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Abstract. Horizontal visibility graphs (HVGs) are graphs constructed
in correspondence with number sequences that have been introduced
and explored recently in the context of graph-theoretical time series
analysis. In most of the cases simple measures based on the degree
sequence (or functionals of these such as entropies over degree and
joint degree distributions) appear to be highly informative features for
automatic classification and provide nontrivial information on the asso-
ciated dynamical process, working even better than more sophisticated
topological metrics. It is thus an open question why these seemingly
simple measures capture so much information. Here we prove that,
under suitable conditions, there exist a bijection between the adjacency
matrix of an HVG and its degree sequence, and we give an explicit
construction of such bijection. As a consequence, under these condi-
tions HVGs are unigraphs and the degree sequence fully encapsulates
all the information of these graphs, thereby giving a plausible reason
for its apparently unreasonable effectiveness.

The theory of horizontal visibility graphs (HVGs) [1–3] builds a bridge between
nonlinear dynamics, time series analysis and graph theory by providing a recipe to
map a time series of N data into a graph of N vertices and subsequently studying the
topological properties of the resulting graph in direct correspondence with the struc-
ture and dynamical properties of the associated series. From a combinatoric point
of view, HVGs are outerplanar graphs with a Hamiltonian path [4], i.e. noncrossing
graphs as defined in algebraic combinatorics [5]. In recent years, this mapping has
been successfully explored to provide a topological characterization of different routes
to low dimensional chaos [6–8], or different types of stochastic and chaotic dynamics
[3]. From an applied angle, this technique is being widely used to extract in a
simple and computationally efficient way informative features for the description and
classification of empirical time series appearing in several areas of physics including
optics [9], fluid dynamics [10–12], geophysics [13] or astrophysics [14,15], and extend
beyond physics in areas such as physiology [16,17], neuroscience [18] or finance [19]
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Fig. 1. Sample time series of 20 data and its associated horizontal visibility graph (HVG).

to cite only a few examples. Among the wealth of possible graph-theoretical measures
that one could compute on a graph, it is noticeable that the most informative metrics
include the degree and joint degree distributions (as well as some moments [8]),
entropic quantities based on these distributions or sequential motifs [20], all these
based on the same quantity: the degree sequence. Of course the degree sequence is
just one out of many possible descriptors of a graph’s topology [21,22], and in this
sense it is an open and relevant question why, in the context of HVG theory, this
simple and computationally efficient quantity seems to be enough to describe the
full complexity of a given time series. In this letter we provide a partial solution
for this question, by proving that under suitable conditions (for a general family
of HVGs labelled canonical) these graphs are uniquely determined by its degree
sequence, i.e. they are so-called unigraphs [23–25]. In other words, we prove that
for canonical HVGs the degree sequence is the measure that encapsulates all the
information of the graph. To do that, we will need to introduce a list of definitions
and propositions before stating the main theorem. We will give a constructive
proof of the main theorem by giving an explicit bijection between the adjacency
matrix and the degree sequence, and we finally will discuss some implications of this
theorem.
Let S = {x1, . . . , xN}, xi ∈ R be a real-valued scalar time (or otherwise ordered)

series of N data. Its horizontal visibility graph HVG(S) is defined as an undirected
graph of N vertices, where each vertex i ∈ [1, N ] is labelled in correspondence with
the ordered datum xi. Hence x1 is related to vertex i = 1, x2 to vertex i = 2, and so
on. Then, two vertices i, j (assume i < j without loss of generality) share an edge if
and only if xk < inf(xi, xj), ∀k : i < k < j. This is an ordering criterion which can
be visualized in Figure 1.
Now, for the latter series S, if (i) x1 and xN are the two largest data in the

series and (ii) the inner data are different xi �= xj ∀i, j = 2, . . . , N − 1 then we call
the series S canonical and its associated HVG is called a canonical HVG. The set of
canonical HVGs is therefore a subset of all possible HVGs. The second condition is
usually guaranteed for real-valued irregular time series (which are the objects under
study in most of the applications), while even if the first condition is not easy to
meet, for a given dynamical process it is not difficult to find a sample series of size N
that is generated from the dynamical process and complies with the first condition.
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Fig. 2. An example of series canonization procedure.

In general this is achieved by a procedure of series canonization:

Series canonization. Consider again a sequence S = {x1, x2, . . . , xN} which is not
canonical. One can canonize the sequence – i.e., construct an associated sequence
which is canonical – using two different procedures, depending on the property that
S is lacking.
(i) If x1 and xN are not the largest data (see Fig. 2 for a visual example): In
this case, proceed to find the integer m such that xm takes the maximal value
in S, i.e. S = {x1, . . . , xm, . . . , xN}. Then construct the periodic extension as
S∗ = {x1, . . . , xm, . . . , xN , x1, . . . , xm, . . . , xN}. Finally, extract from this latter
sequence the subsequence of N + 1 data Sc = {xm, . . . , xm}: this is defined as
the canonical series associated to S.

(ii) If xi+τ = xi for some τ > 0 (the sequence is periodic of period τ) but the data
do not repeat within a period: Locate the largest value of the series and label
it xm. Then Sc is a sequence with τ + 1 data formed by S∗ = {xm, xm+1, . . . ,
xm+τ = xm}.

(iii) if xi = xj for some i, j but the sequence is not periodic, or if the sequence is
periodic and some data take identical values within a period, then the sequence
cannot be canonized.

Note that any time series extracted from the trajectory of a stochastic dynami-
cal system where the random variable takes values on R can be canonized using the
procedure (i) almost surely. The same holds for the trajectories of aperiodic determin-
istic dynamical systems. For periodic sequences, one can apply the procedure (2). In
general, if a series S is extracted from a given dynamical process, then its canonized
version Sc is also a possible realization of the same dynamical process with equal
probability (that is, S and Sc are equiprobable microstates).
Before stating the main theorem, we just need to state the following:

Proposition 1. The HVG associated to any monotonic sequence of N data is a path
graph of N vertices.

The detailed proof of this proposition is trivial and is therefore omitted (as a sketch,
one proceeds by applying the visibility criterion to the three cases–monotonically
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increasing, monotonically decreasing, and constant series-). We are thus ready to
state the main theorem of this paper.

Theorem 1. If G is a canonical HVG of N vertices with adjacency matrix A and
degree sequence k = (k1, k2, . . . , kN ), then there exists a bijection between A and k.

Proof. We construct this bijection explicitly. Consider the computable function
f : {0, 1}N×N → Ω where Ω ⊂ [N− {0, 1}]N is the subset of degree sequences that
are admissible for HVGs. This function admits an inverse f−1 that puts the adja-
cency matrix A and the degree sequence k of a canonical HVG in bijection. Since f is
trivially defined as f(A) =∑j Aij = k (where by construction k ∈ Ω), the challeng-
ing part and thus the strategy of this proof is to construct f−1. In order to do that
we first propose an algorithm that maps the degree sequence k into a certain matrix
B and accordingly we prove that B = A. To further prove this latter part, we show
that B is an adjacency matrix of the same order as A, then we show that every edge
in B is also in A, and finally we show that the number of edges in B is the same as
the number of edges in A.
Consider a HVG of order N with degree sequence k, and consider a replica of this

degree sequence which we will update, where initially k(0) := [k1, k2, . . . , kN ]. Then
f−1(k) ≡ B is an element from the set {0, 1}N×N which is constructed as follows:

Setting:
Start setting Bij = 0 ∀i, j, and Bi,i+1 = Bi+1,i = 1 ∀i = 1, . . . , N − 1. These links are
obviously also present in A since k is associated to a HVG and then this graph has
the trivial Hamiltonian path 1− 2− 3 · · · −N . An illustration of how the algorithm
works in a concrete example is shown for illustration in Figure 3.

Step 1 (Initial assignment of k = 2 nodes):
Locate in k(0) those inner vertices j (where j ∈ [2, N − 1]) with degree kj = 2. Note
that this is always possible: the original time series {xi} has a finite number of el-
ements, hence we can always find its minimum datum. This minimum is not in the
boundary (j �= 1, N) as the series is canonical (the only pathological case where this
cannot be done is when the time series is constant, which according to proposition 1
means that the HVG is the path graph). By construction, this minimum will be
associated to a vertex in the HVG with degree 2.
For each of these inner vertices, the associated data will be a local minimum

(meaning that at least xj < xj−1, xj+1), therefore there exists an edge between the
neighbors of j in A. We update the adjacency matrix Bj−1,j+1 = Bj+1,j−1 = 1 ∀j
accordingly. To carry track of the number of edges that we are introducing in B, we
also update k(0) → k(1) by removing there the edges that were introduced in B. Thus
∀j such that kj = 2, kj = 2→ 0, kj+1 → kj+1 − 1 and kj−1 → kj−1 − 1.
After step 1 the series has been decimated, and some edges have accordingly been

deleted in k(·). Incidentally, note that this process had been used previously in the
context of a graph-theoretical renormalization group transformation [6].

Step > 1 (Iteration):
We further locate in k(1) those vertices j that have been updated and now have kj = 2.
For each of these vertices, we locate the closest vertices r and l (where r > j and l < j)
for which kr > 0 and kl > 0. These are the new neighbors in the decimated series and
accordingly Brl = Blr = 1. Note that by construction, we have xp < inf(xr, xl) ∀p :
l < p < r. This holds because all the data placed between l and r are either j or
data that were already decimated. Therefore this new edge was also present in the
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Fig. 3. Example of how we can reconstruct the HVG (i.e. the adjacency matrix) from
the degree sequence k = (k1, . . . , kN ) from the canonical series of Figure 2, where N = 6
and k = (3, 2, 5, 2, 3, 3). In the setting, we always have a Hamiltonian path. At each step
of the algorithm, we locate the nodes with degree two and we decimate them (see the
text), associating a link between the neighbors of the nodes with degree 2. The process runs
iteratively until we find the final sequence (1, 0, . . . , 0, 1).

original adjacency matrix, Arl = Alr = 1. Again, we carry track of these new edges
by updating k(1) → k(2) such that kj = 2→ 0, kr → kr − 1, and kl → kl − 1.
We repeat this last step iteratively (this is always possible as initially all data are

different so the process of finding the smaller data is always possible). This iteration
will set at each step the kj = 2 vertices to zero in the updating degree sequence and
will decrease by one the value of their neighbors. The process stops after we have
repeated this process an unknown number of times m and reach k(m) = [1, 0, . . . , 0, 1]
which is the trivial absorbing state. Once this limit is reached the algorithm stops and
we introduce the last edge, setting B1N = BN1 = 1 (which is also a link present in A
as we are dealing with a canonical HVG) and update the degree sequence accordingly
k(m+1) = [0, . . . , 0]. No more edges can be deleted in the degree sequence and no more
edges can be added to B.
All in all, this procedure uses k(·) to construct a [0, 1]N×N matrix B. As we

have shown, all the new edges introduced in B (all the 1s) also belong to A. On the
other hand, the total number of elements removed from k(0) is exactly twice the
total number of edges that were introduced in B (if we take into account all steps in
the algorithm above). Thus the number of edges introduced in B is 12

∑N
i=1 ki = E,

where E is the number of edges in the original HVG. Therefore there are no missing
edges and B = A.

Concluding remarks. To be able to put in bijection a graph’s adjacency
matrix with its degree sequence is a nontrivial result, as the adjacency matrix stores
in principle N2 entries, while the degree sequence only requires N of them. This
optimal compression property is a very particular property of unigraphs, in this sense
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a straightforward corollary of our main result states that canonical HVGs are uni-
graphs, and thus this family of HVGs shares all their nice properties such as having
linear recognition time (something that was proved independently for HVGs recently
[4]). Note that the converse is not true, as it can be trivially proved by counterexam-
ple or by the fact that HVGs are outerplanar and not all unigraphs are outerplanar.
It should be highlighted that the canonicity condition can in some cases be relaxed,
in the sense that in many instances the bijection described above works even for non-
canonical HVGs. However for the theorem to hold we needed to restrict the set of
HVGs to those that are canonical. We suspect that for most of the practical situations
the theorem still holds, however this remains an open problem.
Nevertheless the theorem implies that all the information encoded in the graph

is efficiently compressed in its degree sequence, giving a satisfying solution to the
paradox of the unreasonable efficiency of this simple topological metric. This find-
ing should allow HVG-based feature extraction algorithms to safely focus on the
degree sequence, saving both memory allocation and execution time without losing
information.
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