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Glutamate as a neurotransmitter in the healthy brain
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Abstract Glutamate is the most abundant free amino acid

in the brain and is at the crossroad between multiple met-

abolic pathways. Considering this, it was a surprise to

discover that glutamate has excitatory effects on nerve

cells, and that it can excite cells to their death in a process

now referred to as ‘‘excitotoxicity’’. This effect is due to

glutamate receptors present on the surface of brain cells.

Powerful uptake systems (glutamate transporters) prevent

excessive activation of these receptors by continuously

removing glutamate from the extracellular fluid in the

brain. Further, the blood–brain barrier shields the brain

from glutamate in the blood. The highest concentrations of

glutamate are found in synaptic vesicles in nerve terminals

from where it can be released by exocytosis. In fact, glu-

tamate is the major excitatory neurotransmitter in the

mammalian central nervous system. It took, however, a

long time to realize that. The present review provides a

brief historical description, gives a short overview of glu-

tamate as a transmitter in the healthy brain, and comments

on the so-called glutamate–glutamine cycle. The glutamate

transporters responsible for the glutamate removal are

described in some detail.
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Abbreviations

AMPA a-Amino-3-hydroxy-5-methyl-4-isoxazole

propionic acid

L-AP4 L-2-Amino-4-phosphonobutanoate

ATP Adenosine triphosphate

CNS Central nervous system

EAAC1 Glutamate transporter number 3 (EAAT3;

slc1a1; Kanai and Hediger 1992)

EAAT Excitatory amino acid transporter (synonymous

to glutamate transporter)

GABA c-Aminobutyric acid

GLAST Glutamate transporter number 1 (EAAT1;

slc1a3; Storck et al. 1992; Tanaka 1993a)

GLT-1 Glutamate transporter number 2 (EAAT2;

slc1a2; Pines et al. 1992)

GLUL Glutamine synthetase

NMDA N-Methyl-D-aspartate

TBOA DL-threo-b-benzyloxyaspartate

Introduction

Outside the community of biomedical scientists, glutamate

is probably best known as ‘‘monosodium glutamate’’ or

‘‘MSG’’ which is the sodium salt of glutamic acid and a

white crystalline solid used as a flavor or taste enhancer in

food (food additive number E620). This, however, is not

the reason for the enormous scientific interest in glutamate.

The main motivation for the ongoing worldwide research

on glutamate is that glutamate is the major excitatory

transmitter in the brain.

Like other signaling substances, the signaling effect of

glutamate is not dependent on the chemical nature of
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glutamate, but on how cells are programmed to respond

when exposed to it. Because the glutamate receptor pro-

teins are expressed on the surface of the cells in such a way

that they can only be activated from the outside, it follows

that glutamate exerts its neurotransmitter function from the

extracellular fluid. Consequently, control of receptor acti-

vation is achieved by releasing glutamate to the extracel-

lular fluid and then removing glutamate from it. Because

there are no enzymes extracellularly that can degrade

glutamate, low extracellular concentrations require cellular

uptake. This uptake is catalyzed by a family of transporter

proteins located at the cell surface of both astrocytes and

neurons (e.g. Danbolt 2001; Grewer and Rauen 2005;

Tzingounis and Wadiche 2007; Vandenberg and Ryan

2013).

Because glutamate is the major mediator of excitatory

signals as well as of nervous system plasticity, including

cell elimination, it follows that glutamate should be present

at the right concentrations in the right places at the right

time. It further follows that cells should have the correct

sensitivity to glutamate and have energy enough to with-

stand normal stimulation, and that glutamate should be

removed with the appropriate rates from the right locations.

Both too much glutamate and too little glutamate are

harmful. Excessive activation of glutamate receptors may

excite nerve cells to their death in a process now referred to

as ‘‘excitotoxicity’’. This toxicity was initially perceived as

a paradox like ‘‘Dr. Jekyll and Mr. Hyde’’, but it is now

clear that glutamate is toxic, not in spite of its importance,

but because of it. As outlined before (Danbolt 2001), the

intensity of glutamatergic stimulation that a given cell can

tolerate, depends on several factors. As long as one vari-

able is not extreme, it will be the combination of several

factors that will determine the outcome.

It took a long time to realize that glutamate is a neu-

rotransmitter in part because of its abundance in brain

tissue and in part because it is at the crossroad of multiple

metabolic pathways (e.g. Erecinska and Silver 1990; Bro-

man et al. 2000; McKenna 2007; Hertz 2013). There is

5–15 mmol glutamate per kg brain tissue, depending on the

region, more than that of any other amino acid (Schousboe

1981). So although it was noted early on that glutamate

plays a central metabolic role in the brain (Krebs 1935),

that brain cells have a very high glutamate uptake activity

(Stern et al. 1949) and that glutamate has an excitatory

effect (Hayashi 1954; Curtis et al. 1959, 1960), the trans-

mitter role was not realized until the early 1980s (for

review see Fonnum 1984).

In fact, glutamate metabolism is complex and com-

partmentalized (Berl et al. 1961, 1962; Van den Berg and

Garfinkel 1971; Balcar and Johnston 1975). The important

role of glutamate uptake in the control of the excitatory

action of glutamate was recognized (Logan and Snyder

1971, 1972; Wofsey et al. 1971; Balcar and Johnston

1972). This became a hot research topic. A number of

different glutamate and aspartate analogues were synthe-

sized, and heterogeneity within glutamate uptake was

uncovered suggesting more than one uptake mechanism

(Ferkany and Coyle 1986; Robinson et al. 1991, 1993;

Fletcher and Johnston 1991; Balcar and Li 1992; Rauen

et al. 1992).

Similarly, several families of glutamate receptor pro-

teins were identified with molecular cloning (for review see

Niswender and Conn 2010; Traynelis et al. 2010; Nicoletti

et al. 2011). The receptors were classified as N-methyl-D-

aspartate (NMDA) receptors (Gonda 2012; Bonaccorso

et al. 2011; Santangelo et al. 2012), AMPA (a-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid) receptors

(Rogawski 2013), kainate receptors (Lerma and Marques

2013) and metabotropic receptors (Gregory et al. 2013).

Most, if not all, cells in the nervous system express at least

one type of glutamate receptor (Steinhauser and Gallo

1996; Vernadakis 1996; Forsythe and Barnes-Davies 1997;

Wenthold and Roche 1998; Petralia et al. 1999; Conti et al.

1999; Shelton and McCarthy 1999; Bergles et al. 2000).

The locations and functional properties of each type are

beyond the scope of this review.

Medicinal chemists continued to synthesize new com-

pounds and it is now possible to differentiate pretty well

between the various receptors and transporters. Consider-

ing the relatively large number of proteins with ability to

bind glutamate, it may seem strange that it is possible to

find compounds that can distinguish between them. The

reason is the high flexibility of the glutamate molecule

which permits several conformations that are only mini-

mally less favorable energetically at body temperature than

the lowest energy conformation (Bridges et al. 1991). This

implies that glutamate can take many shapes and explains,

in part, why the various glutamate binding proteins

(transporters, receptors, enzymes) can have quite different

binding sites and still be able to bind glutamate. A large

number of compounds are now available, and there are a

number of excellent reviews on the topic (e.g. Bräuner-

Osborne et al. 1997; Jensen and Bräuner-Osborne 2004;

Shigeri et al. 2004; Ritzen et al. 2005; Thompson et al.

2005; Bridges and Esslinger 2005; Shimamoto 2008;

Bridges et al. 2012a, b; Gregory et al. 2013; Gonda 2012;

Bonaccorso et al. 2011).

Identification of plasma membrane glutamate

transporters

A glutamate transporter, now known as EAAT2 (GLT-1;

slc1a2; Pines et al. 1992), was purified in an active form

from rat brain by employing reconstitution of transport as
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the assay to monitor the purification process (Danbolt et al.

1990). The purification was based on solubilization of rat

brain membranes with a detergent and fractionation by

conventional chromatographic techniques. This resulted in

a 30-fold increase in specific activity, but due to inactiva-

tion, the purification ratio was closer to 100-fold. It was

hard to convince ourselves that this moderate enrichment

was sufficient to yield a pure preparation, and it was even

harder to convince others. The fact that the protein tends to

give wide bands in electrophoresis gels did not make the

task any easier (see Danbolt 1994). Nevertheless, this was a

pure preparation (Levy et al. 1993; Lehre and Danbolt

1998). Antibodies were raised to the purified protein and

used to localize it in the brain (Danbolt et al. 1992; Levy

et al. 1993) and to screen expression libraries. The

sequence of the isolated cDNA predicted correctly a pro-

tein of 573 amino acids (Pines et al. 1992). Simultaneously,

but independently of each other, three other research teams

succeeded in cloning another two glutamate transporters

using completely different approaches. Storck et al. (1992)

were purifying a galactosyltransferase from rat brain and

observed that a 66 kDa hydrophobic glycoprotein copuri-

fied with this protein. The purified protein was subjected to

limited proteolysis. Partial amino acid sequences were

obtained and used for synthesizing degenerate oligonu-

cleotide probes for screening of a rat brain cDNA library.

This resulted in the identification of 543 amino acid resi-

dues long protein now referred to as EAAT1 (GLAST;

slc1a3; Storck et al. 1992). EAAT3 (EAAC1; slc1a1) was

isolated from a rabbit jejunum by Xenopus laevis oocyte

expression cloning (Kanai and Hediger 1992). The cDNA

sequence contains an open reading frame coding for a

protein of 524 amino acids. The rat brain equivalent is

89.9 % identical and 523 amino acids long (Kanai et al.

1993; Bjørås et al. 1996). The three human counterparts

were quickly identified and named excitatory amino acid

transporter (EAAT)1–3 (Arriza et al. 1994). Another two

glutamate transporters were found later: EAAT4 (Fairman

et al. 1995) and EAAT5 (Arriza et al. 1997). All the EA-

ATs catalyze coupled transport of 1H?, 3Na?, and 1K?

with one substrate molecule (Klöckner et al. 1993; Ze-

rangue and Kavanaugh 1996a; Levy et al. 1998; Owe et al.

2006). L-Glutamate and DL-aspartate are transported with

similar affinities while D-glutamate is not. It is important to

note that the transporters are performing exchange in

addition to net uptake. Exchange is a process whereby the

transporters exchange external and internal substrate mol-

ecules in a 1:1 relationship (see Fig. 5 in Danbolt 2001).

Thus, when transportable uptake inhibitors are added to

cell cultures, the inhibitors induce glutamate release from

the cells (e.g. Volterra et al. 1996; Danbolt 2001) Table 1.

The substrate selectivities are not reviewed here. We

will only point out (a) that the commonly used uptake

inhibitor dihydrokainate (DHK; CAS 52497-36-6) blocks

EAAT2 with high selectivity over the other EAATs (Arriza

et al. 1994; Bridges et al. 1999), and (b) that DL-threo-b-

benzyloxyaspartate (TBOA; CAS 205309-81-5) and its

variants (e.g. PMB-TBOA and TFB-TBOA) block all the

five EAATs (Bridges et al. 1999; Shimamoto 2008). These

compounds are competitive inhibitors that are not trans-

portable. This implies that they block both uptake and

exchange (for a detailed explanation, see sect. 6.5 in

Danbolt 2001). For more information, we recommend the

outstanding review by Bridges et al. (1999) as an intro-

duction and more recent reviews for the last updates (e.g.

Jensen and Bräuner-Osborne 2004; Shigeri et al. 2004;

Bridges and Esslinger 2005; Shimamoto and Shigeri 2006;

Shimamoto 2008; Sagot et al. 2008).

The EAAT-type of transporters also functions as chlo-

ride channels (Fairman et al. 1995; Zerangue and Kava-

naugh 1996a; Wadiche et al. 1995a, b; Ryan and Mindell

2007; Takayasu et al. 2009). EAAT4 and EAAT5 have the

largest chloride conductance (Mim et al. 2005; Gameiro

et al. 2011), and may function more as inhibitory glutamate

receptors than as transporters (Dehnes et al. 1998; Veruki

et al. 2006; Schneider et al. 2014). Arachidonic acid elicits

a substrate-gated proton current associated with the gluta-

mate transporter EAAT4 (Fairman et al. 1998; Tzingounis

Table 1 Overview of the nomenclature of plasma membrane gluta-

mate transporters

HUGO name Other names

Excitatory amino acid

transporter 1 (EAAT1;

slc1a3)

GLAST (Storck et al. 1992; Tanaka

1993b; Arriza et al. 1994)

Excitatory amino acid

transporter 2 (EAAT2;

slc1a2)

GLT-1; GLT1 (Pines et al. 1992;

Arriza et al. 1994)

Excitatory amino acid

transporter 3 (EAAT3;

slc1a1)

EAAC1 (Kanai and Hediger 1992;

Arriza et al. 1994)

Excitatory amino acid

transporter 4 (EAAT4;

slc1a6)

(Fairman et al. 1995)

Excitatory amino acid

transporter 5 (EAAT5;

slc1a7)

(Arriza et al. 1997)

Glutamate transporters belong to the solute carrier (slc) family 1

(high-affinity glutamate and neutral amino acid transporter family;

Hediger et al. 2013). Although there are several proteins with ability

to transport glutamate, the term ‘‘glutamate transporter’’ is usually

used to describe the five ‘‘high-affinity glutamate transporters’’ also

called ‘‘excitatory amino acid transporters (EAATs)’’. The actual

meanings of the acronyms (GLAST glutamate–aspartate transporter,

GLT1 glutamate transporter, EAAC excitatory amino acid carrier,

EAAT excitatory amino acid transporter) are not important, as they do

not reflect functional differences among the transporters. The

nomenclature used here is the one adopted by the HUGO Gene

Nomenclature Committee (Hediger et al. 2013)
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et al. 1998). In addition, a general feature of sodium cou-

pled transport appears to be transport of water (MacAulay

et al. 2001, 2004).

Even though the mammalian transporters have not yet

been crystallized, we already know quite a lot about their

complex structure (Kanner 2007; Gouaux 2009; Kanner

2013; Vandenberg and Ryan 2013). The EAAT2 and

EAAT3 proteins are believed to be homotrimers where the

subunits are non-covalently connected (Haugeto et al.

1996). This is in agreement with studies of glutamate

transporters from Bacillus Caldotenax and Bacillus ste-

arothermophilus (Yernool et al. 2003) although crosslink-

ing studies of the mammalian transporters indicate that

there may be differences between the EAAT subtypes

(Dehnes et al. 1998). These proteins are integral membrane

proteins and they depend on the lipid environment, and are

influenced by fatty acids such as arachidonic acid (Barbour

et al. 1989; Trotti et al. 1995; Zerangue et al. 1995) and by

oxidation (Trotti et al. 1996; Trotti et al. 1998). The recent

determination of the crystall structure of a glutamate

transporter homologue (GltPh) from Pyrococcus horikoshii

(Yernool et al. 2004) and other transporters (Penmatsa and

Gouaux 2013) implies a milestone similar to the cloning of

the first transporters in the early 1990s and the generation

of knockout mice in the late 1990s. GltPh appear to be a

bowl-shaped trimer with a solvent-filled extracellular basin

extending halfway across the membrane bilayer. At the

bottom of the basin are three independent binding sites

(Yernool et al. 2004). This structure is, as uncovered

recently, ideal to facilitate rapid transport (Leary et al.

2011).

The glutamate-cystine exchanger

Another transporter that has got quite a lot of attention

lately is the so called glutamine-cystine exchanger (xCT;

slc7a11). This transporter was first described in human

fibroblasts as an electroneutral 1:1 cystine-glutamate

exchanger that carries cystine into the cell in exchange for

internal glutamate (Bannai 1986). Thus, the physiological

role of this transporter is to act as a cystine transporter that

uses the transmembrane gradient of glutamate as driving

force. It follows from this that extracellular glutamate

inhibits uptake of cystine and that uptake of cystine causes

glutamate release. The transporter responsible for this

uptake has been identified by molecular cloning (Sato et al.

1999). It is a heterooligomer consisting of two different

subunits: the 4F2hc surface antigen (slc3a2) the xCT pro-

tein (slc7a11). The substrate selectivities are excellently

reviewed by Bridges et al. (2012a, b).

There are several reasons why xCT has become a hot

topic (Conrad and Sato 2012; Lewerenz et al. 2013;

Bridges et al. 2012a, b). The first important observation

was that glioma express high levels of xCT and low

levels of EAATs suggesting that they release glutamate

and that glutamate toxicity may be a mechanism facili-

tating their invasion of normal tissue (e.g. Ye et al. 1999;

Sontheimer 2004; Takeuchi et al. 2013). Another reason

for the interest is that cystine is a source of cysteine

needed for synthesis of glutathione (Dringen 2000). There

are, however, a number of transporters that can transport

cysteine. These comprise EAAT3 (Zerangue and Kava-

naugh 1996b), the two alanine-serine-cysteine transporters

(Arriza et al. 1993; Shafqat et al. 1993; Hofmann et al.

1994), ASCT1 (slc1a4) and ASCT2 (slc1a5) as well as

several others (Bröer 2008). So if cystine is reduced to

cysteine at the cell surface, then cysteine can be taken up

independently of xCT. Nevertheless, xCT-deficient mice

display redox imbalance suggesting that xCT does play a

role in glutathione production (Sato et al. 2005). A third

reason for the interest in xCT is that xCT has been sug-

gested to be a major source of extracellular glutamate

(Baker et al. 2002). This has been highly controversial,

but a recent paper based on the xCT-deficient mice is

supporting the idea (De Bundel et al. 2011). There are,

however, a number of unresolved issues. The distribution

of xCT in the brain has not yet been definitively deter-

mined, and available data suggest low levels (Sato et al.

2002). If the above observations are due to direct actions

of xCT, then there must be enough xCT molecules

present to perform the proposed functions. Thus, both the

expression levels and the speed which xCT operates

(translocation cycles per second per xCT molecule) are

important to determine. As xCT is highly inducible (Sato

et al. 2001, 2004), it is should be kept in mind that

expression levels may change in stressful situations.

Finally, if xCT exchanges glutamate and cystine in a 1:1

relationship, then a massive glutamate release can only be

mediated by xCT if there is a similar transport of cystine

(or another substrate) in the other direction. In conclusion,

more work is needed before we fully understand the roles

that xCT plays.

Intracellular glutamate carriers

When glutamate enters the cytoplasm, it may undergo

further redistribution to mitochondria or synaptic vesicles

(Erecinska and Silver 1990; Nicholls 1993). (A) Mito-

chondrial glutamate transport: Several of the enzymes for

which glutamate is a substrate are located in mitochondria.

In agreement, mitochondria possess mechanisms for glu-

tamate translocation. In fact, there are four different car-

riers: AGC1 (Slc25a12; aralar1; del Arco and Satrustegui

1998), AGC2 (Slc25a13; citrin; aralar2; Kobayashi et al.
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1999; Yasuda et al. 2000), GC1 (Slc25a22; Fiermonte et al.

2002) and GC2 (Slc25a18; Fiermonte et al. 2002).

These transporters are very different from the glutamate

transporters in the plasma membranes and will not be

discussed further here (for review see Palmieri 2013).

(B) Glutamate transporters in synaptic vesicles: In gluta-

matergic nerve terminals, glutamate is carried into synaptic

vesicles by means of the so called vesicular glutamate

transporters (VGLUTs). These are also very different from

those in the plasma membrane (for review see El Mesti-

kawy et al. 2011; Omote et al. 2011) by being independent

of sodium and potassium, and by having lower affinity (km

around 1 mM). There are three different isoforms:

VGLUT1 (Slc17a7; Ni et al. 1994; Bellocchio et al. 1998,

2000; Takamori et al. 2000), VGLUT2 (Slc17a6; DNPI;

Aihara et al. 2000) and VGLUT3 (Slc17a8; Takamori et al.

2002).

Release of glutamate

Glutamate is continuously being released to the extracel-

lular fluid, and inhibition of glutamate uptake leads to

extracellular buildups of glutamate within seconds (Ja-

baudon et al. 1999). Although most of the focus has been

on synaptic release of glutamate from nerve terminals by

exocytosis of synaptic vesicles, this is not the only mech-

anism able to supply the extracellular fluid with glutamate

(Danbolt 2001). In fact, there are several different non-

vesicular (non-exocytotic) mechanisms that appear to be

important. One is through anion channels (Kimelberg et al.

1990; Kimelberg and Mongin 1998; Wang et al. 2013) and

another is via reversed operation of the glutamate trans-

porting proteins at the plasma membrane (e.g. Levi and

Raiteri 1993; Longuemare and Swanson 1995; Roettger

and Lipton 1996; Jensen et al. 2000; Rossi et al. 2000;

Jabaudon et al. 2000; Sontheimer 2008). A third is via xCT

as explained above. A fourth mechanism that has been

vividly debated over the last decade is whether mature

brain astrocytes in situ also have the ability to release

glutamate by exocytosis (Bezzi et al. 2004). The differ-

ences in opinions can to some extent be explained by the

use of different model systems. For instance, primary

astrocytes in culture differ from mature astrocytes in the

brain (Cahoy et al. 2008) so observations from cultures are

not necessarily valid for the intact living brain. Neverthe-

less, it seems likely that also mature astrocytes in situ may

release glutamate (Malarkey and Parpura 2008; Nederg-

aard and Verkhratsky 2012; Wang et al. 2013), but exo-

cytosis of vesicles similar to those in nerve terminals is

questionable (Hamilton and Attwell 2010). In fact, a recent

paper refutes the notion that astrocytes express vesicular

glutamate transporters (Li et al. 2013). Thus, this does not

entirely rule out the concept of gliotransmitters because

glutamate may be released via other mechanisms as

explained above, but it does suggest critical evaluation of

the literature.

Regulation of the EAAT-type of transporters

Considering the importance of the glutamate transporters,

pharmacological manipulation of transporter function may

prove to be highly interesting from a therapeutic point of

view (Sheldon and Robinson 2007). Although there are

several examples where dysregulation of transporters

contributes to the pathogenetic process, there are few

examples of transporters being the primary cause (e.g.

Danbolt 2001; Sattler and Rothstein 2006; Lauriat and

Mcinnes 2007; Bröer and Palacin 2011). For instance, it is

clear that complete absence of EAAT2 results in sponta-

neous epilepsy (Tanaka et al. 1997) and increased extra-

cellular glutamate (Mitani and Tanaka 2003; Takasaki

et al. 2008), but studies of humans with epilepsy have not

uncovered any direct link to glutamate transporter expres-

sion (Tessler et al. 1999; Akbar et al. 1997; Bjørnsen et al.

2007). Nevertheless, studies from knockout mice and from

humans with mutated transporters show links to disease

(for a recent short update see Zhou and Danbolt 2013).

Consequently, uncovering regulatory mechanisms is

something that has been a hot topic and has interested a

large number of researchers. A full account is beyond the

scope of this review. Here we only mention a few points.

The first observation revealing regulation of glial glu-

tamate transporter expression came from lesion experi-

ments (Levy et al. 1995). Unilateral ablation of the

neocortex in young adult rats resulted in ipsilateral down

regulation of EAAT1 and EAAT2 in the striatum. The

lesions did not penetrate the corpus callosum so striatum

was not directly affected. However, the neocortical lesion

eliminated the cell bodies that are responsible for the

corticostriatal axons resulting in a loss of glutamatergic

terminals in the striatum. Because astrocytes reduced their

levels of EAAT1 and EAAT2 in response to the removal of

these terminals, it was assumed that neuro-glia interactions

were important in the regulation of transporter expression

(Levy et al. 1995). This was followed up in cell cultures.

Astrocytes cultured in the absence of neurons hardly

expressed EAAT2 at all, while addition of neuron condi-

tioned medium turned on EAAT2 expression (e.g., Gege-

lashvili et al. 1996, 1997, 2000, 2001; Plachez et al. 2000).

This regulation turned out to be via several different

pathways. Further, glutamate transporters are regulated by

protein kinase C (Casado et al. 1993; reviewed by: Gonz-

alez and Robinson 2004; Vandenberg and Ryan 2013), by

zinc (Vandenberg et al. 1998; Mitrovic et al. 2001;

Glutamate and glutamate transporters 803
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Vandenberg and Ryan 2013), and by arachidonic acid as

mentioned above. In fact, there is regulation on more or

less all levels from transcription to posttranslational mod-

ification and trafficking (for review see Seal and Amara

1999; Bergles et al. 1999; Hediger 1999; Kullmann 1999;

Sims and Robinson 1999; Danbolt 2001; Robinson 2006;

Sattler and Rothstein 2006). The most exciting discovery

so far from a drug development point of view is the finding

that beta-lactam antibiotics, e.g. Ceftriaxone, increase

EAAT2 expression (Rothstein et al. 2005; Berry et al.

2013). Another team has also started high-throughput

screening in order to identify translational activators of

glial glutamate transporter EAAT2 (Colton et al. 2010) and

have identified some pyridazine derivatives that may serve

as lead compounds for drug development (Xing et al.

2011). Another interesting finding is a spider toxin that

enhances EAAT2 transport activity (Fontana et al. 2007),

but the compound responsible has not yet been identified.

Approaches used to localize glutamate transporters

Early attempt to localize glutamate uptake sites were done

using autoradiography in combination with tissue slices or

synaptosome preparations (e.g. Minchin and Beart 1975;

McLennan 1976; Beart 1976; Storm-Mathisen 1981;

Storm-Mathisen and Wold 1981). To obtain higher reso-

lution, thinner sections were needed. By using dry mount

autoradiography (Young and Kuhar 1979; Danbolt et al.

1993) in combination with ‘‘sodium-dependent binding’’ of

excitatory amino acids the uptake sites (for references see

Danbolt 1994), higher resolution seemed to be within

reach. However, heteroexchange complicated the inter-

pretations as the amount of retained radioactively labeled

ligand was dependent on both the number of transporter

molecules and by the amount of endogenous dicarboxylic

amino acid trapped within the membranes (Danbolt and

Storm-Mathisen 1986a, b; Danbolt 1994).

From the early days of glutamate research, it was believed

that glutamate is taken up by glutamatergic nerve terminals

(Fonnum 1984), but the finding that glial glutamate trans-

porters are down-regulated after glutamatergic denervation

(Levy et al. 1995), weakened the evidence (for a discussion,

see sect. 4.2 in Danbolt 2001). By incubating tissue slices in

D-aspartate and fixing the slices, it was possible to detect

fixed D-aspartate with antibodies. With this technique,

uptake in both astrocytes and nerve terminals was demon-

strated at the electron microscopic level (Gundersen et al.

1993). D-aspartate is often used instead of L-glutamate as a

probe for glutamate uptake because it is slowly metabolized

in brain tissue (Davies and Johnston 1976).

After the protein sequences of the transporters were

known, synthetic peptides could be used to generate

antibodies to the transporters themselves (Danbolt et al.

1998) rather than to the substrates. This led to an explosion

in the use of antibodies to transporters, but, unfortunately,

not all investigators validated their antibodies and proce-

dures well enough (for detailed discussion see Holmseth

et al. 2005, 2006, 2012a). The most difficult part is to obtain

good negative controls. Antibodies may react with seem-

ingly unrelated proteins (Holmseth et al. 2005; Zhou et al.

2014). In fact, antibody binding can always be achieved

(see for instance Fig. 3 in: Holmseth et al. 2005). This is just

a question of adjusting the assay conditions. Without a good

negative control (e.g. tissue from knockout mice processed

in parallel with tissue from wild-type mice), it is not pos-

sible to prove that the binding is to the antigen of interest.

Therefore, antibody binding does not in itself prove that a

given antigen is present. In this context it should be noted

that the so called pre-adsorption test can easily give a false

impression of specificity (Holmseth et al. 2012a). Whenever

possible, it is a good idea to use additional methods,

including in situ hybridization and Western blotting in

combination with immunocytochemistry. TaqMan Real

Time PCR is an excellent method for getting a first

approximation of expression levels (e.g. Lehre et al. 2011;

Zhou et al. 2012a). Another approach is to search available

transcriptome and proteome datasets. For instance, prote-

ome data from rat proximal tubules (http://dir.nhlbi.nih.

gov/papers/lkem/pttr/) confirms the presence of EAAT3,

but does not confirm expression of any of the other EAATs.

Similarly, EAAT2 is in liver, but the other EAATs were not

detected (http://141.61.102.16/), and neither the EAATs nor

the VGLUTs were detected by proteome analysis of mouse

pancreas (Zhou et al. 2014). Together, these data cast doubt

over a large number of immunocytochemistry reports. The

reason is obvious. Labeling with antibodies can always be

obtained, and without good negative controls, it is not

possible to tell if the labeling represents the antigen of

interest or artifacts (see Holmseth et al. 2012a). Further,

rapid post mortem proteolysis represents and additional

challenge when studying human samples (Beckstrøm et al.

1999; Tessler et al. 1999; Li et al. 2012). Also note that

water soluble proteins present in the samples may inhibit

binding of transporters to the blotting membranes (Zhou

et al. 2012b). Thus, strong upregulation of other proteins

should be considered a potential source of error when

estimating transporter levels by immunoblotting. Electron

microscopy in combination with pre-embedding immuno-

cytochemistry without detergents on unfrozen tissue is ideal

for identification of labeled cell types, but is not ideal for

subcellular distribution as the peroxidase reaction product

diffuses some distance before precipitating. (Depending on

the strength of the reaction, the reaction product may diffuse

a couple of hundred nanometers.) In contrast, post-embed-

ding immunogold is better for collecting semi-quantitative
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data and gives better intracellular resolution, but when cell

membranes are labeled and cells are close to each other as

they typically are in the brain, then immunogold cannot tell

which membrane labeling belongs to (for description of

these methods, see Danbolt et al. 1998; Amiry-Moghaddam

and Ottersen 2013). Another problem with post-embedding

immunogold is that there must be a sufficient number of

target molecules in the plane of the section. This is case for

EAAT1, EAAT2 and EAAT4. These proteins are present at

very high concentrations (Dehnes et al. 1998; Lehre and

Danbolt 1998) making them ideal targets for immunogold

investigations. This explains, in part, why our early locali-

zation studies were so successful (Chaudhry et al. 1995;

Dehnes et al. 1998). In contrast, EAAT3 is expressed at

lower levels resulting in too few molecules per micrometer

plasma membrane length to distinguish real labeling from

background noise (Holmseth et al. 2012b). It should be

recalled that the tissue sections used for electron micros-

copy are thin (40–60 nm) and thereby only slightly thicker

than the outer diameter of synaptic vesicles (40 nm), and

only two/three times thicker than the width of the synaptic

cleft (20 nm). The antibodies do not penetrate well into the

sections. To maximize labeling, the section may be moun-

ted so that they can be labeled on both sides. Thus, the

sensitivity of the post-embedding immunogold technique is

limited by the number of proteins in the exact section plane.

Another challenge follows from the vulnerability of the

sections and thereby also the labeling. These sections are

easily damaged during processing. Consequently, there is

variability and this leads to another challenge: avoiding

sampling error. This challenge comes in addition to those

mentioned above (specificity, proteolysis, etc.).

It is also important to consider if any detected proteins

are expressed at physiologically relevant levels. The

number of molecules needed to accomplish a given task

depends on what that task is. This consideration is partic-

ularly relevant for neurotransmitter transporters because

the transport process is fairly slow. The cycling time of

EAAT2 and EAAT3 are in the order of 30 glutamate

molecules per second at Vmax (Otis and Jahr 1998; Otis

and Kavanaugh 2000; Bergles et al. 2002; Grewer and

Rauen 2005) and EAAT5 is even slower (Gameiro et al.

2011). The cycling time of the GABA transporters appear

to be comparable to those of the EAATs (Mager et al.

1993; Sacher et al. 2002; Karakossian et al. 2005; Gonzales

et al. 2007). This means that the number of transporters

must be high. There is a rapid extracellular turnover of

glutamate (Jabaudon et al. 1999), and despite this, the

resting levels of extracellular glutamate in normal brains

are low, possibly as low as 25 nm (Herman and Jahr 2007).

Because the km-values are about 1,000 times higher

(Danbolt 2001), maintenance of such low extracellular

levels implies a vast excess of transporter proteins (Bergles

and Jahr 1997; Dehnes et al. 1998; Lehre and Danbolt

1998; Otis and Kavanaugh 2000).

Cellular and subcellular distribution of glutamate

transporters in normal mature brain tissue

A large number of papers on transporter distributions have

been published, and it is not easy to navigate in the literature

as many of the statements are corrected in later publica-

tions. Figure 1 is a schematic illustration of the distributions

of EAAT1, EAAT2 and EAAT3 in the forebrain.

EAAT1 (GLAST; slc1a3) is selectively expressed in

astrocytes throughout the CNS (Lehre et al. 1995). This

conclusion is supported both by in situ hybridization and

immunocytochemistry (e.g. Ginsberg et al. 1995; Rothstein

et al. 1995 Schmitt et al. 1997; Berger and Hediger 1998,

2000) and appears to be valid for all parts of the central

nervous system including the regions where EAAT1 is the

predominant transporter (Lehre et al. 1995; Lehre and

Danbolt 1998; Takatsuru et al. 2007; Takayasu et al. 2009):

the retina (Rauen et al. 1996; Lehre et al. 1997; Rauen et al.

Fig. 1 A schematic illustration of glutamate transporter distributions

around synapses close to a blood vessel in the hippocampus. Four

glutamatergic nerve terminals (T) are shown forming synapses onto

dendritic spines (S). Astrocyte branches are indicated (G). Note that

astrocytes have very high densities (Lehre et al. 1995; Ginsberg et al.

1995; Lehre and Danbolt 1998) of both EAAT2 (red dots) and

EAAT1 (blue dots). The highest densities of EAAT1 and EAAT2 are

in the astrocyte membranes facing neuropil, while the membranes

facing the endothelium have low levels. Also note that glutamate

transporters have not been detected in the endothelium. EAAT1 is

selective for astrocytes (Lehre et al. 1995; Ginsberg et al. 1995),

while EAAT2 is predominantly expressed in astrocytes (Danbolt et al.

1992), but there is also some (about 10 %) in hippocampal nerve

terminals (Furness et al. 2008). EAAT3 (green dots) is selective for

neurons, but is expressed at levels two orders of magnitude lower than

EAAT2 and is targeted to dendrites and cell bodies (Holmseth et al.

2012b). Also note that the endfeet may actually overlap with no gaps

in between them (Mathiisen et al. 2010) (Copyright: Neurotransporter

AS; Reproduced with permission)
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1998; Rauen 2000; Rauen and Wiessner 2000), the inner

ear (Furness and Lehre 1997; Takumi et al. 1997), and the

circumventricular organs (Berger and Hediger 2000). Thus,

there is no disagreement here. Other statements can be

found in the literature, but these have been corrected by the

authors themselves.

After having determined the cell types expressing

EAAT1 (Lehre et al. 1995), immunogold was performed to

obtain additional information (Chaudhry et al. 1995). This

revealed that EAAT1 is preferentially targeted to the

plasma membranes, and that plasma membranes facing

neuropil have higher densities than those facing cell bodies,

pia mater and endothelium (Fig. 1).

Mice lacking EAAT1 (Watase et al. 1998) develop

normally, but show symptoms of insufficient glutamate

uptake in regions where EAAT1 is the major glutamate

transporter (Watase et al. 1998; Hakuba et al. 2000; Harada

et al. 1998). The EAAT1 knockout mice also display poor

nesting behavior; abnormal sociability, reduced alcohol

intake and reward (Watase et al. 1998; Stoffel et al. 2004;

Karlsson et al. 2009, 2012). Lack of GLAST does not lead

to spontaneous seizures like those seen in connection with

EAAT2-deficiency (Tanaka et al. 1997), but GLAST

deficiency increases seizure duration and severity (Wa-

tanabe et al. 1999). EAAT1 mutations in humans are linked

to episodic ataxia (Bröer and Palacin 2011; Jen et al. 2005;

de Vries et al. 2009).

EAAT2 (GLT-1; slc1a2) was the first glutamate trans-

porter to be localized immunocytochemically. In the

mature and normal brain it is predominantly expressed in

astrocytes (Danbolt et al. 1992; Levy et al. 1993; Rothstein

et al. 1994; Lehre et al. 1995). There is no disagreement

here either, and this conclusion is supported both by later

immunocytochemistry (e.g. Schmitt et al. 1996; Kugler and

Schmitt 2003; Berger et al. 2005; Holmseth et al. 2009) and

in situ hybridization (Torp et al. 1994, 1997; Berger and

Hediger 2000, 2001) as well as by data obtained with

EAAT2 eGFP BAC reporter mice (de Vivo et al. 2010a).

EAAT2 is the only one of the EAAT-type of glutamate

transporters that is required for survival under non-chal-

lenging conditions (Tanaka et al. 1997; Danbolt 2001).

This is in agreement with biochemical data showing that

the EAAT2 protein represents about 1 % of the total

forebrain protein and that it is about four times more

abundant than EAAT1 in the hippocampus and six times

less abundant than EAAT1 in the cerebellum (Lehre and

Danbolt 1998). Based on immunoadsorption of transport

activity EAAT2 was shown to account for 95 % of the total

glutamate uptake activity in young adult forebrain tissue

(Danbolt et al. 1992; Haugeto et al. 1996). This conclusion

was confirmed by deletion of the EAAT2 gene in mice

(Tanaka et al. 1997; Voutsinos-Porche et al. 2003;

Matsugami et al. 2006; Kiryk et al. 2008; Holmseth et al.

2012b) as well as by electrophysiological recordings of

glutamate transporter currents (Otis and Kavanaugh 2000).

The discussion about EAAT2 distribution concerns

expression in neurons. Having said that, there is con-

sensus that EAAT2 is expressed in cultured neurons

from hippocampus and neocortex; in particular if these

are cultured in the absence of astrocytes (Mennerick

et al. 1998; Wang et al. 1998; Plachez et al. 2000) in

agreement with observations that EAAT2 is transiently

localized on growing axons of the mouse spinal cord

before establishing astrocytic expression (Yamada et al.

1998). There is also consensus that EAAT2 is present in

neurons in the normal and mature mammalian retina

(Rauen et al. 1996, 1999; Rauen and Kanner 1994; Euler

and Wassle 1995; Rauen 2000).

The controversy is related to expression of EAAT2 in

neurons in the normal and mature brain (cerebrum and

cerebellum). All studies, however, agree that there is

EAAT2 mRNA in CA3 hippocampal neurons (Torp et al.

1994, 1997; Berger and Hediger 2000, 2001; de Vivo et al.

2010a) and that their axon-terminals express the protein, at

least in the CA1 (Chen et al. 2004; Furness et al. 2008;

Melone et al. 2009, 2011). Further, all of the glutamate

uptake activity in glutamatergic terminals in CA1 is due to

EAAT2 (Furness et al. 2008).

The remaining controversy concerns (a) the expression

of EAAT2 in axon-terminals in other parts of the brain,

and (b) the physiological importance of the uptake into

terminals. Why was about half of all D-aspartate taken

up by hippocampus slices found in axon-terminals when

terminals only contain around 10 % of the EAAT2

protein (Furness et al. 2008)? This disproportionally

large uptake cannot simply be disregarded as an in vitro

artifact due to a higher rate of heteroexchange than net

uptake (Zhou et al. 2013), but it might still be an artifact

because the possibility has not been ruled out that

astrocytes release glutamate via anion channels or simi-

lar. Preliminary data from selective deletion of EAAT2

in axon-terminals indicate disturbances in synaptic

transmission (Sun et al. 2012), and thereby may suggest

that EAAT2 in terminals is functionally relevant. How-

ever, further studies are required before definite conclu-

sions can be made.

In contrast to EAAT1, there is very little EAAT2 in

mice and rats at birth and in the first postnatal week (Ul-

lensvang et al. 1997; Furuta et al. 1997). This explains why

EAAT2-knockout mice are inconspicuous at birth. But at

3 weeks, when the EAAT2-levels in wild-type mice have

increased to 50 % of adult levels, the EAAT2-deficient

mice can readily be identified because they are hyperactive,

epileptic and smaller than their wild-type littermates. They

have increased extracellular glutamate levels (Mitani and

Tanaka 2003; Takasaki et al. 2008), and about half of them
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die from spontaneous seizures before they reach 4 weeks of

age (Tanaka et al. 1997). The heterozygote EAAT2

knockout mice (±) have only half the EAAT2-concentra-

tions as wild-type mice, but do not show any apparent

morphological brain abnormalities (Kiryk et al. 2008), but

are more vulnerable to traumatic spinal cord injury (Lepore

et al. 2011).

EAAT3 (EAAC1; slc1a1) has been particular hard to

localize. Nevertheless, the first studies were basically cor-

rect (Kanai and Hediger 1992; Rothstein et al. 1994).

EAAT3 is a neuronal transporter, and is not expressed in

glial cells (Holmseth et al. 2012b; Shashidharan et al.

1997). It appears to be expressed in the majority if not all

neurons throughout the CNS, but has a unique sorting motif

(Cheng et al. 2002) selectively targeting it to somata and

dendrites avoiding axon terminals (Holmseth et al. 2012b;

Shashidharan et al. 1997).

The highest levels of EAAT3 in the brain are found in the

hippocampus and neocortex, but the total tissue content in

young adult rat brains is about 100 times lower than that of

EAAT2 (Holmseth et al. 2012b). It is also expressed in the

kidney and in the ileum. In agreement, mice lacking EAAT3

(Peghini et al. 1997) develop dicarboxylic aminoaciduria,

but do not show signs of neurodegeneration at young age and

do not have epilepsy (Peghini et al. 1997; Aoyama et al.

2006; Berman et al. 2011). Humans lacking EAAT3 develop

dicarboxylic aminoaciduria (Bailey et al. 2011) and EAAT3

polymorphisms are associated with obsessive–compulsive

disorders (Brandl et al. 2012; Walitza et al. 2010).

EAAT4 (slc1a6) is predominantly found in the cere-

bellar Purkinje cells (Fairman et al. 1995; Dehnes et al.

1998) where it is targeted to the dendrites, the spines in

particular (Dehnes et al. 1998), but there is also some

EAAT4 in a subset of forebrain neurons (Dehnes et al.

1998; Massie et al. 2008; de Vivo et al. 2010b) and in

vestibular hair cells and calyx endings (Dalet et al. 2012).

EAAT4 knockout mice are viable and appear normal

(Huang et al. 2004) albeit with some alteration of receptor

activation (Nikkuni et al. 2007).

EAAT5 (slc1a7) is preferentially expressed in the

retina, while the levels in the brain are low (Arriza et al.

1997; Eliasof et al. 1998). EAAT5 is also expressed in

vestibular hair cells and calyx endings (Dalet et al.

2012). There is more than one isoform in the retina due

to variable splicing (Eliasof et al. 1998). As explained

above, EAAT4 and EAAT5 are not very efficient as

transporters, but are efficient chloride channels suggest-

ing that they may be more important as inhibitory glu-

tamate receptors than as transporters. Some investigators

have tried to determine the exact cellular and subcellular

localization of EAAT5, but the validity of these studies

is hard to judge at present because nobody has as yet

made an EAAT5 knockout mouse that could serve as

negative control for validation of the immunolabeling.

We have previously shown how important this control is

and also how inadequate the so called pre-adsorption test

is (Holmseth et al. 2012a). So, validated information on

EAAT5 distribution remains to be provided.

Comments on the glutamine-glutamate cycle

Glutamate taken up by astroglial cells can be metabolized

via the tricarboxylic acid cycle and be used in protein

synthesis or converted to glutamine. Glutamine can be

released to the extracellular fluid by a sodium neutral

amino transporter in the astrocytic membrane by SNAT3

(Boulland et al. 2002, 2003; Mackenzie and Erickson 2004;

Nissen-Meyer et al. 2011) and SNAT5 (SN2; slc38a5)

(Hamdani et al. 2012) because it is inactive in the sense

that it cannot activate glutamate receptors (for review:

Erecinska and Silver 1990; Danbolt 2001; Hertz 2013). The

conversion of glutamate to glutamine is catalyzed by the

enzyme glutamine synthetase (GLUL) in an ATP-depen-

dent manner (Erecinska and Silver 1990; Marcaggi and

Coles 2001). Glutamine synthetase plays important roles in

the brain and in other organs from implantation to high age.

This is evident from studies of glutamine deficiency in man

and mice (He et al. 2007, 2010a, b; Haberle et al. 2011,

2012). Further, reduced glutamine synthetase levels are

associated with some forms of epilepsy (Eid et al. 2004).

The prevailing view has been that glutamine from

astrocytes is the predominant source of glutamate in

glutamatergic terminals (Sibson et al. 2001; Hertz 2013),

but this hypothesis implies that the supply of glutamine to

terminals keeps up with glutamate release. And although

there are many observations in cultured cells suggesting the

existence of glutamine transporters in glutamatergic ter-

minals, it is important to keep in mind that cultured astro-

cytes are different from mature astrocytes (e.g. Plachez

et al. 2000; Cahoy et al. 2008). Further, it is important to

note that glutamine transporters have so far not been posi-

tively identified in terminals in brain tissue (Mackenzie and

Erickson 2004; Chaudhry et al. 2002; Conti and Melone

2006). The only positive identifications of SNAT2 (SAT2;

slc38a2) and SNAT1 (SAT1; GlnT; slc38a1) are in den-

drites and cell bodies of neurons (e.g. Jenstad et al. 2009;

Solbu et al. 2010; Conti and Melone 2006). One possibility

is that they have evaded detection in glutamatergic termi-

nals due to methodological challenges. Another possibility

is that they have not been detected simply because they are

not there. This would be in line with studies suggesting that

SNAT1 and SNAT2 play no role in delivering glutamine for

glutamatergic transmission (Grewal et al. 2009). There

could be other glutamine transporters, however. For

instance, ASCT2 (slc1a5) has ability to transport glutamine
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(Bröer et al. 1999), but is expressed at low levels in the

mature brain (Utsunomiya-Tate et al. 1996; Bröer and

Brookes 2001). There are also other potential candidates

within the slc38-family. On the other hand, lack of signif-

icant glutamine uptake activities in terminals would be is in

line with some old reports (e.g. Hertz et al. 1980; Yu and

Hertz 1982; McMahon and Nicholls 1990). Another pos-

sibility is whether glutamate may be formed in a glutamine-

independent manner (Hassel and Bråthe 2000; McKenna

et al. 2000), but this is also debated. A third source is direct

uptake by glutamate transporters in terminals themselves

(Gundersen et al. 1993). As explained above, there is

EAAT2 in terminals and this uptake is highly active (Fur-

ness et al. 2008). Another complicating factor is that nerve

terminals in different brain regions may differ. While ter-

minals in several forebrain regions (e.g. neocortex, hippo-

campus and striatum) have been shown to posses glutamate

uptake activity (e.g. Gundersen et al. 1993), this is more

uncertain in the cerebellar cortex (e.g. Wilkin et al. 1982).

In conclusion, the glutamine-glutamate cycle has been

studied and debated for about 50 years and we still do not

have the final answer!

Glutamate transporters at the blood brain barrier

The nervous system isolates itself from blood by means of

barriers (e.g. Abbott 2005; Alvarez et al. 2013). This is

important for a number of reasons. One of them is the fact

that serum glutamate is typically in the range 50–200 lm

(Zlotnik et al. 2011a, b, c) which is orders of magnitude

higher than the concentrations that are toxic to neurons

(Danbolt 2001).

The blood–brain barrier is between blood and the

interstitial fluid of the brain. It is in mammals formed by

the endothelial cells after influence from brain cells.

Another barrier is in the choroid plexus epithelium which

secretes cerebrospinal fluid (CSF). These barriers are

important both from a physiological point of view because

they are essential for brain homeostasis, and from a phar-

macological point of view because they prevent drugs from

entering brain tissue (Deboer and Gaillard 2007; Teichberg

2007). The literature is extensive and full of conflicting

reports. A full account is beyond the scope of this review.

Here we only want to point out (Fig. 1) that brain barrier

endothelial cells do not express significant levels of

EAAT1-3 (Lehre et al. 1995; Berger and Hediger 2000;

Holmseth et al. 2009, 2012b). There are, however, huge

amounts of glutamate transporters in the astrocytic endfeet

surrounding the blood vessels (Fig. 1). When isolating

brain microvessels, the preparations are likely to be con-

taminated by endfeet and this may explain some of the

data. Thus, it seems that no significant transport of

glutamate can occur through a normal and intact blood–

brain barrier. In agreement, injection of radiolabeled glu-

tamate and aspartate does not result in accumulation of

radioactivity in the brain (Klin et al. 2010). On the other

hand, there is an efflux mechanism for glutamate as blood-

mediated scavenging is reported to reduce glutamate in the

cerebrospinal fluid (Gottlieb et al. 2003). There is some

evidence that this may offer some protection (Zlotnik et al.

2008; Teichberg et al. 2009; Zlotnik et al. 2010; Nagy et al.

2010). The mechanism, however, of release from the brain

remains to be identified. This illustrates that brain water

homeostasis and transport mechanisms between the blood

and the extracellular fluid in brain are incompletely

understood. Recent work from Nedergaard and co-workers

may represent a leap in our understanding. They introduce

the term ‘‘glymphatics’’ (Iliff et al. 2012; Nedergaard 2013)

to describe flow of fluid from the arachnoid space along

blood vessels into brain tissue. This may reconcile a

number of apparently conflicting reports. Perhaps this also

will explain why the betaine-GABA transporter (BGT1;

slc6a12; Zhou et al. 2012b) and the taurine transporting

GABA transporter 2 (GAT2; slc6a13; Zhou et al. 2012a)

are expressed in the leptomeninges.

Concluding remarks

As outlined above, substantial progress has been made over

the last decades. But there are major gaps in our under-

standing of key processes. One example is transport of

metabolites across the blood brain barrier. Another

unknown is the uptake in glutamatergic nerve endings and

the relevance of the glutamate-glutamine cycle for trans-

mitter glutamate. A third topic is why the body needs

several different glutamate transporters, and how they can

be pharmacologically modulated.
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