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1 Introduction

The topological vertex [2, 4] is the basic building block for the theory of open and closed

Gromov-Witten invariants of toric Calabi-Yau threefolds. It encodes open Gromov-Witten

invariants of C3 with three special D-branes, and Gromov-Witten invariants of any toric

Calabi-Yau threefold, both open and closed, can be computed from it by certain explicit

gluing process. One way to understand the gluing is through taking inner products or

vacuum expectation values on the bosonic Fock space [8]. More precisely, the boundary

condition on each of the three D-branes is indexed by a partition µi, i = 1, 2, 3. It is

well-known that the space Λ of symmetric functions has some natural basis indexed by
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partitions (e.g. the Newton functions). One then understands the topological vertex as an

element in the tensor product Λ⊗3, and the gluing is achieved by taking inner products

on the corresponding copies of Λ. In this picture the topological vertex has an extremely

complicated combinatorial expression in terms of skew Schur functions. Suggested by

the boson-fermion correspondence, a deep conjecture was made in [2] and [1] that the

topological vertex has a surprisingly simple expression in the fermionic picture: it is a

Bogoliubov transform of the fermionic vacuum, i.e. the fermionic vacuum acted upon by

an exponential of a quadratic expression of fermionic operators. We will refer to this as

the ADKMV Conjecture. See section 3.2 for a precise statement.

A straightforward application as pointed out in [1] is related to integrable hierarchies:

the one-legged case is related to the KP hierarchy, the two-legged case to the 2-dimensional

Toda hierarchy, and the three-legged case to the 3-component KP hierarchy. The one-legged

and the two-legged cases can also be seen directly from the bosonic picture [9], but the

three-legged case can only be seen through the fermionic picture.

The ADKMV conjecture was only checked for the case of hook partitions in [1]. In

the present paper, we propose a generalization of the ADKMV conjecture to the framed

topological vertex, and give a proof of it in the one-legged and two legged cases.

In the rest of this paper, after reviewing some preliminaries in section 2, we will first

propose in section 3 a generalization of the ADKMV Conjecture to the framed topological

vertex. For the precise statement see section 3.3. We will refer to this conjecture as the

Framed ADKMV Conjecture. Secondly, we will prove the one-legged and two-legged cases

of the Framed ADKMV Conjecture in section 4 and section 5 respectively. In the final

section 6 we will derive a determinatal formula for the framed topological vertex in the

three-legged case based on the Framed ADKMV Conjecture.

Acknowledgments

The authors are partially supported by NSFC grants.

2 Preliminaries

2.1 Partitions

A partition µ of a positive integral number n is a decreasing finite sequence of integers

µ1 ≥ · · · ≥ µl > 0, such that |µ| := µ1 + · · ·+ µl = n. The following number associated to

µ will be useful in this paper:

κµ =
l∑

i=1

µi(µi − 2i+ 1). (2.1)

It is very useful to graphically represent a partition by its Young diagram. This leads to

many natural definitions. First of all, by transposing the Young diagram one can define the

conjugate µt of µ. Secondly assume the Young diagram of µ has k boxes in the diagonal.

Define mi = µi− i and ni = µt
i − i for i = 1, · · · , k, then it is clear that m1 > · · · > mk ≥ 0

– 2 –
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and n1 > · · · > nk ≥ 0. The partition µ is completely determined by the numbers mi, ni.

We often denote the partition µ by (m1, . . . ,mk|n1, . . . , nk), this is called the Frobenius

notation. A partition of the form (m|n) in Frobenius notation is called a hook partition.

For a box e at the position (i, j) in the Young diagram of µ, define its content by

c(e) = j − i. Then it is easy to see that

κµ = 2
∑

e∈µ

c(e). (2.2)

Indeed,

∑

e∈µ

c(e) =
l∑

i=1

µi∑

j=1

(j − i) =
n∑

i=1

(
1

2
µi(µi + 1)− iµi

)
=

1

2
κµ.

A straightforward application of (2.2) is the following:

Lemma 2.1. Let µ = (m1,m2, . . . ,mk|n1, n2, . . . , nk) be a partition written in the Frobe-

nius notation. Then we have

κµ =
k∑

i=1

mi(mi + 1)−
k∑

i=1

ni(ni + 1). (2.3)

In particular,

κ(m1,m2,...,mk|n1,n2,...,nk) =
k∑

i=1

κ(mi|ni). (2.4)

Proof. It is clear that:

∑

e∈(m1,...,mk|n1,...,nk)

c(e) =
k∑

i=1

(
mi∑

c=1

c−
ni∑

c=1

c

)
=

k∑

i=1

(
1

2
mi(mi + 1)−

1

2
ni(ni + 1)

)
.

2.2 Schur functions and skew Schur functions

Let Λ be the space of symmetric functions in x = (x1, x2, . . . ). For a partition µ, let sµ :=

sµ(x) be the Schur function in Λ. If we write µ = (m1, · · · ,mk|n1, · · · , nk) in Frobenius

notation, then there is a determinantal formula that expresses sµ in terms of s(m|n).

Proposition 2.2. [5, p. 47, Example 9] Let µ = (m1, · · · ,mk|n1, · · · , nk) be a partition

in Frobenius notation, then

sµ = det(s(mi|nj))1≤i,j≤k.

The inner product on the space Λ is defined by setting the set of Schur functions as an

orthonormal basis. Given two partitions µ and ν, the skew Schur functions sµ/ν is defined

by the condition

(sµ/ν , sλ) = (sµ, sνsλ)

– 3 –
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for all partitions λ. This is equivalent to define

sµ/ν =
∑

λ

cµνλsλ,

where the constants cµνλ are the structure constants (called the Littlewood-Richardson

coefficients) defined by

sνsλ =
∑

γ

cγνλsγ . (2.5)

If we write µ = (m1, · · · ,mk|n1, · · · , nk) and ν = (s1, · · · , sr|t1, · · · , tr) in Frobenius no-

tations, then sµ/ν = 0 unless r ≤ k and si ≤ mi, ti ≤ ni for i = 1, · · · , r. There is a

determinantal formula for sµ/ν in terms of s(m|n) as follows:

Proposition 2.3. [5, p. 88, Example 22(a)] Let µ = (m1, · · · ,mk|n1, · · · , nk) and ν =

(s1, · · · , sr|t1, · · · , tr) be two partitions in Frobenius notations, then

sµ/ν = (−1)r det

(
(s(mi|nj))k×k (s(mi−sj−1|0))k×r

(s(0|nj−ti−1))r×k 0r×r

)
. (2.6)

In particular,

s(m|n)/(s|t) = hm−sen−t. (2.7)

2.3 Specialization of symmetric functions

Let qρ := (q−1/2, q−3/2, . . . ). It is easy to see that

pn(q
ρ) =

1

qn/2 − q−n/2
=

1

[n]
, (2.8)

where [n] = qn/2 − q−n/2. A very interesting fact is that with this specialization the Schur

functions also have very simple expressions.

Proposition 2.4. [10] For any partition µ, one has

sµ(q
ρ) = qκµ/4 1∏

e∈µ[h(e)]
,

where h(e) is the hook number of e.

2.4 Fermionic Fock space

We say a set of half-integers A = {a1, a2, . . . } ⊂ Z + 1
2 , a1 > a2 > · · · , is admissible if it

satisfies the following two conditions:

1. Z− + 1
2\A is finite and

2. A\Z− + 1
2 is finite,

where Z− is the set of negative integers.

– 4 –
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Consider the linear space W spanned by a basis {a|a ∈ Z+ 1
2}, indexed by half-integers.

For an admissible set A = {a1 > a2 > . . . }, we associate an element A ∈ ∧∞W as follows:

A = a1 ∧ a2 ∧ · · · .

Then the free fermionic Fock space F is defined as

F = span

{
A : A ⊂ Z+

1

2
is admissible

}
.

One can define an inner product on F by taking {A : A ⊂ Z + 1
2 is admissible} as an

orthonormal basis.

For A = a1 ∧ a2 ∧ · · · ∈ F , define its charge as:

|A\Z− +
1

2
| − |Z− +

1

2
\A|.

Denote by F (n) ⊂ F the subspace spanned by A of charge n, then there is a decomposition

F =
⊕

n∈Z

F (n).

An operator on F is called charge 0 if it preserves the above decomposition.

The charge 0 subspace F (0) has a basis indexed by partitions:

|µ〉 := µ1 −
1

2
∧ µ2 −

3

2
∧ · · · ∧ µl −

2l − 1

2
∧ −

2l + 1

2
∧ · · · (2.9)

where µ = (µ1, · · · , µl), i.e., |µ〉 = Aµ, where Aµ = (µi − i + 1
2)i=1,2,.... If µ =

(m1, · · · ,mk|n1, · · · , nk) in Frobenius notation, then

|µ〉 = m1 +
1

2
∧ · · · ∧mk +

1

2
∧ −

1

2
∧ −

3

2
∧ · · · ∧

̂
−nk −

1

2
∧ · · · ∧

̂
−n1 −

1

2
∧ · · · . (2.10)

In particular, when µ is the empty partition, we get:

|0〉 := −
1

2
∧ −

3

2
∧ · · · ∈ F .

It will be called the fermionic vacuum vector.

We now recall the creators and annihilators on F . For r ∈ Z+ 1
2 , define operators ψr

and ψ∗
r by

ψr(A) =

{
(−1)ka1 ∧ · · · ∧ ak ∧ r ∧ ak+1 ∧ · · · , if ak > r > ak+1 for some k,

0, otherwise;

ψ∗
r (A) =

{
(−1)k+1a1 ∧ · · · ∧ âk ∧ · · · , if ak = r for some k,

0, otherwise.

The anti-commutation relations for these operators are

[ψr, ψ
∗
s ] := ψrψ

∗
s + ψ∗

sψr = δr,sid (2.11)
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and other anti-commutation relations are zero. It is clear that for r > 0,

ψ−r|0〉 = 0, ψ∗
r |0〉 = 0, (2.12)

so the operators {ψ−r, ψ
∗
r}r>0 are called the fermionic annihilators. For a partition µ =

(m1,m2, . . . ,mk|n1, n2, . . . , nk), it is clear that

|µ〉 = (−1)n1+n2+...+nk

k∏

i=1

ψmi+
1
2
ψ∗
−ni−

1
2

|0〉. (2.13)

So the operators {ψr, ψ
∗
−r}r>0 are called the fermionic creators. The normally ordered

product is defined as

: ψrψ
∗
r :=

{
ψrψ

∗
r , r > 0,

−ψ∗
rψr, r < 0.

In other words, an annihilator is always put on the right of a creator.

2.5 The boson-fermion correspondence

For any integer n, define an operator αn on the fermionic Fock space F as follows:

αn =
∑

r∈Z+ 1
2

: ψrψ
∗
r+n :

Let B = Λ[z, z−1] be the bosonic Fock space, where z is a formal variable. Then the

boson-fermion correspondence is a linear isomorphism Φ : F → B given by

u 7→ zm〈0m|e
∑∞

n=1
pn
n
αnu〉, u ∈ F (m) (2.14)

where |0m〉 = −1
2 +m ∧−3

2 +m ∧ · · · . It is clear that Φ induces an isomorphism between

F (0) and Λ. Explicitly, this isomorphism is given by

|µ〉 ←→ sµ. (2.15)

The boson-fermionic correspondence plays an important role in Kyoto school’s theory

of integrable hierarchies. For example,

Proposition 2.5. If τ ∈ Λ corresponds to |v〉 ∈ F (0) under the boson-fermion correspon-

dence, then τ is a tau-function of the KP hierarchy in the Miwa variable tn = pn
n if and

only if |v〉 satisfies the bilinear relation

∑

r∈Z+ 1
2

ψr|v〉 ⊗ ψ∗
r |v〉 = 0. (2.16)

A state |v〉 ∈ F (0) satisfies the bilinear relation (2.16) if and only if it lies in the orbit

ĜL∞|0〉. There is also a multi-component generalization of the boson-fermion correspon-

dence which can be used to study multi-component KP hierarchies [3].

– 6 –
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3 The ADKMV Conjecture and its framed generalization

3.1 The topological vertex

The topological vertex introduced in [2] is defined by

Wµ1,µ2,µ3(q) =
∑

ρ1,ρ3

c
µ1(µ3)t

ρ1(ρ3)t
qκµ2/2+κ

µ3/2
W(µ2)tρ1(q)Wµ2(ρ3)t(q)

Wµ2∅(q)
, (3.1)

where

c
µ1(µ3)t

ρ1(ρ3)t
=

∑

η

cµ
1

ηρ1
c
(µ3)t

η(ρ3)t
.

It can also be rewritten as follows (see e.g. [10]):

Wµ1,µ2,µ3(q) = (−1)|µ
2|qκµ3/2s(µ2)t(q

−ρ)
∑

η

sµ1/η(q
(µ2)t+ρ)s(µ3)t/η(q

µ2+ρ). (3.2)

The framed topological vertex in framing (a1, a2, a3) is given by:

W
(a1,a2,a3)
µ1,µ2,µ3 (q) = qa1κµ1/2+a2κµ2/2+a3κµ3/2Wµ1,µ2,µ3(q). (3.3)

Let

Z(a1,a2,a3)(q;x1;x2;x3) =
∑

µ1,µ2,µ3

W
(a1,a2,a3)
µ1,µ2,µ3 (q)sµ1(x1)sµ2(x2)sµ3(x3). (3.4)

Even though the topological vertex is presented here in its combinatorial expression, its

significance lies in its geometric origin as open Gromov-Witten invariants. In the math-

ematical theory of the topological vertex [4], the open Gromov-Witten invariants are de-

fined by localizations on relative moduli spaces. This leads to some special Hodge inte-

grals on the Deligne-Mumford moduli spaces, whose generating series can be shown to be

Z(a1,a2,a3)(q;x1;x2;x3). Closed and open Gromov-Witten invariants of local toric Calabi-

Yau 3-folds can be obtained from the topological vertex by suitable gluing process.

3.2 The ADMKV Conjecture

It is conjectured in [2] and [1] that the topological vertex has a simple expression in the

fermionic picture as follows. On the three-component femionic Fock space F ⊗ F ⊗ F ,

define for i = 1, 2, 3 operators ψi
r and ψi∗

r , r ∈ Z + 1
2 . They act on the i-th factor of

the tensor product as the operators ψr and ψ∗
r respectively, and we use the Koszul sign

convention for the anti-commutation relations of these operators, i.e., we set

[ψi
r, ψ

j
s] = [ψi

r, ψ
j∗
s ] = [ψi∗

r , ψj∗
s ] = 0

for i 6= j and r, s ∈ Z+ 1
2 . Let

ψij
mn := ψi

m+ 1
2

ψj∗

−n− 1
2

. (3.5)

– 7 –
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Let |µ1, µ2, µ3〉 = |µ1〉 ⊗ |µ2〉 ⊗ |µ3〉 ∈ F (0) ⊗ F (0) ⊗ F (0). Then the ADKMV Conjecture

states that

Wµ1,µ2,µ3(q) = 〈µ1, µ2, µ3| exp




∑

i,j=1,2,3
m,n≥0

Aij
mn(q)ψ

ij
mn


 |0〉 ⊗ |0〉 ⊗ |0〉, (3.6)

where for i = 1, 2, 3,

Aii
mn(q) = (−1)n

qm(m+1)/4−n(n+1)/4

[m+ n+ 1][m]![n]!
, (3.7)

Ai(i+1)
mn (q) = (−1)nqm(m+1)/4−n(n+1)/4+1/6

min(m,n)∑

l=0

q(l+1)(m+n−l)/2

[m− l]![n− l]!
, (3.8)

Ai(i−1)
mn (q) = (−1)n+1q−m(m+1)/4+n(n+1)/4−1/6

min(m,n)∑

l=0

q−(l+1)(m+n−l)/2

[m− l]![n− l]!
. (3.9)

Here it is understood that A34
mn = A31

mn and A10
mn = A13

mn. This is very surprising because

in the bosonic picture the expression for the topological vertex is very complicated.

3.3 The Framed ADMKV Conjecture

We make the following generalization of the above ADKMV Conjecture to the framed

topological vertex:

W
(a)
µ1,µ2,µ3(q) = 〈µ1, µ2, µ3| exp




∑

i,j=1,2,3
m,n≥0

Aij
mn(q;a)ψ

ij
mn


 |0〉 ⊗ |0〉 ⊗ |0〉 (3.10)

for Aij
mn(q;a) similar to Aij

mn(q) above:

Aii
mn(q;a) = (−1)nq(2ai+1)(m(m+1)−n(n+1))/4 1

[m+ n+ 1][m]![n]!
, (3.11)

Ai(i+1)
mn (q;a) = (−1)nq

(2ai+1)m(m+1)−(2ai+1+1)n(n+1)

4
+ 1

6

min(m,n)∑

l=0

q
1
2
(l+1)(m+n−l)

[m− l]![n− l]!
, (3.12)

Ai(i−1)
mn (q;a) = −(−1)nq

(2ai+1)m(m+1)−(2ai−1+1)n(n+1)

4
− 1

6

min(m,n)∑

l=0

q−
1
2
(l+1)(m+n−l)

[m− l]![n− l]!
. (3.13)

Here a = a1, a2, a3. We refer to this conjecture as the Framed ADKMV Conjecture.

We derive Aij
m,n(q;a) by the same method as for the derivation of Aij

mn(q) in [1,

section 5.11]. For details, see section 5.2. It is surprising that there is only little difference

between them.

A straightforward application of the ADKMV Conjecture and the Framed ADKMV

Conjecture is that they establish a connection between the topological vertex and integrable

hierarchies as pointed out in [1].

– 8 –
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4 Proof of the one-legged case

In this section, as a warm up exercise we will derive a fermionic representation of the

framed one-legged topological vertex, hence establishing the one-legged case of the Framed

ADKMV Conjecture.

4.1 The framed one-legged topological vertex in terms of Schur functions

The generating functional of the Gromov-Witten invariants of C3 with one brane is encoded

in W
(a,0,0)
µ,(0),(0). It is also the generating function of certain Hodge integrals on the moduli

spaces of pointed stable curves. Let

Z(a)(q;x) =
∑

µ

W
(a,0,0)
µ,(0),(0)(q)sµ(x). (4.1)

By (3.2) one then has:

Z(a)(q;x) =
∑

µ

qaκµ/2sµ(q
ρ)sµ(x). (4.2)

By (2.15), this corresponds to an element V (a)(q) in the charge 0 ferminonic Fock sub-

space F (0):

V (a)(q) =
∑

µ

qaκµ/2sµ(q
ρ)|µ〉. (4.3)

4.2 Proof of the one-legged case of the Framed ADKMV Conjecture

By the Framed ADKMV Conjecture we should have

V (a)(q) = exp




∞∑

m,n=0

Amn(q; a)ψm+ 1
2
ψ∗
−n− 1

2


 |0〉 (4.4)

for some Amn(q; a).

Lemma 4.1. The following identity holds:

exp




∞∑

m,n=0

Amn(q; a)ψm+ 1
2
ψ∗
−n− 1

2


 |0〉

=
∑

µ=(m1,...,mk|n1,...,nk)

(−1)n1+...+nk det(Aµ)|µ〉,

(4.5)

where (Aµ) = (Aminj
(q; a))1≤i,j≤k if µ = (m1,m2, . . . ,mk|n1, n2, . . . , nk).

– 9 –
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Proof. By the commutation relations (2.11), operators
{
ψm+ 1

2
ψ∗
−n− 1

2

}

m,n≥0
commute with

each other and their squares are all the 0-operator. Therefore, one has:

exp




∞∑

m,n=0

Amn(q; a)ψm+ 1
2
ψ∗
−n− 1

2


 |0〉

=
∏

m,n≥0

(
1 +Amn(q; a)ψm+ 1

2
ψ∗
−n− 1

2

)
|0〉

=
∑

µ=(m1,...,mk|n1,...,nk)

∑

σ∈Sk

sign(σ)

k∏

i=1

Aminσ(i)
(q; a) ·

k∏

i=1

(
ψmk+

1
2
ψ∗
−nk−

1
2

)
|0〉

=
∑

µ=(m1,...,mk|n1,...,nk)

(−1)n1+...+nk det(Aµ)|µ〉.

Set µ = (m|n). If we assume (4.4), we must have

(−1)nAmn(q; a) = 〈(m|n)|V (q; a) = qaκ(m|n)/2s(m|n)(q
ρ). (4.6)

By Lemma 2.1 and Proposition 2.4,

Amn(q; a) = (−1)nqaκ(m|n)/2s(m|n)(q
ρ)

= (−1)nq
(m−n)(m+n+1)(2a+1)

4
1

[m+ n+ 1][m]![n]!
.

(4.7)

Theorem 4.2. In the case of one-legged topological vertex, the Framed ADKMV Conjecture

holds for the above Amn(q; a).

Proof. For µ = (m1,m2, . . . ,mk|n1, n2, . . . , nk), by Proposition 2.2, Lemma 2.1 and (4.7),

we get

qaκµ/2sµ(q
ρ) = q

∑k
i=1 ami(mi+1)/2−

∑k
j=1 anj(nj+1)/2 · det(s(mi|nj)(q

ρ))i,j=1,...,k

= q
∑k

i=1 ami(mi+1)/2 · det(q−anj(nj+1)/2 · s(mi|nj)(q
ρ))i,j=1,...,k

= det(qami(mi+1)/2q−anj(nj+1)/2s(mi|nj)(q
ρ))i,j=1,...,k

= (−1)n1+...+nk det(Aminj
)i,j=1,...,k.

The proof is completed by Lemma 4.1 and (4.4).

For later reference, note we have proved the following identity:

V (a)(q) =
∑

µ=(m1,...,mk|n1,...,nk)

det
(
q
aκ(mi|nj)

/2
s(mi|nj)(q

ρ)
)
1≤i,j≤k

|µ〉. (4.8)
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5 Proof of the two-legged case

5.1 The framed two-legged topological vertex in terms of skew Schur functions

The framed two-legged topological vertex encodes the open Gromov-Witten invariants of

C3 with two branes:

Z(a1,a2)(q;x;y) =
∑

µ1,µ2

W
(a1,a2,0)
µ1,µ2,(0)

(q)sµ1(x)sµ2(y). (5.1)

Recall the following identity proved in [10]:

Wµ1,µ2,(0)(q) = qκµ2/2Wµ1,(µ2)t(q). (5.2)

The following identity proved in [7] will play a key role below:

Wµ,ν(q) = (−1)|µ|+|ν|q
κµ+κν

2

∑

η

sµ/η(q
−ρ)sν/η(q

−ρ). (5.3)

Based on this formula, the following formula is proved in [10]:

W(µ1)t,(µ2)t(q
−1) = (−1)|µ

1|+|µ2|Wµ1,µ2(q). (5.4)

Therefore, (5.1) can be rewritten as follows:

Z(a1,a2)(q;x;y) =
∑

µ,ν

(
q

(a1+1)κµ+a2κν
2

∑

η

sµt/η(q
ρ)sν/η(q

ρ)

)
sµ(x)sν(y). (5.5)

By the boson-fermion correspondence (2.15), this corresponds to the following element in

the femionic picture:

V (a1,a2)(q) =
∑

µ,ν

(
q

(a1+1)κµ+a2κν
2

∑

η

sµt/η(q
ρ)sν/η(q

ρ)

)
|µ〉 ⊗ |ν〉. (5.6)

Using this we will prove the two-legged case of the Framed ADKMV Conjecture.

Theorem 5.1. There is an operator

T (q; a1, a2) = exp


 ∑

i,j=1,2

∞∑

m,n=0

Aij
mn(q; a1, a2)ψ

i
m+ 1

2

ψj∗

−n− 1
2




where the coefficients Aij
mn(q; a1, a2), for m,n ≥ 0 and i, j = 1, 2, are given by (5.10), (5.14)

and (5.15) below, such that

W
(a1,a2,0)
µ,ν,(0) (q) = 〈µ, ν|T (q; a1, a2)|0〉 ⊗ |0〉. (5.7)
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5.2 The determination of Aij
mn(q; a1, a2)

Note that the charge 0 subspace (F ⊗ F)(0) of F ⊗ F has a decomposition

(F ⊗ F)(0) =
⊕

n∈Z

F (n) ⊗F (−n).

The Framed ADKMV Conjecture predicts the existence of an operator T of the form

T (q; a1, a2) = exp


 ∑

i,j=1,2

∞∑

m,n=0

Aij
mn(q; a1, a2)ψ

ij
mn


 , (5.8)

such that V (a1,a2)(q) is the projection of the element T (q; a1, a2)(|0〉 ⊗ |0〉) ∈ (F ⊗ F)(0)

onto F (0)⊗F (0). In this subsection we modify the method in [1, section 5.11] to the framed

case to derive explicit expressions for Aij
mn(q; a1, a2).

Because the operators {ψij
mn} commute with each other and square to zero, we have

T (q; a1, a2) =
∏

m,n≥0

[
(1 +A11

mn(q, a1, a2)ψ
11
mn)(1 +A22

mn(q, a1, a2)ψ
22
mn)

· (1 +A12
mn(q, a1, a2)ψ

12
mn)(1 +A21

mn(q, a1, a2)ψ
21
mn)

]
.

(5.9)

Take µ = (m|n) and ν = ∅ or take ν = (m|n) and µ = ∅, as in the one-legged case we

get for i = 1, 2:

Aii
mn(q; a1, a2) = (−1)nqaiκ(m|n)/2s(m|n)(q

ρ)

= (−1)nq(2ai+1)(m(m+1)−n(n+1))/4 1

[m+ n+ 1][m]![n]!
.

(5.10)

Take µ = (m|n) and ν = (m′|n′), then it is clear that the coefficient of |(m|n)〉 ⊗

|(m′|n′)〉 in T (q; a1, a2)(|0〉 ⊗ |0〉) is

(−1)n+n′
(A11

mn(q; a1, a2)A
22
m′n′(q; a1, a2)−A12

mn′(q, a1, a2)A
21
m′n(q, a1, a2)).

Assuming the Framed ADKMV Conjecture, one should have:

q(a1+1)κ(m|n)/2+a2κ(m′|n′)/2
∑

η

s(n|m)/η(q
ρ)s(m′|n′)/η(q

ρ)

= (−1)n+n′
(A11

mn(q, a1, a2)A
22
m′n′(q, a1, a2)−A12

mn′(q, a1, a2)A
21
m′n(q, a1, a2)).

(5.11)

The left-hand side can be rewritten as follows:

q
(a1+1)κ(m|n)+a2κ(m′|n′)

2

∑

η

s(n|m)/η(q
ρ)s(m′|n′)/η(q

ρ)

= q
(a1+1)κ(m|n)+a2κ(m′|n′)

2


s(n|m)(q

ρ)s(m′|n′)(q
ρ) +

∑

η 6=∅

s(n|m)/η(q
ρ)s(m′|n′)/η(q

ρ)


 .
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Therefore, by (5.10) we have

A12
mn′(q; a1, a2) ·A

21
m′n(q; a1, a2)

= (−1)n+n′+1q
(a1+1)κ(m|n)+a2κ(m′|n′)

2

∑

η 6=∅

s(n|m)/η(q
ρ)s(m′|n′)/η(q

ρ).
(5.12)

By Proposition 2.3, we have

s(n|m)/(s|t)(q
ρ) = s(m−s)(q

ρ)s(1n−t)(q
ρ)

= q(m−s)(m−s−1)/4−(n−t)(n−t−1)/4 1

[m− s]![n− t]!
.

(5.13)

We will take A12
00(q; a1, a2) = q1/6, A21

00(q; a1, a2) = −q−1/6 as in [1]. If we set m′ = n = 0

and m = n′ = 0 in (5.12) respectively, we get:

A12
mn(q; a1, a2) = (−1)nq

(2a1+1)m(m+1)−(2a2+1)n(n+1)
4

+ 1
6

min(m,n)∑

s=0

q
1
2
(s+1)(m+n−s)

[m− s]![n− s]!
, (5.14)

A21
mn(q; a1, a2) = −(−1)nq

(2a2+1)m(m+1)−(2a1+1)n(n+1)
4

− 1
6

min(m,n)∑

s=0

q−
1
2
(s+1)(m+n−s)

[m− s]![n− s]!
(5.15)

5.3 Some technical lemmas

For simplicity of notation, we will write Aij
mn := Aij

mn(q; a1, a2). For a partition µ =

(m1,m2, · · · ,mk|n1, n2, · · · , nk) in Frobenius notation and i, j = 1, 2, we define Aij
µ to be

the matrix (Aij
manb

)k×k.

For a set N = {n1, . . . , nk} of numbers, let ||N || be the sum of the numbers in N , i.e.,

||N || =
k∑

i=1

ni. (5.16)

For simplicity of notation we will write f(qρ) as f̄ for f ∈ Λ, e.g., s(m|n)/η(q
ρ) will be

written as s̄(m|n)/η.

Lemma 5.2. Suppose that (M |N) = (m1, . . . ,mk|n1, . . . , nk) is a partition in Frobenius

notation. Then we have for l = 1, 2,

detAll
(M |N) = (−1)||N ||qalκ(M|N)/2 · det(s̄(M |N)), (5.17)

where (s̄(M |N)) = (s̄(mi|nj))1≤i,j≤k.

Proof. One can use Lemma 2.1 to get:

κ(m|n) = κ(m|0) + κ(0|n). (5.18)

By (5.10),

detAll
(M |N) = det((−1)njqalκ(mi|0)

/2 · q
alκ(0|nj)

/2
· s̄(mi|nj))1≤i,j≤k

= (−1)
∑k

j=1 njqal
∑k

i=1 κ(mi|0)
/2q

∑k
j=1 alκ(0|nj)

/2
det(s̄(mi|nj))1≤i,j≤k

= (−1)||N ||qalκ(M|N)/2 · det(s̄(M |N)).
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Lemma 5.3. Given r ≥ 1, suppose A = {a1 > · · · > ar}, A′ = {a′1 > · · · > a′r},

B = {b1 > · · · > br}, B
′ = {b′1 > · · · > b′r}. one has

det(A12
(A|B′)) det(A

21
(A′|B)) = (−1)||B||+||B′||+rq(a1+1)κ(A|B)/2+a2κ(A′|B′)/2 (5.19)

·
∑

s1>···>sr
t1>···>tr

det(ēaj−ti) · det(h̄bj−si) · det(h̄a′j−si) · det(ēb′j−ti).

Proof. Expanding the determinants one has

det(A12
(A|B′)) det(A

21
(A′|B)) =

∑

σ,τ∈Sr

ǫ(στ)A12
aib′σ(i)

A21
a′ibτ(i)

=
∑

σ,τ∈Sr

ǫ(στ)

r∏

i=1

(
(−1)

bτ(i)+b′
σ(i)

+1
q

(a1+1)κ(ai|bτ(i))
+a2κ(a′

i
|b′
σ(i)

)

2

·
∑

ηi 6=∅

s̄(bτ(i)|ai)/ηi s̄(a′i|b′σ(i)
)/ηi

)
,

where ǫ(στ) is the sign of the permutation στ , and in the second equality we have used (5.12).

By Proposition 2.3,

det(A12
(A|B′)) det(A

21
(A′|B))

=
∑

σ,τ∈Sr

ǫ(στ)
r∏

i=1

(
(−1)

bτ(i)+b′
σ(i)

+1
q

(a1+1)κ(ai|bτ(i))
+a2κ(a′

i
|b′
σ(i)

)

2

·
∑

(si|ti)

h̄bτ(i)−si ēai−ti h̄a′i−si ēb′σ(i)
−ti

)

=
∑

si,ti≥0,i=1,...,r

∑

σ,τ∈Sr

ǫ(στ)
r∏

i=1

(
(−1)

bτ(i)+b′
σ(i)

+1
q

(a1+1)κ(ai|0)
+(a1+1)κ(0|bτ(i))

2

· q

a2κ(a′
i
|0)

+a2κ(0|b′
σ(i)

)

2 h̄bτ(i)−si ēai−ti h̄a′i−si ēb′σ(i)
−ti

)

= (−1)r
∑

si,ti≥0,i=1,...,r

r∏

i=1

(
(−1)bi+b′iq

(a1+1)κ(ai|bi)
+a2κ(a′

i
|b′
i
)

2 ēai−ti h̄a′i−si

)

· det(h̄bj−si)1≤i,j≤r · det(ēb′j−ti)1≤i,j≤r

= (−1)||B||+||B′||+rq(a1+1)κ(A|B)/2+a2κ(A′|B′)/2
∑

si,ti≥0,i=1,...,r

r∏

i=1

(ēai−ti h̄a′i−si)

· det(h̄bj−si)1≤i,j≤r · det(ēb′j−ti)1≤i,j≤r.

Now note det(hbj−si)1≤i,j≤r = 0 if si = sj for some 1 ≤ i < j ≤ r, and det(eb′j−ti)1≤i,j≤r = 0
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if ti = tj for some 1 ≤ i < j ≤ r. Therefore,

∑

si,ti≥0,i=1,...,r

r∏

i=1

(ēai−ti h̄a′i−si) · det(h̄bj−si)1≤i,j≤r · det(ēb′j−ti)1≤i,j≤r

=
∑

s1,··· ,sr are distinct
t1,··· ,tr are distinct

r∏

i=1

(ēai−ti h̄a′i−si) · det(h̄bj−si)1≤i,j≤r · det(ēb′j−ti)1≤i,j≤r

=
∑

s1,··· ,sr are distinct
t1,··· ,tr are distinct

∑

σ,τ∈Sr

ǫ(στ)
r∏

i=1

h̄bτ(i)−si ēai−ti h̄a′i−si ēb′σ(i)
−ti

=
∑

s1>···>sr
t1>···>tr

∑

x,y,x′,y′∈Sr

ǫ(xyx′y′)
r∏

i=1

ēax(i)−ti h̄by(i)−si h̄a′
x′(i)

−si ēb′y′(i)−ti

=
∑

s1>···>sr
t1>···>tr

det(ēaj−ti) · det(h̄bj−si) · det(h̄a′j−si) · det(ēb′j−ti).

The proof is complete.

5.4 From fermionic representation to determinantal representation

For a partition µ = (m1,m2, · · · ,mk|n1, n2, · · · , nk) in Frobenius notation and i, j = 1, 2,

we define an operator

ψij
µ =

k∏

a=1

ψij
mana

. (5.20)

By (2.11), we can expand T as follows:
∏

m,n

(1 +A11
mnψ

11
mn)(1 +A22

mnψ
22
mn)(1 +A12

mnψ
12
mn)(1 +A21

mnψ
21
mn)

=


1 +

∑

m1>···>mk
n1>···>nk

det(A11
minj

)
k∏

i=1

ψ11
mini


 ·


1 +

∑

m1>···>mk
n1>···>nk

det(A22
minj

)
k∏

i=1

ψ22
mini




·


1 +

∑

m1>···>mk
n1>···>nk

det(A12
minj

)
k∏

i=1

ψ12
mini


 ·


1 +

∑

m1<···<mk
n1<···<nk

det(A21
minj

)
k∏

i=1

ψ21
mini




=
∑

µ1

detA11
µ1ψ

11
µ1 ·

∑

µ2

detA22
µ2ψ

22
µ1 ·

∑

µ3

detA12
µ3ψ

12
µ3 ·

∑

µ4

detA21
µ4ψ

21
µ4

=
∑

µ1,µ2,µ3,µ4

detA11
µ1 detA

22
µ2 detA

12
µ3 detA

21
µ4 · ψ

11
µ1ψ

22
µ2ψ

12
µ3ψ

21
µ4 ,

where the summation is over all partitions µ1, µ2, µ3, µ4, including the empty partition,

and we set detAij
µ = 1, and ψij

µ = 1 is µ is the empty partition. Now let µ = (M |N) =

(m1,m2, · · · ,mk|n1, n2, · · · , nk) and ν = (M ′|N ′) = (m′
1,m

′
2, · · · ,m

′
l|n

′
1, n

′
2, · · · , n

′
l) be two

partitions. Denote by C
(a1,a2)
µν (q) the inner product of |µ〉 ⊗ |ν〉 with T (q; a1, a2)(|0〉 ⊗ |0〉).

We need some notation. For a partition µ = (m1,m2, · · · ,mk|n1, n2, · · · , nk), define

r(µ) = k to be the length of the diagonal of its Young diagram.
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Let M be a set of nonnegative integers {m1 > m2 > · · · > mk} written in decreasing

order. For a subset A = {mi1 > · · · > mir} of M , also written in decreasing order, denote

by ε(M/A) the sign of the permutation

(mi1 , · · · ,mir ,mj1 , · · · ,mjk−r
) → (m1, · · · ,mk),

where (mj1 , · · ·mjk−r
) is the set M\A written in decreasing order. Let µ = (M |N) and

γ = (A|B) be two partitions, we define γ < µ if A ⊂ M and B ⊂ N . If γ < µ holds, then

µ\γ := (M\A|N\B) is naturally defined as a partition. By (2.11), the following Lemma is

easy to prove.

Lemma 5.4. Let µ = (M |N) and γ = (A|B) be two partitions such that γ < µ, then

ψγψµ\γ = ε(M/A)ε(N/B)ψµ . (5.21)

Now it is straightforward to get the following

Lemma 5.5. Let C
(a1,a2)
µν (q) = 〈µ, ν|T (q; a1, a2)|0〉 ⊗ |0〉. Then one has

C(a1,a2)
µν (q) = (−1)||N ||+||N ′||

∑

γ=(A|B)<µ
γ′=(A′|B′)<ν
r(γ)=r(γ′)

(−1)r(γ)ε(M/A)ε(N/B)ε(M ′/A′)ε(N ′/B′)

· det(A11
(M\A|N\B)) det(A

22
(M ′\A′|N ′\B′)) det(A

12
(A|B′)) det(A

21
(A′|B)).

Proposition 5.6. We have

C(a1,a2)
µν (q)

=

min(k,l)∑

r=0

∑

∗r

ε(M/A)ε(N/B)ε(M ′/A′)ε(N ′/B′)

· q(a1κ(M|N)+a2κ(M′|N′)+κ(A|B))/2 · det(s̄(M\A|N\B)) · det(s̄(M ′\A′|N ′\B′))

·
∑

s1>···>sr
t1>···>tr

det(ēaj−ti) · det(hbj−si) · det(ha′j−si) · det(ēb′j−ti),

(5.22)

where the condition (∗r) in the summation is given by

γ = (A|B) < µ, γ′ = (A′|B′) < ν, r(γ) = r(γ′) = r. (5.23)

Proof. For r ≥ 0, let

C(a1,a2),r
µν (q) = (−1)||N ||+||N ′||

∑

∗r

(−1)rε(M/A)ε(N/B)ε(M ′/A′)ε(N ′/B′)

· det(A11
(M\A|N\B)) det(A

22
(M ′\A′|N ′\B′)) det(A

12
(A|B′)) det(A

21
(A′|B)),

(5.24)

where the condition (∗r) in the summation is given by (5.23). Then we have

C(a1,a2)
µν (q) =

min(k,l)∑

r=0

C(a1,a2),r
µν (q). (5.25)
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For r = 0, by (5.24), Proposition 2.2 and (5.10), we have

C(a1,a2),0
µν (q) = (−1)||N ||+||N ′|| det(A11

(M |N)) det(A
22
(M ′|N ′))

= q
a1κ(M|N)+a2κ(M′|N′)

2 det(s̄(mi|nj)(q
ρ)) det(s̄(m′

i|n
′
j)
(qρ))

= q
a1κ(M|N)+a2κ(M′|N′)

2 s̄(M |N)(q
ρ)s̄(M ′|N ′)(q

ρ).

For r > 0, we use Lemma 5.2 , Lemma 5.3 and Lemma 5.5 to get:

C(a1,a2),r
µν (q)

=
∑

∗r

ε(M/A)ε(N/B)ε(M ′/A′)ε(N ′/B′)

· (−1)||N\B|| det(A11
(M\A|N\B)) · (−1)||N

′\B′|| det(A22
(M ′\A′|N ′\B′))

· (−1)||B||+||B′||+r det(A12
(A|B′)) det(A

21
(A′|B))

= q
a1κ(M\A|N\B)

2 det(s̄(M\A|N\B))q
a2κ(M′\A′|N′\B′)

2 det(s̄(M ′\A′|N ′\B′))

· q(a1+1)κ(A|B)/2+a2κ(A′|B′)/2

∑

s1>···>sr
t1>···>tr

det(ēaj−ti) · det(h̄bj−si) · det(h̄a′j−si) · det(ēb′j−ti)

=
∑

∗r

ε(M/A)ε(N/B)ε(M ′/A′)ε(N ′/B′)

· q(a1κ(M|N)+a2κ(M′|N′)+κ(A|B))/2 det(s̄(M\A|N\B)) · det(s̄(M ′\A′|N ′\B′))

·
∑

s1>···>sr
t1>···>tr

det(ēaj−ti) · det(h̄bj−si) · det(h̄a′j−si) · det(ēb′j−ti).

where the condition (∗r) in the summation is given by (5.23).

5.5 Proof of the Framed ADKMV Conjecture in the two-legged case

In this subsection we finish the proof of Theorem 5.1.

We now simplify the summation in (5.22). Let η = (s1, . . . , sr|t1, . . . , tr). We first take∑
γ=(A|B), r(γ)=r:

∑

γ=(A|B)<µ
r(γ)=r

qκ(A|B)/2ε(M/A)ε(N/B) det(s̄(M\A|N\B))

· det(ēai−tj )r×r · det(h̄bj−si)r×r

=
∑

γ=(A|B)<µ
r(γ)=r

ε(M/A)ε(N/B) det(s̄(M\A|N\B))

· det(qκ(ai|0)
/2ēai−tj )r×r · det(q

κ(0|bj)
/2
h̄bj−si)r×r

= (−1)r det

(
(s̄(mi|nj))k×k (qκ(mi|0)

/2ēmi−tj )k×r

(q
κ(0|nj)

/2
h̄nj−si)r×k 0r×r

)
.
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By Proposition 2.4 and the fact that κµt = −κµ, we have [10]:

sµ(q
ρ) = qκµ/2sµt(qρ). (5.26)

It follows that

s(mi|nj)(q
ρ) = q

κ(mi|nj)
/2
s(nj |mi)(q

ρ).

Using this we get:
∑

γ=(A|B)<µ
r(γ)=r

qκ(A|B)/2ε(M/A)ε(N/B) det(s̄(M\A|N\B))

· det(ēai−tj )r×r · det(h̄bj−si)r×r

= (−1)r det

(
(q

κ(mi|nj)
/2
s̄(nj |mi))k×k (qκ(mi|0)

/2ēmi−tj )k×r

(q
κ(0|nj)

/2
h̄nj−si)r×k 0r×r

)

= qκµ/2s̄µt/η(q
ρ).

Similarly, we have
∑

γ′=(A′|B′)<ν
r(γ′)=r

ε(M ′/A′)ε(N ′/B′) det(s̄(M ′\A′|N ′\B′))

· det(h̄a′i−sj )r×r · det(ēb′i−tj )r×r

= (−1)r det

(
(s̄(m′

i|n
′
j)
)l×l (h̄m′

i−sj )l×r

(ēn′
j−ti)r×l 0r×r

)

= sν/η(q
ρ).

Therefore, we get:

C(a1,a2)
µν (q) = q

(a1+1)κµ+a2κν
2

∑

η

sµt/η(q
ρ)sν/η(q

ρ). (5.27)

This matches with (5.6), so the proof of Theorem 5.1 is completed.

Remark 5.1. Note the charge 0 subspace (F ⊗ F)(0) has a direct sum decomposition

(F ⊗ F)(0) =
⊕

n∈Z

(F (n) ⊗F (−n)). (5.28)

The two-legged topological vertex corresponds to only the component of T (|0〉 ⊗ |0〉) in

F (0) ⊗F (0). It is interesting to find the geometric meaning of other components.

From the above proof one can also see that

V (a1,a2)(q) =
∑

µ=(M |N)

∑

ν=(M ′|N ′)

∑

η=(S|T )
η<µ,η<ν
r(η)=r≥0

q
(a1+1)κµ+a2κν

2

· det

(
(s̄(mi|nj))k×k (ēmi−tj )k×r

(h̄nj−si)r×k 0r×r

)
· det

(
(s̄(m′

i|n
′
j)
)l×l (h̄m′

i−sj )l×r

(ēn′
j−ti)r×l 0r×r

)
. (5.29)
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6 Towards a proof of the three-legged case

In this section we present an intermediate result which should be useful for a proof of the

three-legged case of the Framed ADKMV Conjecture.

6.1 From fermionic representation to determinantal representation

If one assumes the Framed ADKMV Conjecture, one can determine Aij
mn (i, j = 1, 2, 3) by

modifying the method of [1] as in section 5.2. They are indeed given by (3.11), (3.12), (3.13).

By (2.11), we can expand T as follows:
∏

i,j=1,2,3

∏

m,n≥0

(1 +Aij
mnψ

ij
mn)

=
∏

i,j=1,2,3

(1 +
∑

m1>···>mk≥0
n1>···>nk≥o

det(Aij
manb

)
k∏

a=1

ψij
mana

)

=
∏

i,j=1,2,3

∑

µij

det(Aij
µij )ψ

ij
µij

=
∑

µij

∏

i,j=1,2,3

det(Aij
µij ) ·

∏

i,j=1,2,3

ψij
µij ,

where the summation is over all partitions µ11, µ12, . . . , µ33.

Now let µi = (M i|N i) = (mi
1,m

i
2, · · · ,m

i
ki
|ni

1, n
i
2, · · · , n

i
ki
) (when ki = 0, µi is the

empty partition). Denote by C
(a)
µ1,µ2,µ3 the right-hand side of (3.10). It is clear that

C
(a)
µ1,µ2,µ3 =

∑
∏

i,j=1,2,3 ψ
ij

µij
=±

∏
i=1,2,3 ψ

ii

µi

±
∏

i,j=1,2,3

detAij
µij . (6.1)

We can keep track of the sign ± using the Koszul sign convention. More precisely we have

the following

Lemma 6.1. Let C
(a)
µ1,µ2,µ3 be the right-hand side of (3.10). Then one has

C
(a)
µ1,µ2,µ3 =

(−1)||N
λ||+||Nµ||+||Nν ||

∑
(−1)r

32r12+r31r32+r21r21+r32r13

·
3∏

i=1

(
ǫ(M ii,M ic(i),M ic2(i))ǫ(N ii, N c(i)i, N c2(i)i)

)
·

3∏

i,j=1

det(Aij
(M ij |N ij)

).

(6.2)

Here c ∈ S3 is the 3-cycle translation that transforms 1 to 2, 2 to 3 and 3 to 1, the

summation is over all partitions γij = (M ij |N ij) satisfying the following conditions:

M ii ∐M ic(i) ∐M ic2(i) = M i, i = 1, 2, 3

N ii ∐N c(i)i ∐N c2(i)i = N i, i = 1, 2, 3

#M ij = #N ij = rij ≥ 0, i, j = 1, 2, 3,

(6.3)

and ǫ(M ii,M ic(i),M ic2(i)) is the sign of the transformation that rearranges the ordered set

of numbers (M ii,M ic(i),M ic2(i)) in a decreasing order.
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Similar to the proof of Proposition 5.6, one can prove the following Proposition, which

gives the determinantal form of C
(a)
µ1,µ2,µ3 .

Proposition 6.2. We have

C
(a)
µ1,µ2,µ3

=
∑

(−1)r
21r23+r31r32+r21r21+r32r13+r13+r21+r32

q
1
6
(r12+r23+r31−r21−r32−r13)q

∑3
i=1

∑ki
t=1(ai+1)(mi

t(m
i
t+1)−ni

t(n
i
t+1))/2

· det




(s̄(m1
i |n

1
j )
)k1×k1 (h̄m1

i−s′j
)k1×r13 (ēm1

i−tj
)k1×r12

(h̄n1
j−si

)r21×k1 0r21×r13 0r21×r12

(ēn1
j−t′i

)r31×k1 0r31×r13 0r31×r12




· det




(s̄(m2
i |n

2
j )
)k2×k2 (h̄m2

i−sj
)k2×r21 (ēm2

i−t′′j
)k2×r23

(h̄n2
j−s′′i

)r32×k2 0r32×r21 0r32×r23

(ēn2
j−ti

)r12×k2 0r12×r21 0r12×r23




· det




(s̄(m3
i |n

3
j )
)k3×k3 (h̄m1

i−s′′j
)k3×r32 (ēm3

i−t′j
)k3×r31

(h̄n3
j−s′i

)r13×k3 0r13×r32 0r13×r31

(ēn3
j−t′′i

)r23×k3 0r23×r32 0r23×r31


 .

(6.4)

Here the summation is taken over all rij ≥ 0, i 6= j, i, j = 1, 2, 3 satisfying the conditions

ric(i) + ric
2(i) = rc(i)i + rc

2(i)i ≤ ki, i = 1, 2, 3

and all decreasing sequences {si}, {s
′
i}, {s

′′
i }, {ti}, {t

′
i}, {t

′′
i } of nonnegative integers.

Remark 6.1. Equation (6.4) generalizes (4.8) and (5.29).
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