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Abstract We derive the analytic formula of the growth
index for the f (R) dark energy model where the effect on
the growth of matter density perturbation δm from modified
gravity (MG) is encoded in the effective Newton coupling
constant Geff in MG (or equivalently g ≡ Geff/G). Based
on the analytic formula, we propose that the parameter g
can be directly found by comparing the observed growth rate
fg ≡ d ln δm/d ln a to the prediction of fg in general rela-
tivity.

1 Introduction

The accelerating expansion of the present Universe was dis-
covered by studying type Ia supernovae [1,2]. Up to now,
the standard �CDM model in the framework of general rela-
tivity (GR) is able to explain the present cosmic acceleration
within observational errors. However, how to explain the tiny
value of the cosmological constant compared to the known
physical scales is still a big challenge.

Modified gravity (MG), for example f (R) gravity, pro-
vides a geometrical origin to the present cosmic accelera-
tion. The basic idea of MG dark energy is that gravity is
modified on the cosmological scales when the Ricci scalar
R is of the order of today’s Ricci scalar R0, while GR is
recovered in the region of R � R0. However, it is quite non-
trivial to construct a viable f (R) dark energy model which
is consistent with both cosmological and local gravity con-
straints. See some typical viable f (R) dark energy models in
[3–9]. It is useful to introduce the effective equation of state
parameter w = pde/ρde to describe the difference between
the Friedmann–Robertson–Walker (FRW) background evo-
lutions of MG and the standard �CDM model, where the
effective pressure pde and the energy density ρde are deter-
mined by using the Einsteinian representation of the gravita-
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tional field equations. On the other hand, since the gravity in
MG is different from GR, the evolution of the matter density
perturbation δm ≡ δρm/ρm provides a crucial tool to distin-
guish the MG dark energy model from the dark energy model
in GR, in particular the standard �CDM model. For simplic-
ity, the growth rate fg of the matter density perturbation can
be parametrized by [10]

fg ≡ d ln δm

d ln a
≡ �m(z)γ (z), (1)

where a is the scale factor, �m(z) is the density parameter
for dust-like matter at redshift z, and γ (z) is the so-called
growth index. In the �CDM model in GR, w = −1, and we
have [11,12]

γ � 6/11. (2)

Generically the effect on the matter density perturba-
tion in MG is encoded in the effective Newton coupling
constant Geff . For simplicity, we introduce a new quantity
g ≡ Geff/G to measure the difference between MG and
GR. In general, w is time dependent and g is time and scale
dependent in MG, and then the growth index γ is expected to
be time and scale dependent. During a deep matter-dominant
era GR is recovered, while the gravity is modified in the
low redshift era when the cosmic acceleration occurs. One
can expect that the evolutions of both FRW background and
matter density perturbation in MG are too complicated to be
solved analytically from the deep matter-dominant era to the
accelerating era.

In this paper we focus on the growth of matter density
perturbation in the f (R) dark energy model. We suppose
that g is parametrized as follows:

g = g0 + g1(1 − �m), (3)

where g0 and g1 are two constants. Here g1 is used to char-
acterize the time-evolution of g. Note that both g0 = g0(k)

and g1 = g1(k) are scale dependent generically. In the deep
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matter-dominant era (�m → 1), GR should be recovered and
then g → 1. But g can deviate from 1 at low redshift. This
parameterization can cover many viable f (R) dark energy
models at low redshift. Based on such a parameterization, we
analytically solve the equation of motion of δm and work out
an analytic formula for the growth index. Furthermore, we
find that g can be directly found by comparing the observed
growth rate fg to the prediction of fg in GR.

This paper will be organized as follows. In Sect. 2 we
briefly review the f (R) dark energy model. In Sect. 3 we
analytically calculate the growth index for f (R) dark energy
model. A summary and discussion are given in Sect. 4.

2 A brief introduction to the f (R) dark energy model

Let us start with the following action:

S = 1

16πG

∫
d4x

√−g f (R) + Sm, (4)

where G is the Newton coupling constant, Sm is the action
for the matter, R = 6(2H2 + Ḣ) and H denotes the Hubble
parameter. If f (R) = R − 2�, the above action reduces to
the Einstein–Hilbert action for the �CDM model in GR. In
this paper we consider the case that f (R) vanishes for R = 0,
which implies that no cosmological constant is introduced.
The f (R) gravity contains a new scalar degree of freedom
dubbed “scalaron” whose mass depends on the Ricci scalar
R [13]. The stability of f (R) theory requires

F ≡ f,R > 0, F,R ≡ f,R R > 0, (5)

where f,R = d f (R)/d R and F,R = d F(R)/d R. The former
condition implies that gravity is attractive and graviton is not
a ghost, and the latter condition means that the scalaron is not
a tachyon. In addition, the viable f (R) dark energy model is
required to be similar to the �CDM model during the radia-
tion and deep matter-dominant era, but important observable
deviations from the �CDM model appear at low redshift.
In order to measure such a deviation, we can introduce a
dimensionless quantity defined by β ≡ RF,R/F which sat-
isfies 0 < β < 1 [3,14].

Considering that Sm describes the dust-like matter (the
pressure of dust-like matter equals 0), the equations of motion
for the FRW background take the form

H2 = 1

3

[
1

2
(F R − f ) − 3H Ḟ − 3(F − 1)H2

]

+8πG

3
ρm, (6)

−2Ḣ = F̈ − H Ḟ + 2(F − 1)Ḣ + 8πGρm . (7)

Here we focus on the late time Universe where the radia-
tion can be ignored. From these two equations, the effective

energy density and pressure of f (R) dark energy are, respec-
tively, given by

ρde = 1

8πG

[
1

2
(F R − f ) − 3H Ḟ − 3(F − 1)H2

]
, (8)

pde = −ρde + 1

8πG

[
F̈ − H Ḟ + 2(F − 1)Ḣ

]
, (9)

and then the effective equation of state parameter w reads

w = −1 + F̈ − H Ḟ + 2(F − 1)Ḣ
1
2 (F R − f ) − 3H Ḟ − 3(F − 1)H2

. (10)

Combining Eqs. (6) and (7), the Ricci scalar becomes

R = 3 [1 − 3w(1 − �m)] H2, (11)

where

�m ≡ 8πGρm

3H2 (12)

is the density parameter for the dust-like matter.
Many typical viable f (R) dark energy models which are

consistent with both cosmological and local gravity con-
straints are summarized in [14]. All of them can be written
in the following form:

f (R) = R − λRsY (x), (13)

where x = R/Rs , Rs(> 0) is a characteristic value of R andλ

is a positive parameter. The function Y (x) in the viable model
takes the forms: (i) Y (x) = x p (0 < p < 1) [3], (ii) Y (x) =
x2n/(x2n+1) (n > 0) [4], (iii) Y (x) = 1−(1+x2)−n (n > 0)

[6], (iv) Y (x) = 1 − e−x [8,9], (v) Y (x) = tanh(x) [7], etc.
We find that all of these models satisfy F = f,R < 1.

3 The analytic formula of the growth index for f (R)

dark energy model

From now on, we will focus on the evolution of the mat-
ter density perturbation in MG. In the sub-horizon limit, the
evolution of the matter density fluctuation, δm , is governed
by

δ̈m + 2H δ̇m − 4πGeffρmδm = 0, (14)

Geff = g(a, k, R) · G, (15)

where

g(a, k, R) ≡ 1

F

(
1 + 1

3

1

1 + M2a2

k2

)
, (16)

in [15,16], or without taking any approximation at the matter-
dominant stage [17,18]

g(a, k, R) = 1 + 8

3

4/F − 3

27 + 8
(

k2

a2 M2

)4

(
k2

a2 M2

)4

, (17)
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and

M2 = R

3β
= F

3F,R
. (18)

Here M is nothing but the mass of the scalaron. The positivity
of both f,R and f,R R guarantees the positivity of the mass
square of the scalaron. In the scales which are much smaller
than M−1, GR is recovered, and the gravity is modified in the
scales around or larger than M−1. In addition, considering
(16) or (17) with F < 1, we find g > 1 for the viable f (R)

dark energy models in the literature.
In the deep matter-dominant era, a ∼ t2/3, and then

Eq. (14) becomes

δ̈m + 4

3t
δ̇m − 2

3t2 gδm = 0, (19)

whose solution is given by δm ∼ t
√

1+24g−1
6 ∼ a

√
1+24g−1

4 ,
where g is taken as a constant. In this era, GR is proposed to
be recovered (g → 1) and then δm ∼ a.

Now let us switch to the late time Universe where the
energy densities of effective dark energy and dust-like matter
are comparable to each other. Equation (14) can be re-written
as follows:

d2 ln δm

d ln a2 +
(

d ln δm

d ln a

)2

+ d ln δm

d ln a

[
1

2
− 3

2
w(1 − �m)

]

= 3

2
g�m, (20)

or equivalently

d fg

d ln a
+ f 2

g + fg

[
1

2
− 3

2
w(1 − �m)

]
= 3

2
g�m . (21)

From Eqs. (6), (7), and (12), we have

d�m

d ln a
= 3w�m(1 − �m). (22)

Combining with the definition of the growth index γ in
Eqs. (1), (20) becomes

3w�m(1 − �m) ln �m
dγ

d�m
+ 3w

(
γ − 1

2

)
(1 − �m)

+�
γ
m − 3

2
g�

1−γ
m + 1

2
= 0. (23)

Usually the form of g(a, k, R) is expected to be very com-
plicated. In order to capture the main feature of the f (R) dark
energy model at low redshift, we expand g as a power series
about (1 − �m) ∼ 0 for a given perturbation mode k,

g =
∑
n=0

gn(1 − �m)n . (24)

In this paper we take the first two terms like that in Eq. (3) into
account.1 For a slowly varying equation of the state parameter

1 The case with g0 = 1 is discussed in [19].

w (|dw/d�m | � (1 − �m)), the solution of Eq. (23) takes
the form

γ = c−1

1 − �m
+ c0 + c1(1 − �m) + O

(
(1 − �m)2

)
, (25)

where c−1, c0, and c1 can be calculated order by order,

c−1 = ln
1 + √

1 + 24g0

6g0
, (26)

c0 = 1 − c−1

2
+ −2 + 3ec−1w − 3e2c−1 g1

2 + 3e2c−1 g0 − 6ec−1w
, (27)

c1 = (c2−1 + 4c−1c0 − 4(1 − c0)c0)(2 − 3e2c−1 g0)

8(2 + 3e2c−1 g0 − 12ec−1w)

−c−1(4 − 3e2c−1 g0 − 6ec−1w)

6(2 + 3e2c−1 g0 − 12ec−1w)

+3g1(1 − c−1/2 − c0)e2c−1

2 + 3e2c−1 g0 − 12ec−1w
. (28)

The expressions of the higher order terms are quite com-
plicated, and the readers can easily work them out once they
need to. Here the first two terms on the right hand side of
Eq. (25) make the main contributions to γ and the term with
c1 is roughly negligible if both (g0 −1) and g1 are much less
than 1. If g0 	= 1, the growth index is expected to be time-
evolving, and the ansatz with a constant growth index is not
generic for f (R) dark energy model. Our analytic formula
indicates that a better ansatz for γ is

γ (z) � γ−1

1 − �m
+ γ0 + γ1(1 − �m), (29)

where γ−1, γ0 and γ1 are constants.
For g0 = 1 and g1 = 0, our result reduces to GR where

c−1 = 0, c0 = 3(1−w)
5−6w

and c1 = 3
125

(1−w)(1−3w/2)

(1−6w/5)2(1−12w/5)
.2 For

g0 = 1,

c−1 = 0, c0 = 3(1 − g1 − w)

5 − 6w
. (30)

In the Dvali–Gabadadze–Porrati (DGP) model [20,21], g =
1− 1

3
1−�2

m
1+�2

m
. In the matter-dominant era, g → 1− 1

3 (1−�m)

and w → −1/2, and thus γ � 11/16 which is the same as
that in [10].

Nowadays the property of dark energy has been tightly
constrained from observations [22]. The �CDM model can
fit the data, and the room for f (R) dark energy model has
been tightly constrained, for example |g0 − 1| � O(0.1) and
|g1| � O(0.1). Therefore c−1 and c0 can be expanded around
the case of GR (g0 = 1 and g1 = 0),

2 The denominator of c1 is slightly different from that in [11] where
c1 = 3

125
(1−w)(1−3w/2)

(1−6w/5)3 .
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c−1 = −3

5
(g0 − 1) + O((g0 − 1)2), (31)

c0 = 3(1 − g1 − w)

5(1 − 6w/5)

+9(7 + 18g1 − 20w − 12g1w + 12w2)

250(1 − 6w/5)2 (g0 − 1)

+O((g0 − 1)2). (32)

For w = −1 and g1 = 0, c0 � 6
11 + 351

1,210 (g0 − 1).
Applying our analytic formula in (25) to Eq. (1), we can

easily calculate the growth rate fg(z). Testing the growth rate
fg from our analytic result in (25) against the value obtained
by numerical calculation, the accuracy at low redshift (z � 1)

is better than a few percents. Combining Eq. (25) with Eq. (1)
and expanding fg up to the order of (1 − �m)2, we have

fg(z) = e−c−1−(c−1/2+c0)(1−�m)+O((1−�m)2
)
, (33)

where

c−1

2
+ c0 = 3(1 − g1 − w)

5(1 − 6w/5)

−3(2 − 27g1 + 18g1w)

125(1 − 6w/5)2 (g0 − 1)

+O((g0 − 1)2). (34)

Since the first term on the right hand side of Eq. (34) is
dominant, we have

fg,MG(z)

fg,GR(z)
� exp

[
−c−1 + 3g1�de(z)

5 − 6w

]
, (35)

where �de = (1−�m) is the dark energy density parameter.
For g1 = 0 and g0 > 1 (or equivalently c−1 < 0), which
implies that gravity is stronger than GR, the growth rate of
the matter density perturbation is enhanced by a factor e−c−1 .
Motivated by Eq. (35), we propose

1 − 5

3
c−1 + g1�de(z)

1 − 6w/5
� rg,obs(z), (36)

where

rg,obs(z) ≡ 1 + 5

3
ln

fg,obs(z)

fg,GR(z)
. (37)

Note that c−1 is a function of g0. Once we can construct the
relation between rg(z) and �de from cosmological observa-
tions, we can easily find g0 and g1. Roughly speaking, the
value of g0 can be determined by the value of rg,obs(z) when
�de � 0, and g1 is related to the tilt of rg,obs(z) at low red-
shift. If |g0 − 1| � O(0.1), Eq. (36) becomes

g0 + g1�de(z)

1 − 6w/5
� rg,obs(z), (38)

which indicates that the redshift-independent part of rg,obs(z)
is equal to g0.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.30

0.35

0.40

0.45σ

0.50

0.55

0.60

z

f g
8

z

Fig. 1 The plot of fgσ8(z). Here we adopt w = −1, �0
m = 0.315 and

σ8 = 0.829. The red solid, blue dashed, blue dotted, and blue solid
curves correspond to �CDM model, g = 1.3, g = 1 − 0.5(1 − �m)

and g = 1.3 − 0.5(1 − �m) respectively

In the literature, one may prefer to constrain fgσ8(z) from
cosmological observations, where σ8 is today’s root-mean-
square mass fluctuation on 8 h−1 Mpc. Because the equation
of motion of δm is a linear equation, one can define a nor-
malized growth function D(z) via

D(z) ≡ δm(z)/δm(z = 0), (39)

and then σ8(z) = σ8 D(z). Solving Eq. (1), we get

D(z) = 1

1 + z
exp

⎡
⎣

z∫

0

(
1 − �m(z′)γ (z′)

) dz′

1 + z′

⎤
⎦ . (40)

Therefore

fgσ8(z) = D(z)�m(z)γ (z)σ8. (41)

Using our analytic result, fgσ8(z) is plotted in Fig. 1.
Roughly speaking, if |g0 − 1| � 1 and |g1| � 1, g0

shifts the amplitude of fgσ8(z) and g1 changes the shape
of fgσ8(z).

4 Summary and discussion

To summarize, we analytically calculate the growth index in
the f (R) dark energy model. Actually our results are appli-
cable for more general MG dark energy models, for example
f (T ) dark energy model [23–26], as long as the effect on the
growth of matter density perturbation from MG is encoded
in g = Geff/G. As we know, there are two key parameters
for MG dark energy model, namely w and Geff (or equiv-
alently g). The former parameter determines the expansion
history of our Universe, and the latter parameter tells us how
the matter density perturbation grows up. Adopting the ana-
lytic formula, we find a simple relation between g and the
growth rate in Eq. (35), and then we propose that g can be
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directly found by comparing the observed growth rate fg to
the prediction of fg in GR. In the literature, one would like
to use fgσ8(z) to characterize the growth of the matter den-
sity perturbation. In this case one can also use our analytic
formula to calculate fgσ8(z) and then fit g0 and A from the
data.

Recently the anisotropic clustering of the Baryon Oscil-
lation Spectroscopic Survey (BOSS) CMASS Data Release
11 (DR11) sample was analyzed. The combination of Planck
and CMASS implies γ = 0.772+0.124

−0.097 and a similar result
γ = 0.76 ± 0.11 is obtained when replacing Planck with
WMAP9 in [27]. Both results deviate from the predic-
tion of �CDM in GR at more than 2σ level. The large
value of γ may come from the large value of σ8 from
Planck, or it is just a statistical fluctuation. Considering
fgσ8(z = 0.57) = 0.419 ± 0.044 from BOSS CMASS
DR11, we obtain g0 � 0.73 in the reference �CDM model
(�0

m = 0.315 and σ8 = 0.829) from Planck [22]. A careful
data fitting will be done in the near future [28]. In a word, if
such a deviation is confirmed in the future, we really need to
modify the gravity.

Finally for some other aspects on f (R) dark energy model
see [29–44] etc.
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