c1/2

(πT)2/c=0.0708
(πT)2/c=0.1000
(πT)2/c=0.1500
(πT)2/c=0.2000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.5  1  1.5  2  2.5  3  3.5

ω
I/c

1/
2

q/c1/2

(πT)
2/c = 0.0708

(πT)
2/c = 0.1000

(πT)
2/c = 0.1500

 0  2  4  6

(πT)
2/c = 0.2000

0.27

0.37

Figure 8. The QNM dispersion relations for transverse perturbations and selected values of T̃ 2 in

the low temperature regime.
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Figure 9. The QNM dispersion relations for transverse perturbations and selected values of T̃ 2 in

the high temperature regime.

q̃ = 0.05 q̃ = 2.5

T̃ 2 ω̃R ω̃I ∆q ω̃R ω̃I ∆q

0.0708 1.94534 0.00365 1.09887× 10−5 3.12704 0.03011 1.27201× 10−2

0.2000 1.85853 0.27952 2.78399× 10−5 3.07811 0.30639 1.17724× 10−2

5.0050 4.72565 3.98104 2.37394× 10−5 5.56312 3.85751 4.06406× 10−2

8.6510 6.09834 5.48010 1.68570× 10−5 6.80566 5.34037 3.26327× 10−2

Table 2. Numerical results of the fundamental transverse QNM for q̃ = 0.05 and q̃ = 2.5 and

selected values of temperature.

5 Conclusions

In this article we studied the thermal behavior of vector mesons in the soft-wall AdS/QCD

model. This was done, considering gauge fields in an AdS black hole space with a scalar

background field representing a smooth infrared cut-off. The equations of motion for

longitudinal and transverse components were obtained and expressed in Schrödinger like

form. The analysis of the corresponding potentials indicates the existence of quasiparticle

states of the vector mesons. At high temperatures and zero wavenumber, the potentials
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have the shape of an infinite barrier. In this regime there are no quasiparticle states in

the dual theory. For smaller values of the temperature, below T̃ 2
c = 0.538 the potential

presents a well. In this case, there are quasiparticle states in the dual theory, corresponding

to vector mesons at finite temperature.

We computed the retarded Green’s functions. The imaginary part of these correla-

tion functions, which are known as the spectral functions, contains information about the

formation of quasiparticle states. As expected, it was found that quasiparticle states are

formed at low temperatures where the potential has a well. As the temperature decreases,

the quasiparticle states are more stable since the width of the peaks of the spectral function

shrink. The thermal masses of the states are given by the frequency values of the peaks.

We also analysed the case of non vanishing wave number and found that the quasiparti-

cle states are more unstable in this case, since the width of the peaks increase with the

wave number.

We also studied the frequencies of the quasinormal modes of the gauge fields in the finite

temperature soft-wall model. In the hydrodynamical regime we obtained analytically the

quasinormal frequencies for the longitudinal component. The corresponding charge trans-

port coefficient was also found. Outside the hydrodynamical limit, we employed two numer-

ical methods: power series and Breit-Wigner resonance method. As expected, the quasi-

normal frequencies correspond to the poles of the current-current correlation functions.

The QNM dispersion relations show that the real part of the frequencies always in-

creases with the momentum. For small values of temperature and wavenumber, the be-

havior of the real part of the frequencies is similar to that of the relativistic dispersion

relation ω =
√
(ω0

R)
2 + q2, for both sectors of perturbations (longitudinal and transverse),

as one can see in tables 1 and 2. The imaginary part of the first non-hydrodynamic QNM

frequency increases with the momentum for very small values of T̃ and q̃, while in the

intermediate and high temperature regimes ω̃I is a monotonically decreasing function of q̃.
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