
Order
DOI 10.1007/s11083-016-9404-1

Duality for Convex Monoids

Frank Roumen1 ·Sutanu Roy2

Received: 7 March 2016 / Accepted: 27 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Every C*-algebra gives rise to an effect module and a convex space of states,
which are connected via Kadison duality. We explore this duality in several examples, where
the C*-algebra is equipped with the structure of a finite-dimensional Hopf algebra. When
the Hopf algebra is the function algebra or group algebra of a finite group, the resulting
state spaces form convex monoids. We will prove that both these convex monoids can be
obtained from the other one by taking a coproduct of density matrices on the irreducible
representations. We will also show that the same holds for a tensor product of a group and
a function algebra.

Keywords Quantum group · Hopf algebra · Effect algebra · Convex space · Kadison
duality

1 Introduction

States and observables of a physical system are connected via dualities between certain cat-
egories. There are several dualities that can be used for this connection. Known examples
include the Gelfand duality theorem and the Kadison duality theorem. For a system in clas-
sical physics, the state space is modeled by a topological space, and the observables are
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given by functions on this space. In this way, the algebra of observables forms a commuta-
tive C∗-algebra. The celebrated Gelfand theorem states that the category of locally compact
Hausdorff spaces is dually equivalent to the category of commutative C∗-algebras, and thus
it provides an intimate connection between states and observables. A useful special case
occurs when the C∗-algebras under consideration have a unit. Gelfand duality in this setting
states that the category of unital C∗-algebras is dually equivalent to the category of compact
Hausdorff spaces.

Gelfand duality does not apply to quantum mechanical systems, since their algebra of
observables is in general a non-commutative C∗-algebra. There is no good non-commutative
analogue of Gelfand duality, but there is a duality theorem due to Kadison that can be
useful to describe quantum systems. Kadison duality is not based on C∗-algebras, but on the
unit interval within a unital C∗-algebra. This unit interval forms a structure called an effect
module, and there is a dual equivalence between a certain category of effect modules and
a certain category of convex spaces. The state space of a quantum system forms a convex
space and the corresponding effect module contains its observables; hence Kadison duality
connects states and observables of quantum systems. It does not directly generalize Gelfand
duality, since the unit interval of a C∗-algebra contains less information than the C∗-algebra
itself.

When studying physical systems, one often wants to take the symmetry group of the
system into account. In the C∗-algebraic picture, this leads to quantum groups. For ordinary
Gelfand duality, we use locally compact Hausdorff spaces as state spaces. If we take the
symmetry of a system into account, the state space becomes a locally compact group. On
the dual side, this gives a coalgebra structure on the C∗-algebra, making it into a structure
called a quantum group. There is an analogue of the Gelfand duality theorem that takes
the symmetry into account. This theorem states that the category of compact (Hausdorff)
groups is dually equivalent to the category of commutative compact quantum groups.

Summarizing, there are two dualities involving topological spaces and C∗-algebras: one
for systems without symmetry, and one for systems with symmetry. Furthermore, Kadison
duality relates convex spaces and effect modules for systems without symmetry. In this
article we shall will describe a variant of Kadison duality for systems with symmetry. This
will lead to a notion of a quantum group whose underlying algebra is an effect module
instead of a C∗-algebra. Schematically, we wish to complete the diagram on the right:

The categories and functors occuring in this diagram will be explained in more detail
in the next section. We will restrict our attention to finite groups. In the theory of
C∗-algebraic quantum groups, there is only one way to assign a commutative quantum group
or Hopf-algebra to any finite group. We show that there are two ways to assign an effect
module (and a dual convex space) to a finite group, arising from two different Hopf alge-
bras associated to the group. Both ways to form “effect quantum groups” are related via a
version of Pontryagin duality.
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The outline of this paper is as follows. Section 2 contains preliminary material about con-
vex spaces, effect modules, and quantum groups. In particular we will describe the various
dualities that connect these objects. In Section 3 we will determine the effect modules and
convex spaces associated to the group algebra and the function algebra of a finite group. The
two convex spaces obtained in this way are both convex monoids, that is, monoids in the cat-
egory of convex spaces. The connection between these two monoids will be established in
Section 4. We will prove that both convex monoids determine each other via essentially the
same construction: if V1, . . . , Vk are the irreducible linear representations of either of these
monoids, then the coproduct DM(V1) + · · · + DM(Vk) is a convex monoid isomorphic to
the other one. Finally, in Section 5, we will prove a related result for the tensor product of a
group and a function algebra.

2 Preliminaries

We will present the dualities alluded to in the Introduction in more detail here. The most
basic duality that we will use is Gelfand duality. Throughout this paper, we will assume that
all C∗-algebras we encounter have a unit. Write C∗ for the category of C∗-algebras with
*-homomorphisms as maps. The full subcategory of commutative C∗-algebras is denoted
cC∗. Furthermore write KHaus for the category of compact Hausdorff spaces with contin-
uous maps. If X is a compact Hausdorff space, then the collection C(X) of complex-valued
functions on X is a commutative C∗-algebra with pointwise operations. This construction
gives a contravariant functor C from KHaus to cC∗ by letting it act on morphisms via
precomposition. The Gelfand spectrum provides a functor in the other direction: if A is a
commutative C∗-algebra, then its spectrum Spec A = HomcC∗(A,C) is a compact Haus-
dorff space. The spectrum construction forms a contravariant functor from cC∗ to KHaus,
again using precomposition.

Theorem 1 (Gelfand) The compositions C ◦ Spec and Spec ◦C are naturally equivalent to
the identity functor. Hence the categories KHaus and cC∗ are dually equivalent.

There is a more general version of Gelfand duality involving non-unital C∗-algebras and
locally compact spaces, but we will only be concerned with compact spaces in the remainder
of this article.

The Gelfand Theorem justifies viewing C∗-algebras as a non-commutative generalization
of spaces. Similarly it is useful to have a non-commutative generalization of topological
groups. This gives the notion of a quantum group. There are several definitions of quantum
groups; here we will use the compact quantum groups from Woronowicz [9]. For a general
overview of the theory of quantum groups see [8].

Definition 2 A compact quantum group is a C∗-algebra A equipped with a unital
*-homomorphism � : A → A ⊗ A called the comultiplication, such that

• The comultiplication is coassociative, i.e. (� ⊗ idA) ◦ � = (idA ⊗ �) ◦ �.
• The linear spans of �(A)(1 ⊗ A) and �(A)(A ⊗ 1) are dense in A ⊗ A.

If G is a compact Hausdorff group, then its function algebra C(G) is a commutative
C∗-algebra. It can be made into a compact quantum group by defining � : C(G) →
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C(G) ⊗ C(G) ∼= C(G × G), �(ϕ)(g, h) = ϕ(gh). This construction provides a group-
theoretic analogue of Gelfand duality. Instead of compact spaces, we use compact groups.
They constitute a category KGrp with continuous homomorphisms as maps. Morphisms
between compact quantum groups are unital ∗-homomorphisms preserving the comultipli-
cation. They make compact quantum groups into a category KQGrp. As in Gelfand duality,
we want to consider the full subcategory CKQGrp of commutative compact quantum
groups.

Theorem 3 The functor C : KGrpop → CKQGrp is a dual equivalence between the
category of compact Hausdorff groups and commutative compact quantum groups.

If A is a commutative compact quantum group, then the underlying space of its dual
group is the spectrum of A, considered as C∗-algebra. The multiplication on G arises from
the comultiplication on A.

There is another way to assign a compact quantum group to a finite group G, namely
the group algebra C[G]. The elements are again functions from G to C, but now the
multiplication is given by convolution:

ϕ ∗ ψ(g) =
∑

hk=g

ϕ(h)ψ(k)

The standard basis of C[G] consists of Dirac functions λg for g ∈ G, defined by λg(g) = 1
and λg(h) = 0 for h �= g. The convolution product assumes a particularly easy form on
these basis vectors, namely λg ∗ λh = λgh. The comultiplication is defined on basis vectors
by �(λg) = λg ⊗ λg .

2.1 Effect Algebras and Modules

Another duality that we will use involves the effects in a C∗-algebra. Effects represent
probabilistic measurements that can be performed on a physical system. Let A be any
C∗-algebra. An element a in A is said to be positive if it can be written as a = b∗b for some
b ∈ A. Positivity can be used to define an order on the self-adjoint part of A, called the
Löwner order. Let a, b be self-adjoint elements in A, then we say that a ≤ b if and only if
b − a is positive. An effect in A is a self-adjoint a ∈ A for which 0 ≤ a ≤ 1.

Effects in a C∗-algebra can be organized into an algebraic structure called an effect mod-
ule. Effect modules were introduced in [4], based on earlier work on effect algebras, which
started in [1]. For an overview of the theory about effect algebras, see [2].

Roughly speaking, an effect module looks like a vector space, but the addition is only a
partial operation (since the sum of two effects may lie above 1), and we can only multiply
by scalars in the unit interval [0, 1]. Instead of complements with respect to 0, we have
complements with respect to 1. This means that for every effect a there exists an effect b

for which a + b = 1. The precise definition is as follows.

Definition 4 An effect module consists of a set A equipped with a partial binary operation
� called addition, a unary operation (−)⊥ called orthocomplement, a scalar multiplication
· : [0, 1] × A → A and constants 0, 1 ∈ A, subject to the following axioms:

• The operation � is commutative, which means that whenever a�b is defined, then also
b � a is defined, and a � b = b � a.
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• The operation � is associative, which means that if a � b and (a � b) � c are defined,
then also b � c and a � (b � c) are defined, and (a � b) � c = a � (b � c).

• For every a ∈ A, a � 0 = 0 � a = a.
• For all a, b ∈ A, a � b = 1 if and only if b = a⊥.
• If a � 1 is defined, then a = 0.
• For all r, s ∈ [0, 1] and a ∈ A, r · (s · a) = (rs) · a.
• If r + s ≤ 1, then (r + s) · a = r · a + s · a.
• If a � b is defined, then r · (a � b) = r · a � r · b.
• 1 · a = a.

Effect modules form a category EMod, in which the morphisms are functions preserving
addition, orthocomplement, scalar multiplication, and the constants 0 and 1.

The easiest example of an effect module is the unit interval [0, 1]. The partial operation
is addition, where a � b is defined if and only if a + b ≤ 1. The orthocomplement is given
by a⊥ = 1 − a, and the scalar multiplication is simply the multiplication on [0, 1]. Another
example are the effects in a C∗-algebra, with the same operations. If A is a C∗-algebra, then
its collection of effects is denoted Ef (A). Any Hilbert space H gives rise to a C∗-algebra
B(H), hence to an effect module Ef (B(H)). We will often abbreviate this to Ef (H).

More generally, every partially ordered vector space V over R gives rise to an effect
module. Pick an element u ∈ V for which u > 0, then the interval [0, u] = {v ∈ V |
0 ≤ v ≤ u} is an effect module. Addition serves as the partial binary operation, and the
orthocomplement is v⊥ = u − v. The scalar multiplication is obtained by restricting the
scalar multiplication from R to [0, 1]. In fact, every effect module is an interval in some
partially ordered R-vector space, as shown in [4, Theorem 3.1].

To work with infinite-dimensional vector spaces, it is often necessary to require that they
are complete in a certain metric. The same holds for effect modules. If A is an effect module,
then a state on A is a morphism σ : A → [0, 1]. The collection of all states is written as
St(A). Define a metric on A via

d(a, b) = sup
σ∈St(A)

|σ(a) − σ(b)|

We call the effect module A a Banach effect module if it is complete in its associated metric.
Banach effect modules give a full subcategory of EMod written as BEMod.

2.2 Convex Spaces

The state space of an effect module is always a compact convex space. We will make this
observation more precise by defining a suitable category of compact convex spaces, follow-
ing [10]. A topological vector space is said to be locally convex if its topology has a base of
convex open sets. Let KConv be the category whose objects are compact convex subspaces
of a locally convex vector space. A subspace X ⊂ V is called convex if, for all x, y ∈ X and
λ ∈ [0, 1], we have that λx + (1 − λ)y ∈ X. A morphism between compact convex spaces
X ⊂ V and Y ⊂ W is a continuous map f : X → Y that preserves convex combinations,
i.e. f (λx + (1 − λ)y) = λf (x) + (1 − λ)f (y). Such a map is called affine.

The state space of an effect module A is contained in the vector space {ϕ : A → R |
ϕ(a � b) = ϕ(a) + ϕ(b)}, which is locally convex. Therefore St(A) is an object in the
category KConv, and St is a contravariant functor from BEMod to KConv. The functor
HomKConv(−, [0, 1]) is a contravariant functor in the other direction. The following result
is taken from [5, Theorem 6], but see also [10, Section 4].



Order

Theorem 5 The functors St and HomKConv(−, [0, 1]) are inverses of each other. Hence the
categories KConv and BEMod are dually equivalent.

Examples 6 We give some examples of convex spaces and their dual effect modules.

(1) If X is a finite set, then let D(X) = {f : X → [0, 1] | ∑
x∈X f (x) = 1}. This

can be visualized as the standard simplex whose vertices are points in X. An element
f ∈ D(X) is usually written as a formal convex combination

∑
x∈X axx, where the

coefficients are the function values ax = f (x). They are subject to the condition∑
x ax = 1. This construction gives a functor D : FinSets → KConv, where on

a morphism ϕ : X → Y we define D(ϕ)(
∑

x axx) = ∑
x axϕ(x). The dual effect

module of D(X) is Hom(D(X), [0, 1]), which is isomorphic to [0, 1]X .
(2) In the above example, D(X) can be thought of as the set of discrete probability mea-

sures or distributions on X. There is a continuous analogue of this construction. Let
X now be a compact Hausdorff space, and let �X be its Borel σ -algebra. Denote the
space of Radon measures on X by R(X). A Radon measure is a probability measure
μ : �X → [0, 1] that satisfies

μ(M) = sup
K⊆M

K compact

μ(K).

In [3] it is shown that R forms a monad on the category of compact Hausdorff spaces.
Its category of Eilenberg-Moore algebras is equivalent to KConv, so convex spaces of
the form R(X) can be thought of as the free convex spaces over a compact Hausdorff
space. The dual effect module of R(X) is the collection of continuous functions from
X into [0, 1]. This fact is a categorical reformulation of the Riesz-Markov theorem.
To see this, observe that there is a map R(X) → Hom(C(X, [0, 1]), [0, 1]) given by
integration, i.e. μ 
→ ∫

(−) dμ. The Riesz-Markov theorem states that this map is
an isomorphism, so R(X) is the dual of C(X, [0, 1]). This shows that the following
diagram, connecting Gelfand and Kadison duality, commutes:

(3) Let H be a Hilbert space. A density matrix on H is a positive trace-class operator
ρ : H → H with trace 1. The collection of all density matrices forms a convex space
denoted DM(H). The importance of this example lies in its connection to the effects
on H : there is an isomorphism Ef (H) → Hom(DM(H), [0, 1]), that maps an effect
a to the function ρ 
→ tr(ρa). Because this map is an isomorphism, Ef (H) is the dual
effect module of DM(H).

There are several ways to construct new convex spaces from old ones. In the remainder
of this paper we will sometimes use coproducts and tensor products of convex spaces, so
we will describe these briefly here.
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The category KConv has all coproducts. The coproduct of two convex spaces can be
described geometrically, using the embedding in a locally convex vector space. The follow-
ing description is a slight modification of the construction in [10]. Suppose that X ⊆ V and
Y ⊆ W are compact convex subsets of locally convex vector spaces. Then the coproduct
X+Y can be embedded in the vector space V ⊕W ⊕R. To construct this coproduct, embed
X in this larger vector space via the inclusion x 
→ (x, 0, 1), and embed Y via the inclusion
y 
→ (0, y, 0). The convex hull of the disjoint union of X and Y is the coproduct of X and
Y . This is made precise in the following.

Proposition 7 If X ⊆ V and Y ⊆ W are objects in the category KConv, then their
coproduct is

X + Y = {(rx, (1 − r)y, r) | r ∈ [0, 1], x ∈ X, y ∈ Y } ⊆ V ⊕ W ⊕ R.

Proof Define embeddings iX : X → X +Y and iY : Y → X +Y via iX(x) = (x, 0, 1) and
iY (y) = (0, y, 0). Given affine maps f : X → Z and g : Y → Z, define h : X+Y → Z by

h(rx, (1 − r)y, r) = rf (x) + (1 − r)g(y).

Then h ◦ iX = f and h ◦ iY = g, so it remains to be shown that h is the unique map with
this property. Suppose that h′ : X + Y → Z is an affine map for which h ◦ iX = f and
h ◦ iY = g. Then

h′(rx, (1 − r)y, r) = h′ (r(x, 0, 1) + (1 − r)(0, y, 0)) = rf (x) + (1 − r)g(y),

which proves uniqueness.

Example 8 Denote the one-point convex space by 1. The coproduct 1 + · · ·+ 1 of n copies
of this space is the convex hull of n points, embedded in R

n−1 in such a way that they are
all affinely independent. Therefore this coproduct is the standard simplex D(n).

We continue with a discussion of the tensor product of compact convex spaces. If X, Y ,
and Z are compact convex spaces, then a map X × Y → Z is called bi-affine is it is affine
in both variables separately. A tensor product of X and Y is a compact convex space X ⊗ Y

equipped with a bi-affine map ⊗ : X × Y → X ⊗ Y such that for every compact convex
space Z and every bi-affine f : X×Y → Z there exists a unique affine map g : X⊗Y → Z

such that g ◦ ⊗ = f . Semadeni proves in [10] that any two compact convex spaces admit a
tensor product, and that it is unique up to isomorphism.

The above tensor product enjoys many good properties. The one-point convex space 1
acts as a unit for the tensor. Furthermore, the tensor product distributes over coproducts.
From these two facts, together with the isomorphism D(n) ∼= 1 +· · ·+ 1, it can be deduced
that the tensor product of standard simplices is D(n) ⊗ D(m) ∼= D(nm).

3 Kadison Duality for Group and Function Algebras

Let G be a finite group. This gives rise to two Hopf-algebras, or compact quantum groups,
namely the function algebra C(G) and the group algebra C[G]. Of these two Hopf-algebras,
the function algebra is commutative but in general not cocommutative, while for the group
algebra, it is the other way round. Therefore the duality from Theorem 3 only applies to
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the function algebra C(G). However, Kadison duality also applies to unit intervals of non-
commutative C∗-algebras, so we can use this for both the group algebra and the function
algebra.

Definition 9 A convex monoid is an object X of the category KConv, together with a
continuous multiplication map · : X × X → X and a constant 1 ∈ X, such that

• The operation · is affine in both variables separately, that is, (λx + (1 − λ)y) · z =
λx · z + (1 − λ)y · z and similarly for convex combinations on the right.

• The operation · is associative.
• 1 is a unit for ·.

Equivalently, a convex monoid is a convex space X equipped with a map X ⊗ X → X

that is associative and has a unit.
A variant of quantum groups in the framework of Kadison duality should give a duality

between effect modules with a comultiplication and convex monoids. In this section we
describe these objects for the Hopf-algebras C(G) and C[G]. We will start with the function
algebra C(G). In fact, this algebra can be defined for any compact group G, so we will now
determine the effect module and convex space associated to C(G) for an arbitrary compact
group G.

Proposition 10 Let G be a compact group. Then

(1) the effect module Ef (C(G)) ∼= {ϕ | ϕ : G → [0, 1] is continuous}. Restriction of �

on Ef (C(G)) defines a comultiplication map Ef (C(G)) → Ef (C(G × G)) (which is
a morphism of effect modules);

(2) the state space St(Ef (C(G)) is isomorphic to the space R(G) of Radon measures on
G. Moreover,R(G) is a convex monoid with respect to the multiplication obtained by
dualizing � on Ef (C(G)).

Proof The effect module Ef (C(G)) consists of all functions ϕ for which 0 ≤ ϕ ≤ 1. Since
the multiplication in C(G) is pointwise, the order is also pointwise, and hence Ef (C(G))

consists of continuous maps G → [0, 1]. The comultiplication on C(G) induces a map of
effect modules � : Ef (C(G)) → Ef (C(G × G)), given by �(ϕ)(g, h) = ϕ(gh). Clearly,
� is coassociative.

The state space of Ef (C(G)) consists of all morphisms σ : Hom(G, [0, 1]) → [0, 1].
By part 2 of Examples 6, this is the same as the space of Radon measures R(G).

The multiplication on R(G) can also be decribed directly in terms of the multiplication
on G. Applying the functor R to the multiplication map · : G × G → G gives a map
R(G × G) → R(G). Since R(G) ⊗ R(G) ∼= R(G × G), this provides a convex monoid
structure on R(G), which is the dual of Ef (C(G)). This convex monoid has been studied
categorically in [6].

The multiplication on the group algebra C[G] is more complicated than the one on the
function algebra. Therefore the Löwner order on C[G] and the effect module are also more
difficult to compute explicitly. The algebra C[G] is simultaneously a C*-algebra and a
Hilbert space, and the algebra structure is compatible with the inner product, so C[G] forms
a Hilbert algebra. We shall use some general facts about Hilbert algebras to compute the
effect module and the state space of C[G].
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Definition 11 A Hilbert algebra is a *-algebra A equipped with an inner product 〈− | −〉,
such that

(1) For all a, b ∈ A, 〈a | b〉 = 〈b∗ | a∗〉.
(2) For each a ∈ A, the map b 
→ ab is a bounded operator.
(3) For all a, b, c ∈ A, 〈ab | c〉 = 〈b | a∗c〉.
(4) The linear span of {ab | a, b ∈ A} is dense in A.

For more about Hilbert algebras see [7]. We will mainly work with unital Hilbert
algebras, in which the fourth property holds automatically.

Lemma 12 Let A be a Hilbert algebra, and f : A → A a map of left A-actions, i.e. a map
satisfying f (ab) = af (b). Then:

(1) If f is positive, then
√

f is also a map of left A-actions.
(2) The adjoint f † is a map of left A-actions.
(3) f †(1) = f (1)∗.

Proof

(1) The square root
√

f commutes with every operator that commutes with f .
(2) It suffices to prove that f †(ab) and af †(b) have the same inner product with any

x ∈ A. This holds because

〈f †(ab) | x〉 = 〈ab | f (x)〉 = 〈b | a∗f (x)〉 = 〈b | f (a∗x)〉 = 〈f †(b) | a∗x〉
= 〈af †(b) | x〉.

(3) 〈f (1)∗ | x〉 = 〈x∗ | f (1)〉 = 〈1 | xf (1)〉 = 〈1 | f (x)〉 = 〈f †(1) | x〉.
Since any Hilbert algebra A is a *-algebra, it can be ordered, and hence we can speak

about effects in the algebra. These are elements a ∈ A such that 0 ≤ a ≤ 1. But A is also
a Hilbert space, so we can also speak about effects on the Hilbert algebra, which are maps
ε : A → A that lie between 0 and idA. The next result connects effects in A with effects on
A.

Proposition 13 Let A be a unital Hilbert algebra. There is a bijective correspondence
between:

(1) Effects in A, i.e. a ∈ A for which 0 ≤ a ≤ 1;
(2) Effects ε : A → A that are also maps of left A-actions.

Proof If ε : A → A is an effect for which ε(ab) = aε(b), then ε(1) is an effect in A. To
show this, we will start by proving positivity. The effect ε has a positive square root

√
ε.

We claim that
√

ε(1)
√

ε(1) = ε(1). This follows from the following computation, using
Lemma 12:

〈ε(1) | x〉 = 〈√ε
√

ε(1) | x〉 = 〈√ε(1) | √
ε

†
(x)〉

= 〈√ε(1) | x
√

ε
†
(1)〉 = 〈√ε(1) | x

√
ε(1)∗〉

= 〈√ε(1)x∗ | √
ε(1)∗〉 = 〈x∗ | √

ε(1)∗
√

ε(1)∗〉 = 〈√ε(1)
√

ε(1) | x〉.
This shows that ε(1) has a square root, so it is positive. Similarly, since the square root√

I − ε exists, the element 1 − ε(1) ∈ A is positive. Therefore ε(1) is an effect.
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Conversely, if a ∈ A is an effect, define ε : A → A by ε(x) = xa. Then ε is clearly a
map of left actions. Since a is positive, there is a b such that a = b∗b. Define β : A → A

by β(x) = xb. Then ββ†(x) = xb∗b = ε(x), so ε is positive. Analogously we can prove
ε ≤ I , hence ε is an effect. It is easy to see that both constructions are mutually inverse.

Proposition 14 Let V be a unitary representation of G. Write the decomposition of V into
irreducible representations as V = n1V1 ⊕ · · · ⊕ nkVk . Then the effect module {ε : V →
V | ε is effect and intertwiner} is isomorphic to Ef (Cn1) × · · · × Ef (Cnk ).

Proof An intertwining effect ε : V → V can be written as a matrix of maps εij : niVi →
njVj . By Schur’s Lemma, each εij = 0 for i �= j . The effects εii can in turn be decomposed
into an ni × ni matrix of maps Vi → Vi , and these are all scalar multiples of the identity by
Schur’s Lemma. Therefore each εii corresponds to an effect on C

ni .

Theorem 15 Let G be a finite group, and let V1, . . . , Vk be its irreducible representations.
Then

(1) the effect module Ef (C[G]) is isomorphic to Ef (V1) × · · · × Ef (Vk). The comultipli-

cation map �̂ : Ef (C[G]) → Ef (C[G×G]) given by �̂
(∑

g agλg

)
= ∑

g agλ(g,g);

(2) The state space of C[G], denoted by St(C[G]), is the coproduct DM(V1) + · · · +
DM(Vk) in the category of convex spaces. Moreover, St(C[G]) is a convex monoid
with respect to the multiplication μ : St(C[G×G]) → St(C[G]) defined as the linear
extension of μ(σ)(λg) = σ(λ(g,g)).

Proof By Proposition 13, the effect module Ef (C[G]) is isomorphic to {ε : C[G] →
C[G] | ε is effect and map of left C[G]-actions}. The condition that ε is a map of left C[G]-
actions means that it is an intertwiner from the regular G-representation C[G] to itself. The
regular representation decomposes as C[G] = n1V1 ⊕ · · · ⊕ nkVk , so by Proposition 14
Ef (C[G]) is isomorphic to Ef (Cdim V1) × · · · × Ef (Cdim Vk ) ∼= Ef (V1) × · · · × Ef (Vk).
This is a Banach effect module, so we can use the duality between convex compact spaces
and Banach effect modules to determine the dual space. Dualizing turns products into
coproducts, so the dual space is DM(V1) + · · · + DM(Vk). Clearly, �̂ is coassociative.

Dualizing �̂ gives μ on the state space St(C[G]). The convex monoid structure on the
state space of the group algebra satisfies (σ · τ)(λg) = σ(λg)τ (λg) on basis vectors.

4 Convex Pontryagin Duality for Group and Function Algebras

The group algebra and the function algebra associated to a finite group are both finite-
dimensional Hopf algebras. These are related via a non-commutative generalization of
Pontryagin duality, see e.g. [8] for details. In the previous section, we found two convex
monoids that can be obtained from a finite group: the state space D(G) of the function
algebra, and the state space DM(V1) + · · · + DM(Vk) of the group algebra, where the Vi

are the irreducible representations of G. This section will present a construction to convert
these two convex monoids into each other. This construction can be viewed as a convex
counterpart of Pontryagin duality.

Definition 16 A linear representation of a convex monoid X consists of a vector space V

and a monoid homomorphism ρ : X → End(V ) that preserves convex combinations.



Order

As usual, a representation can also be written as an action of X on V , that is, a map
X ×V → V . A linear representation of a convex monoid is then required to be affine in the
first variable and linear in the second variable. We will look at the linear representations of
the convex monoid D(G).

Lemma 17 There is a one-to-one correspondence between representations of the finite
group G and linear representations of D(G).

Proof Representations of G are monoid homomorphisms G → End(V ), since all monoid
homomorphisms between groups are automatically group homomorphisms. Linear repre-
sentations of D(G) are monoid homomorphisms D(G) → End(V ) that are also morphisms
of convex spaces. Since D(G) is the free convex space generated by G, it follows that there
is a one-to-one correspondence between maps of sets G → End(V ) and maps of con-
vex spaces D(G) → End(V ). It is easy to check that this equivalence restricts to monoid
homomorphisms.

This result produces an easy way to construct the state space of C[G] out of the state
space of C(G), in the following steps:

(1) Let V1, . . ., Vk be the irreducible linear representations of St(C(G)).
(2) Form the convex sets of density matrices DM(Vi) for each i.
(3) The coproduct (in the category KConv) of all DM(Vi) is the state space of C[G].
Since irreducible representations of G are the same as irreducible linear representations of
D(G), this construction yields exactly the state space of C[G]. A surprising fact is that it
works in two directions: if we apply exactly the same construction to the state space of
C[G], we end up with the state space of C(G).

Proposition 18 Let V1, . . . , Vk be the irreducible linear representations of the convex
monoid St(C[G]). Then the convex space DM(V1) + · · · + DM(Vk) is isomorphic to
St(C(G)).

Proof We will determine the irreducible representations Vi . Recall that the multiplication
on St(C[G]) was given by σ · τ(λg) = σ(λg)τ (λg). Therefore this convex monoid is com-
mutative. All irreducible representations of a commutative monoid are 1-dimensional. Each
g ∈ G gives a 1-dimensional linear representation ρg : St(C[G]) → C by ρg(σ ) = σ(g).

We will now check that all 1-dimensional linear representations are of the form ρg for
some g ∈ G. Let ρ : St(C[G]) → C be an arbitrary representation. Then the map ρ extends
to a function Hom(C[G],C) → C in the double dual of C[G], hence there exists a ∈ C[G]
such that σ(a) = ρ(σ) for all states σ on C[G]. We will show that a is actually an element
in G ⊆ C[G]. Express a as a = a1λg1 + · · · + anλgn . Then, for any two states σ and τ ,

ρ(στ) = στ(
∑

i

aiλgi
) =

∑

i

aiσ (λgi
)τ (λgi

)

and
ρ(σ)ρ(τ) = σ(

∑

i

aiλgi
)τ (

∑

j

ajλgj
) =

∑

i,j

aiaj σ (λgi
)τ (λgj

).

The map ρ is a representation, so these two expressions must be equal for all states σ and
τ . Comparing coefficients shows that at most one ai is equal to 1, and all others are 0. The
element a cannot be identically 0, since ρ preserves 1. Hence a is equal to λg for some
g ∈ G, which proves that the maps ρg are indeed the only 1-dimensional representations.



Order

There is only one density matrix on any 1-dimensional space. Therefore the space
DM(V1) + · · · + DM(Vk) is a coproduct of #G copies of the one-point space, which is
D(G).

We have shown that if we start with the convex monoid St(C(G)) ∼= D(G) and apply
the above construction twice, then we get back a convex space that is isomorphic to the
underlying space of the original convex monoid. Now we wish to show that the multipli-
cation is also preserved in this construction, so that we obtain an isomorphism of convex
monoids, rather than just convex spaces. For this we have to endow the coproduct of den-
sity matrices with a multiplication. It is useful to have an explicit isomorphism between
DM(V1) + · · · + DM(Vk) and St(C[G]).

Lemma 19 Let (V1, ρ1), . . . , (Vk, ρk) be the irreducible representations of G. The map
� : DM(V1) + · · · + DM(Vk) → St(C[G]) determined by �(T )(λg) = tr(Tρi(g)) for
T ∈ DM(Vi) is an isomorphism of convex spaces.

Proof Consider the map 
 : C[G] → End(V1) × · · · × End(Vk) of C∗-algebras, on basis
vectors determined by λg 
→ (ρ1(g), . . . , ρk(g)). We claim that this map is injective. Sup-
pose that a, b ∈ C[G] are such that ρi(a) = ρi(b) for all i. Then a and b act in the same way
in all irreducible representations of G. Since any representation of G can be decomposed
into irreducibles, a and b act in the same way in all representations of G. In particular, they
have the same action on the regular representation C[G]. Thus a = a · e = b · e = b. Since

 is injective and its domain has the same dimension as its codomain, it is an isomorphism.

Taking states of a C∗-algebra provides a contravariant functor St : C∗ → KConv. There-
fore, applying the state functor to 
 gives a map St(End(V1)) + · · · + St(End(Vk)) →
St(C[G]). There is an isomorphism α : DM(Vi) → St(End(Vi)) given by α(ρ)(A) =
tr(ρA), and hence St(
) = �. Since 
 is an isomorphism and St is a functor, � is also an
isomorphism.

Using this isomorphism, the multiplication on the coproduct of density matrices can be
described explicitly. Since we are working in a coproduct, it suffices to describe T ·S, where
T ∈ DM(Vi) and S ∈ DM(Vj ). Applying the isomorphism � from the lemma above gives
states λg 
→ tr(Tρi(g)) and λg 
→ tr(Sρj (g)) on C[G]. Multiplying these states pointwise
and using properties of the trace gives the map λg 
→ tr((T ⊗ S)(ρi ⊗ ρj )(g)). Since � is
an isomorphism, there is a unique

∑
i λiTi ∈ DM(V1) + · · · + DM(Vk) for which

∑

i

λi tr(Tiρi(g)) = tr((T ⊗ S)(ρi ⊗ ρj )(g)).

We define T · S to be this convex combination
∑

i λiTi . With the proposition and lemma
above, we have now proven the following result.

Theorem 20 Let G be a finite group, and let V1, . . . , Vk be the irreducible linear represen-
tations of the convex monoid St(C(G)). Then the convex monoidDM(V1)+· · ·+DM(Vk)

with multiplication described above is isomorphic to the convex monoid St(C[G]) with
pointwise multiplication.
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5 Convex Pontryagin Duality for a Tensor Product

The category of finite-dimensional Hopf algebras is self-dual. The dual of a finite-
dimensional Hopf algebra A is Â = {f : A → C | f linear}. Its multiplication is derived
from the comultiplication on A, and vice versa. The Hopf algebras C(G) and C[G] coming
from a finite group G are duals of each other via this construction.

Let A be either C(G) or C[G]. The main result from the previous section states that if
V1, . . . , Vk are the irreducible representations of the convex monoid St(A), then DM(V1)+
· · · + DM(Vk) is isomorphic to St(Â). This raises the question if this holds for all Hopf
algebras. We do not yet know if this is the case in general, but we will now discuss another
example of a Hopf algebra for which it holds, so this may be promising for the general case.

Let G be a finite group. Consider the Hopf algebra A = C(G) ⊗ C[G], i.e. the tensor
product of the function algebra and the group algebra. This Hopf algebra is neither com-
mutative nor cocommutative. Since dualizing preserves tensor products, the dual of A is
isomorphic to A itself. Thus the statement that connects the state space of A to its dual
amounts to the following.

Proposition 21 Let V1, . . . , Vk be the irreducible representations of the convex monoid
St(C(G) ⊗ C[G]). Then DM(V1) + · · · + DM(Vk) is isomorphic to St(C(G) ⊗ C[G]).

Proof We will first show that St(C(G) ⊗ C[G]) is isomorphic to St(C(G)) ⊗ St(C[G]).
Since the C*-algebra C(G) is commutative and finite-dimensional, it is isomorphic to C

n

for some n. Hence we have

St(C(G) ⊗ C[G]) ∼= St(Cn ⊗ C[G]) ∼= St(C[G]⊕n).

The state space of a direct sum is the coproduct of state spaces, so this is isomorphic to

St(C[G]) + · · · + St(C[G]) ∼= (1 + · · · + 1) ⊗ St(C[G])
∼= D(n) ⊗ St(C[G])
∼= St(C(G)) ⊗ St(C[G]).

The irreducible representations of a tensor product are tensor products of irreducible
representations. The irreducible representations of St(C(G)) are precisely those of G; call
these W1, . . . , Wm. There are #G = n irreducible representations of C[G] and these are
all one-dimensional. Denote these by W ′

1, . . . , W
′
n. Then the irreducible representations of

St(C(G)⊗C[G]) are the tensor products Wi ⊗W ′
j . Therefore the sum of density matrices is

∑

i,j

DM(Wi ⊗ W ′
j )

∼=
(

∑

i

DM(Wi)

)+n

∼= (1 + · · · + 1) ⊗
∑

i

DM(Wi)

∼= D(G) ⊗
∑

i

DM(Wi)

∼= St(C(G)) ⊗ St(C[G])
∼= St(C(G) ⊗ C[G]),

which is what we wanted to show.
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