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Abstract We studied species richness, composition and vertical distribution of epiphytic

bryophytes in submontane rainforest of Central Sulawesi. Bryophytes were sampled on

eight canopy trees and on eight trees in the forest understorey. Microclimate was measured

at trunk bases and at crown bases. The total recorded number of 146 epiphytic bryophyte

species is among the highest ever reported for tropical forests and underlines the impor-

tance of the Malesian region as a global biodiversity hotspot. Species composition differed

significantly between understorey trees and canopy tree trunks on the one hand, and the

forest canopy on the other. Fourty-five percent of the bryophyte species were restricted to

canopy tree crowns, 12% to the understorey. Dendroid and fan-like species mainly

occurred in the forest understorey whereas tufts were most species rich in the tree crowns.

The findings reflect the different microclimatic regimes and substrates found in the

understorey and in the forest canopy. The results indicate that assessments of the bryophyte

diversity of tropical forests are inadequate when understorey trees and tree crowns are

excluded.
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Introduction

Tropical rainforests, especially montane forests, are rich in epiphytic bryophytes (Richards

1984; Frahm and Gradstein 1991; Parolly and Kürschner 2004). These plants play an

important role in the water balance and nutrient cycling of the forest (Pócs 1980; Nadkarni

1984; Hofstede et al. 1994; but see Hölscher et al. 2004), and function as substrate, food

source and nesting material for numerous other rainforest organisms (e.g., Nadkarni and

Matelson 1989; Yanoviak et al. 2007).

Several recent studies have described the species composition and richness of epiphytic

bryophytes at different height levels on rainforest trees, as well as substrate preferences

within the host trees (e.g., Cornelissen and Ter Steege 1989; Wolf 1993a, b, 1996; Gradstein

et al. 2001b; Holz et al. 2002; Acebey et al. 2003). Bark structure and microclimate were

identified as key drivers of epiphytic bryophyte distribution within the forest. Due to the

lack of a protective cuticle, bryophytes are sensitive indicators of climatic conditions

(Gignac 2001; Léon-Vargas et al. 2006; Zotz and Bader 2009), and environmental changes,

e.g., in insolation or air humidity, may result in rapid community composition changes and

vertical shifts of bryophyte assemblages on host trees (Barkman 1958; Acebey et al. 2003;

Frego 2007). In comparison, chemical bark factors seem to play a minor role in shaping

epiphytic bryophyte distributions in rainforest (Frahm 1990) and also host specificity is rare

among tropical bryophytes (Pócs 1982; Richards 1984; Kürschner 1990).

It has also been shown that bryophytes are not evenly distributed within the forest and

that the forest canopy may harbour many more species than the understorey (Gradstein

1992a). The vertical distribution of epiphytic bryophyte assemblages within the rainforest

can be related to the microclimatic preferences of individual species. Some occur exclu-

sively in the moist, shaded understorey and lower canopy of the forest, others are found

only in the drier, outer portions of the forest canopy high above the ground; some occur in

both habitats. Following Richards (1984), these ecological groups are called ‘‘shade epi-

phytes’’, ‘‘sun epiphytes’’ and ‘‘generalists’’, respectively. Based on life form (Mägdefrau

1982), shade epiphytes can be recognized by their exposed growth (e.g., tufts, pendants,

carpets) that maximises light exposure while sun epiphytes are usually compact and

prostrate to reduce water loss. Shade epiphytes, are thus generally less well adapted to

desiccation than sun epiphytes and generalists, and are more seriously affected by forest

disturbance (Gradstein 1992b, 2008; Acebey et al. 2003).

In spite of the recent upsurge in ecological research on rainforest bryophytes, our

knowledge of vertical distribution and microhabitat specificity of epiphytic bryophytes in

rainforests remains incomplete. First, most studies have been carried out in tropical

America, and very few in the Old World tropics. Second, almost all epiphyte studies in the

natural forest have hitherto focused on mature canopy trees; species on young understorey

trees have generally been neglected (Krömer et al. 2007). Third, descriptions of vertical

distribution patterns have generally been observational; very few studies included statis-

tical analysis of the data (Holz et al. 2002; Holz and Gradstein 2005).

In this study, epiphytic bryophyte distribution was studied in natural rainforest on the

island of Sulawesi, Indonesia. In Southeast Asia, studies on epiphytic bryophytes have to

date been restricted to more easily accessible tree trunk bases (Frahm 1990; Kürschner

1990; Ariyanti et al. 2008); this is the first study that includes sampling of whole trees. The

purpose of this paper is to analyse the vertical distribution of species richness, species

composition and bryophyte life forms on whole forest trees. In addition to diversity pat-

terns on mature host trees, attention is paid to the hitherto neglected diversity of epiphytic

bryophytes on the young trees of the forest understorey.
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Materials and methods

Study area

The study area was located at the western border of Lore Lindu National Park (120�10–
120�303000E 1�2903000–1�320S, 800–1100 m a.s.l.), Central Sulawesi, Indonesia, near the

village of Toro (Ariyanti et al. 2008; Sporn et al. 2009). Annual rainfall in the area is 2000–

3000 mm, without clear seasonal fluctuations (Gravenhorst et al. 2005). Within an alti-

tudinal range of 950–1100 m, four submontane forest sites of 1 ha each were selected for

this study. Sites were sloping at an inclination of 20–30�, forest canopy cover was over

95%, canopy height was 25–45 m and human disturbance was minor (rattan extraction,

collection of medicinal herbs).

Microclimate measurement

In each study site, air temperature (�C) and relative humidity (%RH) were measured at 2 m

height and at the ramification that marked the base of the tree crown, using data-loggers

(HOBO RH/Temp, �SYNOTECH). Measurements were taken in July 2005 during one

week in each site (Sporn et al. 2009).

Sampling of epiphytic bryophytes

In each study site, two mature canopy trees and two understorey trees minimally 15 m

apart were selected randomly; however, to minimize variation in substrate conditions, all

selected trees were smooth-barked. Understorey trees were 3–6.5 m in height and dbh was

20–60 cm. Canopy trees were 30–45 m in height and dbh was 2–6.5 m.

Epiphytic bryophytes were sampled in quadrats of 200 cm2, positioned at each cardinal

direction in six height zones on canopy trees (zones Z1, Z2a, Z2b, Z3, Z4 and Z5;

Johansson 1974) and in three height zones on understorey trees (U1 = trunk from base to

first ramification, U2 = inner crown, U3 = outer crown). Canopy trees were accessed

using the single rope technique (Ter Steege and Cornelissen 1988); for safety reasons, thin

canopy branches (zones Z4, Z5) were cut and lowered to the ground for sampling. Total

bryophyte cover (%) was estimated for each quadrat. In total, 24 quadrats (4800 cm2) per

mature tree and 12 quadrats (2400 cm2) per treelet were sampled.

Bryophytes were identified using taxonomic literature (see Gradstein et al. 2005) and

reference collections from the herbaria of the University of Göttingen (GOET) and Leiden

(L), or sorted to morphospecies. Moss species identification was in part done with the help

of specialists. Bryophyte species were assigned to the following life forms: dendroid, fan,

mat, pendant, tail, short turf, tall turf and weft (Mägdefrau 1982). Vouchers were deposited

in the herbaria BO, CEB, GOET and L.

Statistical analysis

To assess overall sampling completeness and sampling completeness per tree type, we

used the Chao2 species richness estimator (as recommended by Herzog et al. 2002;

Walther and Moore 2005). To test for differences in species richness between sites, trees

and height zones (Z1–Z5, U1–U3), we used general linear models (GLMs) with Type I
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hierarchical variance decomposition. ‘‘Site’’ was entered first, followed by ‘‘tree’’ and

‘‘zone’’. All were entered as random variables. To quantify differences in species

composition between sites and zones, we calculated Sørensen’s similarity index for each

pairwise comparison of zones per site. Using non-metric multidimensional scaling

(MDS), we reduced the similarity matrix to a dimensional scaling. Stress values below

0.20 were considered to indicate a good fit of the scaling to the matrix. With analyses of

similarity (ANOSIM), differences in species composition between sites and zones were

tested.

All analyses were carried out for overall bryophytes and separately for mosses (Bryo-

phyta s.str.) and liverworts (Marchantiophyta). Chao2 richness estimates were calculated

using EstimateS (Colwell 2004), GLMs and MDS with Statistica 7.0 (StatSoft Inc 2001),

and Sørensen’s similarity index and ANOSIM with Primer 5.0 (PRIMER-E Ltd 2002).

Results

Microclimate

The daily fluctuations in microclimate showed steepest changes between 7:00 am and 7:00

pm (Fig. 1). In the forest canopy, air temperature was on average 1.6�C higher and relative

air humidity 4.9% lower than at trunk bases (Fig. 1).

Species richness

In total, 146 bryophyte species (87% of the estimated) were collected including 84 species

of liverworts (85% of the estimated) and 62 species of mosses (91% of the estimated,

Fig. 2). Fifty species (= common spp.) occurred in more than 10% of all samples; 24 of

Fig. 1 Temperature (�C, left) and relative humidity (%RH, right) in understorey (Z1, black lines) and lower
canopy (Z3, grey lines) during 24 h. The values are averages for the four forest sites in the study area
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these species were found in only one tree zone. Seventy-six species or 82% of estimated

total species richness were recorded from understorey trees, and 133 species or 88% of

estimated total richness from canopy trees (Fig. 2). Overall bryophyte richness and liv-

erwort richness differed significantly between trees and zones (Table 1) with highest

values in Z3 and lowest values in Z1; that of mosses differed significantly between zones

but not between trees (Fig. 3; Table 1). No significant differences in species richness

between sites were found (Table 1).

Fig. 2 Accumulation curves of observed and estimated (Chao2) species richness of epiphytic bryophytes,
in the investigated canopy trees and understorey trees in the study area

Table 1 The results of general
linear models that tested for the
effects of site, tree, and zone
differences on overall richness of
epiphytic bryophytes, richness of
liverworts, and richness of true
mosses in the study area

S sums of squares, D.f. degrees of
freedom

S D.f. F P

All bryophytes

Site 348.50 3 1.46 0.24

Tree 921.73 3 3.77 0.01

Zone 2399.95 8 4.17 0.00

Error 4027.06 56

Liverworts

Site 409.49 3 3.46 0.02

Tree 594.69 3 5.23 0.00

Zone 984.43 8 3.60 0.00

Error 1914.96 56

True mosses

Site 43.65 3 1.10 0.36

Tree 115.62 3 2.81 0.05

Zone 348.80 8 3.51 0.00

Error 695.36 56
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Species composition

Lejeuneaceae (liverworts) was the most species-rich family, representing 37% of all

bryophyte species recorded, followed by Plagiochilaceae (9%, also liverworts), Neckera-

ceae (6%, mosses), and Frullaniaceae, Hookeriaceae and Meteoriaceae (5% each). Fourty-

eight percent of species were only found on canopy trees, with 3% restricted to trunks

(none exclusive to zone Z1) and 18% to tree crowns. Eleven percent of all species were

exclusively found on young trees in the forest understorey. The first two dimensions of the

multidimensional scaling of the Sørensen’s similarity index reduced more than 77% of the

raw stress with stress values below 0.20. Within understorey trees, species composition did

not differ between zones (Table 2). Here, species assemblages were also similar to those

on zones 1 and 2 of canopy trees (Table 2).

Within canopy trees, the ANOSIM results showed significant composition dissimilarity

between Z1 and Z3, Z4 and Z5 (Table 2). Thus, epiphytic bryophyte assemblages in the

study sites can be divided in two groups, those on understorey trees (U1, U2, U3) and in

zone 1 of canopy trees, and those in the crowns of canopy trees (Z3, Z4, Z5). Zones 2a and

2b form a transition zone between the understorey and the canopy in terms of bryophyte

composition.

Life forms

Seventy percent of all collected bryophytes species were smooth mats (47%) or wefts

(23%); species belonging to these categories occurred on all sampled trees. Other life

forms each included less than 10% of all species (Fig. 4). The richness of pendants, mats,

short turfs, tails and wefts did not differ between zones. However, dendroids and fans were

significantly most numerous in the forest understorey, whereas tall turfs occurred only in

the forest canopy layer.

Fig. 3 The mean species richness of epiphytic liverworts (light grey) and mosses (dark grey) per zone in
the investigated canopy trees (zones Z1–Z5) and understorey trees (zones U1–U3). Different letters indicate
significant differences based on Tukey HSD post-tests and horizontal bars indicate standard errors
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Discussion

Species richness

The recorded number of 146 epiphytic bryophyte species on eight understorey and eight

canopy trees (estimated sampling completeness: 88% for canopy trees, 82% for under-

storey trees) is among the highest ever reported for tropical forests (e.g., Cornelissen and

Ter Steege 1989; Montfoort and Ek 1990; Wolf 1993b; Acebey et al. 2003). It is exceeded

by a Costa Rican montane cloud forest (Gradstein et al. 2001b), where growth of epiphytic

bryophytes is enhanced by the frequent occurrence of fog. These results underscore the

high species richness of the studied Sulawesi rainforest. The higher richness of liverworts

compared to mosses in our study area is in line with findings in South America (e.g.,

Table 2 The R values of the results of analysis of similarity (ANOSIM) after a multidimensional scaling of
Sørensen’s index calculated for pairwise comparisons of epiphytic bryophytes in different tree zones in the
investigated understorey trees (zones U1 to U3) and canopy trees (zones Z1 to Z5)

Groups U1 U2 U3 Z1 Z2a Z2b Z3 Z4 Z5

U1

U2 0.22

U3 0.10 0.07

Z1 0.17 0.04 0.10

Z2a 0.21 0.15 0.17 0.14

Z2b 0.35 0.65 0.23 0.24 0.24

Z3 0.34 0.54 0.14 0.19 0.03 0.19

Z4 0.48 0.65 0.22 0.27 0.35 0.18 0.21

Z5 0.39 0.39 0.16 0.29 0.09 0.32 0.29 0.02

Bold values indicate significant differences

Fig. 4 The proportion of species with different life-forms per zone in the investigated canopy trees (zones
Z1–Z5) and understorey trees (zones U1–U3)
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Florschütz-de Waard and Bekker 1987; Gradstein et al. 2001a) and contradicts the pur-

ported predominance of mosses in palaeotropical forests (Gradstein and Pócs 1989).

Unusually high species richness in the study area has also been recorded for trees and

terrestrial herbs (Kessler et al. 2005; Cicuzza et al. in press) and underlines the importance

of the Malesian region as a global biodiversity hotspot (Myers et al. 2000; Sodhi et al.

2004). However, within and between trees, bryophyte species richness as well as com-

position (see below) differed strongly. The causes for these differences remain unclear and

may be due to ecological, historical and stochastic factors (Barkman 1958; Richards et al.

1996; Frahm 1990; Cardelús and Chazdon 2005). Canopy trees had about twice as many

species compared to understorey trees, but species richness in the first three height zones

on understorey trees (U1, U2, U3) was rather similar to that of zones Z1 to Z2b on canopy

trees. Between height zones, however, species richness differed greatly, with lowest values

being found on young trees in the understorey and trunk bases of canopy trees, and highest

values in the lower portion of the canopy tree crowns (Z3). The latter findings agree with

observations in neotropical rainforests (Cornelissen and Ter Steege 1989; Cornelissen and

Gradstein 1990; Gradstein et al. 2001b; Acebey et al. 2003), which however lacked data on

understorey trees.

The approximately 2�C increase of air temperature and ca. 5% decrease of air humidity

from the trunk bases towards the base of the canopy (at 14–19 m height) are in general

agreement with other microclimate readings in tropical rainforest (e.g., Richards et al.

1996; Walsh 1996; Leigh 1999; Acebey et al. 2003; Kluge et al. 2006). The richness peak

in the lower portion of the canopy (Z3) suggests optimal conditions for bryophyte growth

in this height zone. Lower down, bryophyte establishment and growth may have been

limited by reduced light intensity and higher up by excessive exposure to sunlight and

wind. Beside microclimate conditions, bark and branch structure affecting stems flow of

water and nutrients may have been important factors determining species diversity

(Barkman 1958; Smith 1982; Rhoades 1995). Although bark structure was uniform in our

study, unstudied bark factors such as pH, hardness, water holding capacity and bark

chemistry (Barkman 1958; Holz 2003; Hauck 2003), may have influenced species richness

and composition in this study.

Species composition

The majority of species found in our study (67%) belonged to Lejeuneaceae, Plagiochila-

ceae, Neckeraceae, Frullaniaceae, Hookeriaceae and Meteoriaceae; all of these are core

bryophyte families in tropical rainforest (Gradstein and Pócs 1989). The common presence

of species such as Radula javanica, Ptychanthus striatus, Thysananthus spathulistipus,

Cheilolejeunea trifaria, Lopholejeunea subfusca, Mastigolejeunea auriculata, Frullania
riojaneirensis and Metalejeunea cucullata fits the general description of bryophyte com-

munities of moist tropical lowland and submontane forests (‘‘Coeno-Ptychanthetalia’’;

Kürschner and Parolly 1999). At a smaller scale, however, species composition changed

clearly with increasing height in the tree and species assemblages on tree trunks and

understorey trees were significantly different from those in the forest canopy. In accordance

with the studies of Wolf (1993c) and Holz et al. (2002) in tropical America, light intensity

and air humidity are probably the main drivers of floristic composition of epiphytic bryo-

phytes in the rainforest. Holz et al. (2002) found that light intensity explained over 50% of

the variation in bryophyte community structure in a montane rainforest of Costa Rica.

Our findings agree with earlier results from tropical America and indicate that phyto-

sociological descriptions of rainforest bryophyte communities without detailed analysis of
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the forest canopy are incomplete (Kürschner and Parolly 1999). Moreover, epiphytic

bryophyte assemblages of tree bases have been reported to be more similar to terrestrial

communities than to those elsewhere on the trees (Holz et al. 2002). In the investigated

submontane forest in Sulawesi, however, a terrestrial bryophyte layer was virtually lack-

ing, and this is also observed in other tropical lowland and submontane rainforests.

While species composition of liverworts and all bryophytes were markedly different on

canopy trees and understorey trees, moss composition in the outer crowns of canopy trees

(Z5) and in the understorey (U3) showed some similarity. This is probably due to ‘‘ram-

icolous’’ pioneer species occurring on young twigs in the canopy as well as in the forest

understorey (Cornelissen and Ter Steege 1989). Moreover, random dispersal of epiphytic

bryophytes may have occurred, for example by small plant parts fallen from higher forest

strata into lower vegetation layers. In the wind-exposed outer crown habitats, bryophytes

may easily be ripped off by wind and thus be displaced to the understorey trees.

Because adaptation of bryophyte species to their optimal microclimatic environment is

reflected in their life form, we included the vertical distribution of eight commonly dis-

tinguished bryophyte life forms in our study (Mägdefrau 1982). Dendroid forms and fans

were most numerous on tree trunks and understorey trees, whereas compact forms and tall

turfs were most numerous in the forest canopy and restricted in the understorey to the

crowns of young trees (zone U3). These results confirm that species with exposed life

forms are more successful in the understorey, where they are well-protected against

radiation and desiccation and where their growth form helps them to access as much light

as possible. In contrast, species with compact life forms can better cope with warmer and

drier circumstances such as those found in higher canopy strata (León-Vargas et al. 2006).

Lastly, branch structure such as diameter and inclination of twigs and branches, is an

important factor determining the composition of epiphytic bryophyte assemblages of the

forest canopy (Yamada 1975–1977; Wolf 1996; Holz 2003). The high number of tall turf

species in the canopy may be due to the presence of horizontal braches and crutches, which

provide optimal conditions for the establishment and growth of tall turfs. Vertical sub-

strates characteristic for the understorey of the forest appear to be generally unsuitable for

these species. In contrast, dendroids, tails and fans, which are generally only narrowly

attached to the substrate, are less dependent on horizontal substrates as anchoring places

and abound in the forest understorey.

Conclusions

We found significant differences in epiphytic bryophyte diversity on tree trunks and young

trees in the understorey versus the crowns of the trees; nearly 48% of all species were

restricted to the forest canopy trees. Our study was the first to include understorey trees in

the analysis of vertical distribution of epiphytic bryophytes using standardized sampling

methods. Although no more than 9% of the recorded species were only found on young

trees of the understorey, diversity of dendroid and fan-like species was highest on trunks

and understorey trees, and would have been underestimated or neglected when the un-

derstorey would have been excluded. The importance of young understorey trees as a

habitat for epiphytes was earlier demonstrated for vascular epiphytes by Krömer et al.

(2007), who found that more than 20% of total species diversity would have been missed

when this habitat as well as shrubs would not have been sampled. The results indicate that

conservation strategies aimed at preserving the variety of tropical habitats and recognition

of suitable indicator species, should consider the understorey trees in addition to the mature
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canopy trees. Our study once more reveals the importance of undisturbed rainforests with a

dense, closed canopy and a well-shaded, cool and moist understorey for the preservation of

high levels of biodiversity (Sporn et al. 2009). Disruption of the forest canopy would

inevitably risk levelling these habitat differences and pose a threat to the unique bryophyte

flora of the forest understorey (Gradstein 2008). Pristine rainforests provide optimal

conditions for the development of the specialized bryophyte assemblages detected in this

study, including on the one hand those of the shaded understorey and on the other hand

those of the exposed and little studied portions of the tree crowns.
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Appendix

See Table 3.

Table 3 Presence (x) of species of liverworts and mosses in three height zones (U1–U3) in eight under-
storey trees and six height zones (Z1–Z5) in eight canopy trees in four rainforest sites in Central Sulawesi,
Indonesia

Species Zone

U1 U2 U3 Z1 Z2a Z2b Z3 Z4 Z5

Liverworts Acrolejeunea pycnoclada x x x x x

Archilejeunea planiuscula x x x x x x x x x

Caudalejeunea recurvistipula x x x x x

Ceratolejeunea cornuta x x x

Cheilolejeunea ceylanica x x x x

Cheilolejeunea khasiana x x x x x x

Cheilolejeunea trapezia x x x x x x x x x

Cheilolejeunea trifaria x x x x x x x

Cheilolejeunea vittata x x x x x x x x x

Cololejeunea floccosa x x x

Cololejeunea haskarliana x

Cololejeunea inflectens x

Cololejeunea lanciloba x

Cololejeunea sp. x x x

Diplasiolejeunea cavifolia x

Drepanolejeunea angustifolia x x x
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Table 3 continued

Species Zone

U1 U2 U3 Z1 Z2a Z2b Z3 Z4 Z5

Drepanolejeunea dactylophora x x x x x

Drepanolejeunea ternatensis x x x x

Drepanolejeunea sp. 1 x x x x

Drepanolejeunea sp. 2 x x x

Drepanolejeunea sp. 3 x x

Frullania apiculata x x x x x

Frullania berthoumieuii x

Frullania riojaneirensis x x x

Frullania sp. 1 x

Frullania sp. 2 x x x

Frullania sp. 3 x x

Frullania sp. 4 x

Harpalejeunea filicuspis x x x x x

Harpalejeunea sp. x

Heteroscyphus cf. zollingeri x x x x x x x

Lejeunea anisophylla x x x x x x x

Lejeunea discreta x x

Lejeunea exilis x x x x

Lejeunea flava x x x x x x x x

Lejeunea cf. obscura x x x x x

Lejeunea sordida x x x x x

Lejeunea sp. 1 x x x x x x x x

Lejeunea sp. 2 x x x x x

Lejeunea sp. 3 x

Lejeunea sp. 4 x x x

Lejeunea sp. 5 x x x x

Lejeunea sp. 6 x x

Lejeunea sp. 7 x x x x x

Lepidolejeunea bidentula x x x x x

Leptolejeunea epiphylla x x

Lopholejeunea eulopha x x x x

Lopholejeunea subfusca x x x x x x x x x

Lopholejeunea wiltensii x x x x

Mastigolejeunea auriculata x x x x x x x

Metalejeunea cucullata x x x

Metzgeria furcata x x x

Metzgeria lindbergii x x x x x

Microlejeunea punctiformis x x x x x x x x

Plagiochila bantamensis x x x x x

Plagiochila junghuhniana x x x x x

Plagiochila sp. 1 x

Plagiochila sp. 2 x
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Table 3 continued

Species Zone

U1 U2 U3 Z1 Z2a Z2b Z3 Z4 Z5

Plagiochila sp. 3 x x

Plagiochila sp. 4 x x x x x x

Plagiochila sp. 5 x x x x x

Plagiochila sp. 6 x x x

Plagiochila sp. 7 x x

Plagiochila sp. 8 x x

Plagiochila sp. 9 x x x

Plagiochila sp. 10 x

Plagiochila sp. 11 x

Porella acutifolia x x x x x x x

Porella perrottetiana x x

Porella sp. 1 x x x x x

Porella sp. 2 x

Porella sp. 3 x x

Ptychanthus striatus x

Ptychanthus sp. x

Radula falcata x x x x x

Radula javanica x x x x x x x

Radula van-zantenii x x x

Schiffneriolejeunea cumingiana x x

Schiffneriolejeunea tumida x x x x x

Spruceanthus polymorphus x x

Stenolejeunea apiculata x x x x x

Thysananthus convolutus x x x

Thysananthus spathulistipus x x x x x x x

Tuyamaella jackii x x

Mosses Acroporium macroturgidum x x x x x

Aequatoriella bifaria x x x x x x

Aerobryopsis longissima x x

Aerobryopsis sp. x x x x x

Aerobryum speciosum x x x

Aerobyidium crispifolium x

Atractylocarpus novoguineensis x x x x x

Barbella trichophora x x x x x x

Calymperes dozyanum x x x

Calyptothecium sp. x x x x

Calyptothecium subcrispulum x x

Chaetomitrium lanceolatum x x x x

Chaetomitrium leptopoma x x x x x x x x

Chaetomitrium papillifolium x x x x x x x

Chaetomitrium setosum x x x

Chaetomitrium sp. 1 x x x x x x
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Table 3 continued

Species Zone

U1 U2 U3 Z1 Z2a Z2b Z3 Z4 Z5

Cryptopapillaria fuscescens x

Dicranum sp. x x x

Ectropothecium sp. 1 x

Ectropothecium sp. 2 x x x x x

Ectropothecium sp. 3 x x x

Floribundaria floribunda x x x x x x x x x

Floribundaria pseudofloribunda x x x

Garovaglia luzonensis x x x x x x x

Garovaglia plicata x x x x x x

Himantocladium plumula x x x

Himantocladium sp. 1 x x x x x

Himantocladium sp. 2 x x

Himantocladium sp. 3 x x x x x x x x

Homalia pseudo-exigua x x x x

Hypopterygium aristatum x x x

Hypopterygium sp. 1 x

Hypopterygium sp. 2 x x

Hypopterygium sp. 3 x x

Isocladiella sulcularis x x x x

Leucobryum bowringii x x x x x

Leucobryum sp. 1 x

Leucophanes octoblepharoides x x x x x x x x

Macromitrium concinuum x x

Macromitrium sp. 1 x x x

Macromitrium sp. 2 x x x x x

Mesonodon flavescens x

Meteoriopsis reclinata x

Meteoriopsis squarrosa x x x x

Meteorium miquelianum x x x x

Meteorium sp. x x x x x

Neckera acutata x

Neckeropsis gracilenta x x x x x x

Neckeropsis lepineana x x x x x x x x x

Orthomnion dilatatum x x x

Papillaria flexicaulis x x x

Papillaria sp. 1 x x

Pinatella anacamptolepis x x x x x

Pinatella kuehliana x x x x x x

Pinatella mucronata x x x x x x x x x

Pterobryopsis sp. x x x x x

Stereodontopsis excavata x x

Stereodontopsis sp. 1 x
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Hölscher D, Köhler L, van Dijk IJM et al (2004) The importance of epiphytes to total rainfall interception by
a tropical montane rain forest in Costa Rica. J Hydrol 292:308–322

Holz I (2003) Diversity and ecology of bryophytes and macrolichens in primary and secondary montane
quercus forests, Cordillera da Talamanca, Costa Rica. Dissertation, University of Göttingen.
http://deposit.ddb.de/cgi-bin/dokserv?idn=972640606&dok_var=d1&dok_ext=pdf&filename=972640
606.pdf. Cited 16 March 2009

Holz I, Gradstein SR (2005) Cryptogamic epiphytes in primary and recovering upper montane oak forests of
Costa Rica—species richness, community composition and ecology. Plant Ecol 178:547–560

Holz I, Gradstein SR, Heinrichs J et al (2002) Bryophyte diversity, microhabitat differentiation and dis-
tribution of life forms in Costa Rican upper montane quercus forest. Bryologist 105:334–348

Johansson D (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suecica
59:1–136

Kessler M, Keßler PJA, Gradstein SR, Bach K, Schmull M, Pitopang P (2005) Tree diversity in primary
forest and different land use systems in Central Sulawesi, Indonesia. Biodivers Conserv 14:547–560

Kluge J, Kessler M, Dunn R (2006) What drives elevational patterns of diversity? A test of geometric
constraints, climate, and species pool effects for pteridophytes on an elevational gradient in Costa Rica.
Glob Ecol Biogeogr 15:358–371

Krömer T, Kessler M, Gradstein SR (2007) Vertical stratification of vascular epiphytes in submontane and
montane forest of the Bolivian Andes: the importance of the understorey. Plant Ecol 189:261–278
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