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Abstract
In this paper, we establish a strong convergence theorem for hierarchical problems,
an equivalent relation between a multiple sets split feasibility problem and a fixed
point problem. As applications of our results, we study the solution of mathematical
programming with fixed point and multiple sets split feasibility constraints,
mathematical programming with fixed point and multiple sets split equilibrium
constraints, mathematical programming with fixed point and split feasibility
constraints, mathematical programming with fixed point and split equilibrium
constraints, minimum solution of fixed point and multiple sets split feasibility
problems, minimum norm solution of fixed point and multiple sets split equilibrium
problems, quadratic function programming with fixed point and multiple set split
feasibility constraints, mathematical programming with fixed point and multiple set
split feasibility inclusions constraints, mathematical programming with fixed point
and split minimax constraints.
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1 Introduction
The split feasibility problem (SFP) in finite dimensionalHilbert spaceswas first introduced
by Censor and Elfving [] formodeling inverse problems which arise from phase retrievals
and in medical image reconstruction. Since then, the split feasibility problem (SFP) has
receivedmuch attention due to its applications in signal processing, image reconstruction,
with particular progress in intensity-modulated radiation therapy, approximation theory,
control theory, biomedical engineering, communications, and geophysics. For examples,
one can refer to [–] and related literature. Since then, many researchers have studied
(SFP) in finite dimensional or infinite dimensional Hilbert spaces. For example, one can
see [, –].
A special case of problem (SFP) is the convexly constrained linear inverse problem in

the finite dimensional Hilbert space []:

(CLIP) Find x̄ ∈ C such that Ax̄ = b, where b ∈H,
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which has extensively been investigated by using the Landweber iterative method []

xn+ := xn + γAT (b –Axn), n ∈ N.

In , Byrne [] first introduced the so-called CQ algorithm which generates a se-
quence {xn} by the following recursive procedure:

xn+ = PC
(
xn – ρnA∗(I – PQ)Axn

)
, ()

where the stepsize ρn is chosen in the interval (, /‖A‖), and PC and PQ are the metric
projections onto C ⊆ R

n and Q ⊆ R
m, respectively. Compared with Censor and Elfving’s

algorithm [] where the matrix inverse A is involved, the CQ algorithm () seems more
easily executed since it only deals withmetric projections with no need to computematrix
inverses.
In , Xu [] modified Byrne’s CQ algorithm and proved the weak convergence the-

orem in infinite Hilbert spaces for their modified algorithm.
Let C be a nonempty closed convex subset of a real Hilbert space H with the inner

product 〈·, ·〉 and the norm ‖ · ‖. A mapping T : C →H is said to be nonexpansive if ‖Tx–
Ty‖ ≤ ‖x – y‖ for all x, y ∈ C; T is said to be a quasi-nonexpansive mapping if Fix(T) 
= ∅
and ‖Tx – y‖ ≤ ‖x – y‖ for all x ∈ C and y ∈ Fix(T), we denote by Fix(T) = {x ∈ C : Tx = x}
the set of fixed points of T . A : C →H is called strongly positive if

〈x,Ax〉 ≥ α‖x‖, ∀x ∈ C.

Let f be a contraction on H and {αn} be a sequence in [, ]. In , Xu [] proved
that under some condition on {αn}, the sequence {xn} generated by

xn+ = αnfxn + ( – αn)Txn

strongly converges to x∗ in Fix(T), which is the unique solution of the variational inequality

〈
(I – f )x∗,x – x∗〉 ≥ 

for all x ∈ Fix(T).
Xu [] also studied the following minimization problem over the set of fixed points of

a nonexpansive operator T on a real Hilbert space H :

min
x∈Fix(T)



〈Bx,x〉 – 〈a,x〉,

where a is a given point in H and B is a strongly positive bounded linear operator on H .
In [], Xu proved that the sequence {xn} defined by the following iterative method

xn+ = (I – αnB)Txn + αna

converges strongly to the unique solution of theminimization problemof a quadratic func-
tion. In [], Marino et al. considered the following iterative method:

xn+ = αnγ fxn + (I – αnA)Txn. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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They proved that the sequence generated by () converges strongly to the fixed point x∗

of T which solves the following:

〈
(A – γ f )x∗,x – x∗〉 ≥ 

for all x ∈ Fix(T). For some more related works, see [–] and the references therein.
In this paper, we establish a strong convergence theorem for hierarchical problems, an

equivalent relation between amultiple sets split feasibility problem and a fixed point prob-
lem. As applications of our results, we study the solution of mathematical programming
with fixed point andmultiple sets split feasibility constraints, mathematical programming
with fixed point and multiple sets split equilibrium constraints, mathematical program-
ming with fixed point and split feasibility constraints, mathematical programming with
fixed point and split equilibrium constraints, minimum solution of fixed point and mul-
tiple sets split feasibility problems, minimum norm solution of fixed point and multiple
sets split equilibrium problems, quadratic function programming with fixed point and
multiple set split feasibility constraints, mathematical programming with fixed point and
multiple set split feasibility inclusions constraints, mathematical programming with fixed
point and split minimax constraints.

2 Preliminaries
Throughout this paper, letN be the set of positive integers and letR be the set of real num-
bers,H be a (real)Hilbert spacewith the inner product 〈·, ·〉 and the norm ‖·‖, respectively,
and let C be a nonempty closed convex subset of H . We denote the strong convergence
and the weak convergence of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively. For each
x, y ∈H and λ ∈ [, ], we have

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖.

Hence, we also have

〈x – y,u – v〉 = ‖x – v‖ + ‖y – u‖ – ‖x – u‖ – ‖y – v‖ ()

for all x, y,u, v ∈H .
For α > , a mapping A :H →H is called α-inverse-strongly monotone (α-ism) if

〈x – y,Ax –Ay〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ H .

If  < λ ≤ α, A :H → H is an α-inverse-strongly monotone mapping, then I – λA :H →
H is nonexpansive. A mapping T : C →H is said to be a firmly nonexpansive mapping if

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥

for every x, y ∈ C. Let T : C → H be a mapping. Then p ∈ C is called an asymptotic fixed
point of T [] if there exists {xn} ⊆ C such that xn ⇀ p, and limn→∞ ‖xn – Txn‖ = . We
denote by F(T̂) the set of asymptotic fixed points of T . A mapping T : C →H is said to be
demiclosed if it satisfies F(T) = F(T̂). A nonlinear operator V : H → H is called strongly

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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monotone if there exists γ̄ >  such that 〈x–y,Vx–Vy〉 ≥ γ̄ ‖x–y‖ for all x, y ∈ H . SuchV
is also called γ̄ -stronglymonotone. A nonlinear operatorV :H →H is called Lipschitzian
continuous if there exists L >  such that ‖Vx – Vy‖ ≤ L‖x – y‖ for all x, y ∈ H . Such V is
also called L-Lipschitzian continuous.
Let B be a mapping of H into H . The effective domain of B is denoted by D(B), that is,

D(B) = {x ∈ H : Bx 
= ∅}. A multi-valued mapping B is said to be a monotone operator on
H if 〈x – y,u – v〉 ≥  for all x, y ∈ D(B), u ∈ Bx, and v ∈ By. A monotone operator B on
H is said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on H . For a maximal monotone operator B on H and r > , we may
define a single-valued operator Jr = (I + rB)– :H → D(B), which is called the resolvent of
B for r, and let B– = {x ∈ H :  ∈ Bx}.
The following lemmas are needed in this paper.

Lemma . [] Let H and H be two real Hilbert spaces, A : H → H be a bounded
linear operator, and A∗ be the adjoint of A. Let C be a nonempty closed convex subset of H,
and let G : H → H be a firmly nonexpansive mapping. Then A∗(I – G)A is a 

‖A‖ -ism,
that is,


‖A‖

∥∥A∗(I –G)Ax –A∗(I –G)Ay
∥∥ ≤ 〈

x – y,A∗(I –G)Ax –A∗(I –G)Ay
〉

for all x, y ∈H.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
G :H →H be a firmly nonexpansivemapping. Suppose that Fix(G) 
= ∅.Then 〈x–Gx,Gx–
w〉 ≥  for each x ∈H and each w ∈ Fix(G).

A mapping T :H →H is said to be averaged if T = ( – α)I + αS, where α ∈ (, ) and S :
H →H is a nonexpansive mapping. In this case, we also say that T is α-averaged. A firmly
nonexpansive mapping is 

 -averaged.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and
let T : C → C be a mapping. Then the following are satisfied:

(i) T is nonexpansive if and only if the complement (I – T) is /-ism.
(ii) If S is υ-ism, then for γ > , γ S is υ/γ -ism.
(iii) S is averaged if and only if the complement I – S is υ-ism for some υ > /.
(iv) If S and T are both averaged, then the product (composite) ST is averaged.
(v) If the mappings {Ti}ni= are averaged and have a common fixed point, then⋂n

i= Fix(Ti) = Fix(T · · ·Tn).

Lin and Takahashi [] gave the following results in a Hilbert spaces.

Lemma . [] Let PC be the metric projection of H onto C, and let V be a γ̄ -strongly
monotone and L-Lipschitzian continuous operator with γ̄ >  and L > . Let t ≥  satisfy
γ̄ > tL and  > tγ̄ . Then we know that

z = PC(I – tV )z ⇔ 〈Vz, y – z〉 ≥  ⇔ z = PC(I –V )z.

Such z ∈ C exists always and is unique.

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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By Lemma ., we have the following lemma.

Lemma . Let V :H → H be a γ̄ -strongly monotone and L-Lipschitzian continuous op-
erator with γ̄ >  and L > . Let θ ∈ H and V :H → H such that Vx = Vx – θ . Then V is
a γ̄ -strongly monotone and L-Lipschitzian continuous mapping. Furthermore, there exists
a unique fixed point z in C satisfying z = PC(z – Vz + θ ). This point z ∈ C is also a
unique solution of the hierarchical variational inequality

〈Vz – θ ,q – z〉 ≥ , ∀q ∈ C.

Lemma . [] Let B be a maximal monotone mapping on H . Let Jr be the resolvent of B
defined by Jr = (I + rB)– for each r > . Then the following hold:

(i) For each r > , Jr is single-valued and firmly nonexpansive;
(ii) For each r > , D(Jr) =H and Fix(Jr) = {x ∈D(B) :  ∈ Bx};

Lemma . [] Let B be a maximal monotone mapping on H . Let Jr be the resolvent of B
defined by Jr = (I + rB)– for each r > . Then the following holds:

s – t
s

〈Jsx – Jtx, Jsx – x〉 ≥ ‖Jsx – Jtx‖

for all s, t >  and x ∈H . In particular,

‖Jsx – Jtx‖ ≤ |s – t|
s

‖Jsx – x‖

for all s, t >  and x ∈H .

Let α,β ∈R, T be a generalized hybrid mapping [] if α‖Tx–Ty‖ + ( –α)‖Ty– x‖ ≤
β‖Tx – y‖ + ( – β)‖x – y‖ for all x, y ∈ C.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → H be a generalized hybrid mapping, then F(T) = F(T̂).

Remark . If T is a generalized hybrid mapping with Fix(T) 
= ∅. By the definition of T
and Lemma ., we have that T is a quasi-nonexpansive mapping with F(T) = F(T̂).

Lemma . [] Let {an} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that ani < ani+ for all i ∈ N. Then there exists a nondecreasing
sequence {mk} ⊆ N such that mk → ∞ and the following properties are satisfied for all
(sufficiently large) numbers k ∈ N:

amk ≤ amk+ and ak ≤ amk+.

In fact,mk =max{j ≤ k : aj < aj+}.

Lemma . [] Let {an}n∈N be a sequence of nonnegative real numbers, {αn} be a se-
quence of real numbers in [, ] with

∑∞
n= αn = ∞, {un} be a sequence of nonnegative real

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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numbers with
∑∞

n= un < ∞, {tn} be a sequence of real numbers with lim sup tn ≤ . Suppose
that an+ ≤ ( – αn)an + αntn + un for each n ∈N. Then limn→∞ an = .

We know that the equilibrium problem is to find z ∈ C such that

(EP) g(z, y) ≥  for each y ∈ C,

where g : C × C → R is a bifunction. This problem includes fixed point problems, opti-
mization problems, variational inequality problems,Nash equilibriumproblems,minimax
inequalities, and saddle point problems as special cases. (For examples, one can see []
and related literatures.)
The solution set of equilibrium problem (EP) is denoted by EP(g). For solving the equi-

librium problem, let us assume that the bifunction g : C × C → R satisfies the following
conditions:
(A) g(x,x) =  for each x ∈ C;
(A) g is monotone, i.e., g(x, y) + g(y,x) ≤  for any x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ g(tz + ( – t)x, y)≤ g(x, y);
(A) for each x ∈ C, the scalar function y→ g(x, y) is convex and lower semicontinuous.
We have the following result from Blum and Oettli [].

Theorem . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
g : C × C → R be a bifunction which satisfies conditions (A)-(A). Then, for each r > 
and each x ∈H , there exists z ∈ C such that

g(z, y) +

r
〈y – z, z – x〉 ≥ 

for all y ∈ C.

In , Combettes and Hirstoaga [] established the following important properties
of a resolvent operator.

Theorem. [] Let C be a nonempty closed convex subset of a real Hilbert space H , and
let g : C×C →R be a function satisfying conditions (A)-(A). For r > , define Tg

r :H → C
by

Tg
r x =

{
z ∈ C : g(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
(i) Tg

r is single-valued;
(ii) Tg

r is firmly nonexpansive, that is, ‖Tg
r x –Tg

r y‖ ≤ 〈x – y,Tg
r x –Tg

r y〉 for all x, y ∈H ;
(iii) {x ∈H : Tg

r x = x} = {x ∈ C : g(x, y) ≥ ,∀y ∈ C};
(iv) {x ∈ C : g(x, y) ≥ ,∀y ∈ C} is a closed and convex subset of C.

We call such Tg
r the resolvent of g for r > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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3 Convergence theorems of hierarchical problems
Let H be a real Hilbert space, and let I be an identity mapping on H , C be a nonempty
closed convex subset of H . For each i = , , let κi >  and let Bi be a κi-inverse-strongly
monotone mapping of C into H . Let Gi be a maximal monotone mapping on H such that
the domain of Gi is included in C for each i = , . Let Jλ = (I + λG)– and Tr = (I + rG)–

for each λ >  and r > . Let {θn} ⊂H be a sequence. Let V be a γ̄ -strongly monotone and
L-Lipschitzian continuous operator with γ̄ >  and L > . Throughout this paper, we use
these notations and assumptions unless specified otherwise.
The following strong convergence theorem for hierarchical problems is one of our main

results of this paper.

Theorem . Let T : C →H be a quasi-nonexpansive mapping with Fix(T) = Fix(T̂) such
that F(T)∩ (B +G)–∩ (B +G)– 
= ∅. Take μ ∈R as follows:

 < μ <
γ̄
L

.

Let {xn} ⊂H be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Jλn (I – λnB)Trn (I – rnB)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < κ, and  < a ≤ rn ≤ b < κ;
(iv) limn→∞ θn = θ for some θ ∈ H .

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩(B+G)–∩(B+G)–(x̄ – Vx̄ + θ ). This point x̄ is also
a unique solution of the following hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ (B +G)–∩ (B +G)–.

Proof Take any x̄ ∈ Fix(T)∩ (B +G)–∩ (B +G)– and let x̄ be fixed. Then x̄ = Jλn (I –
λnB)x̄ and x̄ = Trn (I – rnB)x̄. Let un = Trn (I – rnB)xn. For each n ∈N, we have

‖un – x̄‖

=
∥∥Trn (I – rnB)xn – Trn (I – rnB)x̄

∥∥

≤ ∥∥(xn – x̄) – rn(Bxn – Bx̄)
∥∥

≤ ‖xn – x̄‖ – rn〈xn – x̄,Bxn – Bx̄〉 + rn‖Bxn – Bx̄‖

≤ ‖xn – x̄‖ – rnκ‖Bxn – Bx̄‖ + rn‖Bxn – Bx̄‖

≤ ‖xn – x̄‖ – rn(κ – rn)‖Bxn – Bx̄‖

≤ ‖xn – x̄‖, ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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and

‖yn – x̄‖

=
∥∥Jλn (I – λnB)un – Jλn (I – λnB)x̄

∥∥

≤ ∥∥(un – x̄) – λn(Bun – Bx̄)
∥∥

≤ ‖un – x̄‖ – λn〈un – x̄,Bun – Bx̄〉 + λ
n‖Bun – Bx̄‖

≤ ‖un – x̄‖ – λnκ‖Bun – Bx̄‖ + λ
n‖Bun – Bx̄‖

≤ ‖un – x̄‖ – λn(κ – λn)‖Bun – Bx̄‖

≤ ‖un – x̄‖

≤ ‖xn – x̄‖. ()

Since T is a quasi-nonexpansive mapping, we obtain that

‖sn – x̄‖ = ‖Tyn – x̄‖ ≤ ‖yn – x̄‖ ≤ ‖un – x̄‖ ≤ ‖xn – x̄‖. ()

Let zn = βnθn + (I – βnV )sn, we have that

‖zn – x̄‖ =
∥∥βnθn + (I – βnV )sn – x̄

∥∥
≤ βn‖θn –Vx̄‖ + ∥∥(I – βnV )(sn – x̄)

∥∥
≤ βn‖θn –Vx̄‖ + ∥∥(I – βnV )sn – (I – βnV )x̄

∥∥. ()

Put τ = γ̄ – Lμ
 , we have that

∥∥(I – βnV )sn – (I – βnV )x̄
∥∥

= ‖sn – x̄‖ – βn〈sn – x̄,Vsn –Vx̄〉 + β
n‖Vsn –Vx̄‖

≤ ‖sn – x̄‖ – βnγ̄ ‖sn – x̄‖ + β
nL

‖sn – x̄‖

≤ (
 – βnγ̄ + β

nL
)‖sn – x̄‖

≤ (
 – βnτ – βn

(
Lμ – βnL

))‖sn – x̄‖

≤ (
 – βnτ + β

nτ
)‖sn – x̄‖

≤ ( – βnτ )‖xn – x̄‖.

Since  – βnτ > , we obtain that

∥∥(I – βnV )sn – (I – βnV )x̄
∥∥ ≤ ( – βnτ )‖xn – x̄‖. ()

We have from () and () that

‖zn – x̄‖ ≤ βn‖θn –Vx̄‖ + ( – βnτ )‖xn – x̄‖. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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Thus, we obtain from the definition of xn and () that

‖xn+ – x̄‖ =
∥∥αnxn + ( – αn)

(
βnθn + (I – βnV )sn

)
– x̄

∥∥
≤ αn‖xn – x̄‖ + ( – αn)

∥∥(
βnθn + (I – βnV )sn

)
– x̄

∥∥
≤ αn‖xn – x̄‖ + ( – αn)

[
βn‖θn –Vx̄‖ + ( – βnτ )‖xn – x̄‖]

≤ [
 – ( – αn)βnτ

]‖xn – x̄‖ + βn( – αn)τ
‖θn –Vx̄‖

τ

≤ max

{
‖xn – x̄‖, ‖θn –Vx̄‖

τ

}

≤ max
{‖xn – x̄‖,M}

,

whereM =max{ ‖θn–Vx̄‖
τ

,n ∈N}. By induction, we deduce

‖xn – x̄‖ ≤max
{‖x – x̄‖,M}

.

This implies that the sequence {xn} is bounded. Furthermore, {un}, {zn}, {yn} and {sn} are
bounded.
By the definition of {xn}, we have that

xn+ – xn = αnxn + ( – αn)
(
βnθn + (I – βnV )sn

)
– xn

= ( – αn)
[(

βnθn + (I – βnV )sn
)
– xn

]
= ( – αn)[βnθn – βnVsn + sn – xn]. ()

By (), we have that

〈xn+ – xn,xn – x̄〉
=

〈
( – αn)[βnθn – βnVsn + sn – xn],xn – x̄

〉
= ( – αn)βn〈θn,xn – x̄〉 – ( – αn)βn〈Vsn,xn – x̄〉 + ( – αn)〈sn – xn,xn – x̄〉. ()

By () and (), we have that

‖xn+ – x̄‖ – ‖xn – x̄‖ – ‖xn+ – xn‖

= ( – αn)βn〈θn,xn – x̄〉 – ( – αn)βn〈Vsn,xn – x̄〉
+ ( – αn)

[‖sn – x̄‖ – ‖xn – x̄‖ – ‖sn – xn‖
]
. ()

By () and (), we have that

‖xn+ – x̄‖ – ‖xn – x̄‖ – ‖xn+ – xn‖

≤ ( – αn)βn〈θn,xn – x̄〉 – ( – αn)βn〈Vsn,xn – x̄〉
– ( – αn)‖sn – xn‖. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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By (), we obtain that

‖xn+ – xn‖

≤ ( – αn)
[
βn‖θn –Vsn‖ + ‖sn – xn‖

]
= ( – αn)

[
β
n‖θn –Vsn‖ + ‖sn – xn‖ + βn‖θn –Vsn‖‖sn – xn‖

]
. ()

By () and (), we have that

‖xn+ – x̄‖ – ‖xn – x̄‖

≤ ( – αn)βn〈θn,xn – x̄〉 – ( – αn)βn〈Vsn,xn – x̄〉 – ( – αn)‖sn – xn‖

+ ( – αn)
[
β
n‖θn –Vsn‖ + ‖sn – xn‖ + βn‖θn –Vsn‖‖sn – xn‖

]
≤ ( – αn)βn〈θn,xn – x̄〉 – ( – αn)βn〈Vsn,xn – x̄〉 – ( – αn)αn‖sn – xn‖

+ ( – αn)
[
β
n‖θn –Vsn‖ + βn‖θn –Vsn‖‖sn – xn‖

]
.

Hence, we obtain that

‖xn+ – x̄‖ – ‖xn – x̄‖ + ( – αn)αn‖sn – xn‖

≤ ( – αn)βn〈θn,xn – x̄〉 – ( – αn)βn〈Vsn,xn – x̄〉
+ ( – αn)

[
β
n‖θn –Vsn‖ + βn‖θn –Vsn‖‖sn – xn‖

]
. ()

We will divide the proof into two cases as follows.
Case : There exists a natural number N such that ‖xn+ – x̄‖ ≤ ‖xn – x̄‖ for each n≥N .

So, limn→∞ ‖xn – x̄‖ exists. Hence, it follows from (), (i), and (ii) that

lim
n→∞‖sn – xn‖ = . ()

By (), (), (i), and (ii), we have that

lim
n→∞‖xn+ – xn‖ = . ()

We also have that

‖zn – sn‖ ≤ ∥∥βnθn + ( – βnV )sn – sn
∥∥ ≤ βn‖θn –Vsn‖. ()

By (), (iv), and (ii), we have that

lim
n→∞‖zn – sn‖ = . ()

By () and (), we have that

lim
n→∞‖zn – xn‖ = . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/283
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By () and (), we have that

‖sn – x̄‖ ≤ ‖un – x̄‖ ≤ ‖xn – x̄‖ – rn(κ – rn)‖Bun – Bx̄‖.

Therefore,

rn(κ – rn)‖Bun – Bx̄‖ ≤ ‖xn – x̄‖ – ‖sn – x̄‖

≤ ‖xn – sn‖
(‖sn – x̄‖ + ‖xn – x̄‖). ()

Thus, by (), (), and (iii), we have that

lim
n→∞‖Bun – Bx̄‖ = . ()

Since Trn is firmly nonexpansive, we have from () that

‖un – x̄‖

= 
∥∥Trn (I – rnB)xn – Trn (I – rnB)x̄

∥∥

≤ 
〈
un – x̄, (I – rnB)xn – (I – rnB)x̄

〉
≤ 〈un – x̄,xn – x̄〉 – rn〈un – x̄,Bxn – Bx̄〉
≤ ‖un – x̄‖ + ‖xn – x̄‖ – ‖un – xn‖

– rn〈xn – x̄,Bxn – Bx̄〉 – rn〈un – xn,Bxn – Bx̄〉
≤ ‖un – x̄‖ + ‖xn – x̄‖ – ‖un – xn‖

– λnκ‖Bxn – Bx̄‖ + rn〈xn – un,Bxn – Bx̄〉
≤ ‖un – x̄‖ + ‖xn – x̄‖ – ‖un – xn‖ + rn‖xn – un‖‖Bxn – Bx̄‖. ()

By () and (), we have that

‖sn – x̄‖ ≤ ‖un – x̄‖

≤ ‖xn – x̄‖ – ‖un – xn‖ + rn‖xn – un‖‖Bxn – Bx̄‖.

Therefore,

‖un – xn‖

≤ ‖xn – x̄‖ – ‖sn – x̄‖ + rn‖xn – un‖‖Bxn – Bx̄‖
≤ ‖xn – sn‖

(‖xn – x̄‖ + ‖sn – x̄‖) + rn‖xn – un‖‖Bxn – Bx̄‖. ()

Thus, by (), (), and (), we have that

lim
n→∞‖un – xn‖ = . ()

By () and (), we have that

‖sn – x̄‖ ≤ ‖yn – x̄‖ ≤ ‖xn – x̄‖ – λn(κ – λn)‖Bun – Bx̄‖.
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Therefore,

λn(κ – λn)‖Bun – Bx̄‖ ≤ ‖xn – x̄‖ – ‖sn – x̄‖

≤ ‖xn – sn‖
(‖sn – x̄‖ + ‖xn – x̄‖). ()

Thus, by (), (), and (iii), we have that

lim
n→∞‖Bun – Bx̄‖ = . ()

Since Jλn is firmly nonexpansive, we have from () that

‖yn – x̄‖

= 
∥∥Jλn (I – λnB)un – Jλn (I – λnB)x̄

∥∥

≤ 
〈
yn – x̄, (I – λnB)un – (I – λnB)x̄

〉
≤ 〈yn – x̄,un – x̄〉 – λn

〈
yn – x̄,Bun – Bx̄

〉
≤ ‖yn – x̄‖ + ‖un – x̄‖ – ‖yn – un‖

– λn〈un – x̄,Bun – Bx̄〉 – λn〈yn – un,Bun – Bx̄〉
≤ ‖yn – x̄‖ + ‖un – x̄‖ – ‖yn – un‖

– λnκ‖Bun – Bx̄‖ + λn〈un – yn,Bun – Bx̄〉
≤ ‖yn – x̄‖ + ‖un – x̄‖ – ‖yn – un‖ + λn‖un – yn‖‖Bun – Bx̄‖. ()

By () and (), we have that

‖sn – x̄‖ ≤ ‖yn – x̄‖

≤ ‖un – x̄‖ – ‖yn – un‖ + λn‖un – yn‖‖Bun – Bx̄‖
≤ ‖xn – x̄‖ – ‖yn – un‖ + λn‖un – yn‖‖Bun – Bx̄‖.

Therefore,

‖yn – un‖

≤ ‖xn – x̄‖ – ‖sn – x̄‖ + λn‖un – yn‖‖Bun – Bx̄‖
≤ ‖xn – sn‖

(‖xn – x̄‖ + ‖sn – x̄‖) + λn‖un – yn‖‖Bun – Bx̄‖. ()

Thus, by (), (), and (), we have that

lim
n→∞‖yn – un‖ = . ()

Since Fix(T) ∩ (B + G)– ∩ (B + G)– is a nonempty closed convex subset of H , by
Lemma ., we can take x̄ ∈ Fix(T)∩ (B +G)–∩ (B +G)– such that

x̄ = PFix(T)∩(B+G)–∩(B+G)–(x̄ –Vx̄ + θ ).
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This point x̄ is also a unique solution of the hierarchical variational inequality

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ (B +G)–∩ (B +G)–. ()

We want to show that

lim sup
n→∞

〈Vx̄ – θ , zn – x̄〉 ≥ .

Without loss of generality, there exists a subsequence {znk } of {zn} such that znk ⇀ w for
some w ∈H and

lim sup
n→∞

〈Vx̄ – θ , zn – x̄〉 = lim
k→∞

〈
(Vx̄ – θ , znk – x̄

〉
. ()

By () and (), we have that

lim
n→∞‖un – zn‖ = 

and unk ⇀ w. On the other hand, since  < a ≤ λn ≤ b < κ, there exists a subsequence
{λnkj

} of {λnk } such that {λnkj
} converges to a number λ̄ ∈ [a,b]. By () and Lemma .,

we have that

∥∥unkj – Jλ̄(I – λ̄B)unkj
∥∥

≤ ∥∥unkj – Jλnkj (I – λnkj
B)unkj

∥∥ +
∥∥Jλnkj (I – λ̄B)unkj – Jλ̄(I – λ̄B)unkj

∥∥
+

∥∥Jλnkj (I – λnkj
B)unkj – Jλnkj (I – λ̄B)unkj

∥∥
≤ ‖unkj – ynkj ‖ + |λnkj

– λ̄|‖Bunkj ‖

+
|λnkj

– λ̄|
λ̄

∥∥Jλ̄(I – λ̄B)unkj – (I – λ̄B)unkj
∥∥ → . ()

By (), unkj ⇀ w, Lemma . and ., w ∈ Fix(Jλ̄(I – λ̄B)) = (B + G)–. Without loss
of generality and  < a ≤ rn ≤ b < κ, there exists a subsequence {rnkj } of {rnk } such that
{rnkj } converges to a number r̄ ∈ [a,b]. By () and Lemma ., we have that

∥∥xnkj – Tr̄(I – r̄B)xnkj
∥∥

≤ ∥∥xnkj – Trnkj
(I – rnkj B)xnkj

∥∥ +
∥∥Trnkj

(I – rnkj B)xnkj – Trnkj
(I – r̄B)xnkj

∥∥
+

∥∥Trnkj
(I – r̄B)unkj – Tr̄(I – r̄B)unkj

∥∥
≤ ‖xnkj – unkj ‖ + |rnkj – r̄|‖Bunkj ‖

+
|rnkj – r̄|

r̄
∥∥Tr̄(I – r̄B)unkj – (I – r̄B)unkj

∥∥ → . ()
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By (), xnkj ⇀ w, Lemma ., we have that w ∈ Fix(Tr̄(I – r̄B)) = (B +G)–. From (),
(), and (), we have that

‖Tyn – yn‖ = ‖sn – yn‖ ≤ ‖sn – xn‖ + ‖xn – un‖ + ‖un – yn‖ → .

Since Fix(T) = Fix(T̂), we have from ‖Tynj – ynj‖ →  and ynkj ⇀ w that w ∈ F(T). Hence,
w ∈ Fix(T)∩ (B +G)–∩ (B +G)–. So, we have from () and () that

lim sup
n→∞

〈
Vx̄ – θ , zn – x̄

〉
= lim

k→∞
〈
Vx̄ – θ , znk – x̄

〉
= 〈Vx̄ – θ ,w – x̄〉 ≥ . ()

Let zn = βnθn + ( – βnV )sn. Then it follows from () that

‖zn – x̄‖ =
∥∥βnθn + ( – βnV )sn – x̄

∥∥

=
∥∥βn(θn –Vx̄) + ( – βnV )(sn – x̄)

∥∥

≤ ∥∥( – βnV )(sn – x̄)
∥∥ + βn〈θn –Vx̄, zn – x̄〉

≤ ( – βnτ )‖xn – x̄‖ + βn〈θn –Vx̄, zn – x̄〉. ()

Thus, we obtain from the definition of xn and () that

‖xn+ – x̄‖

=
∥∥αnxn + ( – αn)

(
βnθn + ( – βnV )sn

)
– x̄

∥∥

≤ αn‖xn – x̄‖ + ( – αn)
∥∥(

βnθn + ( – βnV )sn
)
– x̄

∥∥

≤ αn‖xn – x̄‖ + ( – αn)
(
( – βnτ )‖xn – x̄‖ + βn〈θn –Vx̄, zn – x̄〉

)
≤ [

αn + ( – αn)( – βnτ )
]‖xn – x̄‖ + βn( – αn)〈θn –Vx̄, zn – x̄〉

≤ [
 – ( – αn)

(
βnτ – (βnτ )

)]‖xn – x̄‖ + βn( – αn)〈θn –Vx̄, zn – x̄〉
≤ [

 – ( – αn)βnτ
]‖xn – x̄‖ + ( – αn)(βnτ )‖xn – x̄‖

+ βn( – αn)〈θn – θ , zn – x̄〉 + βn( – αn)〈θ –Vx̄, zn – x̄〉

≤ [
 – ( – αn)βnτ

]‖xn – x̄‖ + ( – αn)βnτ

(
βnτ‖xn – x̄‖



+
〈θn – θ , zn – x̄〉

τ
+

〈θ –Vx̄, zn – x̄〉
τ

)
. ()

By (), (), assumptions, and Lemma ., we know that limn→∞ xn = x̄, where

x̄ = PFix(T)∩(B+G)–∩(B+G)–(x̄ –Vx̄ + θ ).

Case : Suppose that there exists {ni} of {n} such that ‖xni – x̄‖ ≤ ‖xni+ – x̄‖ for all i ∈N.
By Lemma ., there exists a nondecreasing sequence {mj} in N such that mj → ∞ and

‖xmj – x̄‖ ≤ ‖xmj+ – x̄‖ and ‖xj – x̄‖ ≤ ‖xmj+ – x̄‖. ()
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Hence, it follows from () and () that

( – αmj )αmj‖smj – xmj‖

≤ ( – αmj )βmj〈θmj ,xmj – x̄〉 – ( – αmj )βmj〈Vsmj ,xmj – x̄〉
+ ( – αmj )

[β
mj

‖θmj –Vsmj‖ + βmj‖θmj –Vsmj‖‖smj – xmj‖
]

()

for each j ∈N. Hence, it follows from (), (i), and (ii) that

lim
j→∞‖smj – xmj‖ = . ()

We want to show that

lim sup
j→∞

〈Vx̄ – θ , zmj – x̄〉 ≥ .

Without loss of generality, there exists a subsequence {zmjk
} of {zmj} such that zmjk

⇀ w
for some w ∈H and

lim sup
j→∞

〈Vx̄ – θ , zmj – x̄〉 = lim
k→∞

〈Vx̄ – θ , zmjk
– x̄〉. ()

With the similar argument as in the proof of Case , we have w ∈ Fix(T) ∩ (B +G)– ∩
(B +G)–. So, we have from () and () that

lim sup
j→∞

〈Vx̄ – θ , zmj – x̄〉 = lim
k→∞

〈Vx̄ – θ , zmjk
– x̄〉 = 〈Vx̄ – θ ,w – x̄〉 ≥ . ()

With the similar argument as in the proof of Case , we have

‖xmj+ – x̄‖

≤ [
 – ( – αmj )βmjτ

]‖xmj – x̄‖ + ( – αmj )(βmjτ )
‖xmj – x̄‖

+ βmj ( – αmj )〈θn – θ , zmj – x̄〉 + βmj ( – αmj )〈θ –Vx̄, zmj – x̄〉. ()

From ‖xmj – x̄‖ ≤ ‖xmj+ – x̄‖, we have that

( – αmj )βmjτ‖xmj – x̄‖

≤ ( – αmj )(βmjτ )
‖xmj – x̄‖ + βmj ( – αmj )〈θn – θ , zmj – x̄〉

+ βmj ( – αmj )〈θ –Vx̄, zmj – x̄〉. ()

Since ( – αmj )βmj > , we have that

τ‖xmj – x̄‖ ≤ βmjτ‖xmj – x̄‖ + 〈θn – θ , zmj – x̄〉 + 〈θ –Vx̄, zmj – x̄〉. ()

By (), (), and assumptions, we know that

lim
j→∞‖xmj – x̄‖ = .
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By (), (), and assumptions, we know that

lim
j→∞‖xmj+ – xmj‖ = .

Thus, we have that

lim
j→∞‖xmj+ – x̄‖ = . ()

By () and (), we have that

lim
j→∞‖xj – x̄‖ ≤ lim

j→∞‖xmj+ – x̄‖ = .

Therefore, the proof is completed. �

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H and H, re-
spectively. Let I denote the identy mapping on H and on H. Let Gi be a maximal mono-
tone mapping on H such that the domain of Gi is included in C for each i = , . Let
Jλ = (I +λG)– and Tr = (I + rG)– for each λ >  and r > . LetAi :H →H be a bounded
linear operator, and letA∗

i be the adjoint ofAi for each i = , . Now, we recall the following
multiple sets split feasibility problem:

(MSFPFF) Find x̄ ∈ H such that x̄ ∈ Fix(Jλn ) ∩ Fix(Trn ), Ax̄ ∈ Fix(F), and Ax̄ ∈ Fix(F)
for each n ∈N.

In order to study the convergence theorems for the solution set of multiple sets split
feasibility problem (MSFPFF), we must give an essential result in this paper.

Theorem . Given any x̄ ∈H.
(i) If x̄ is a solution of (MSFPFF), then

Jλn (I – ρnA∗
 (I – F)A)Trn (I – σnA∗

(I – F)A)x̄ = x̄ for each n ∈N.
(ii) Suppose that Jλn (I – ρnA∗

 (I – F)A)Trn (I – σnA∗
(I – F)A)x̄ = x̄ with

 < ρn < 
‖A‖+ ,  < σn < 

‖A‖+ for each n ∈N and the solution set of (MSFPFF) is
nonempty. Then x̄ is a solution of (MSFPFF).

Proof (i) Suppose that x̄ ∈H is a solution of (MSFPFF). Then x̄ ∈ Fix(Jλn )∩Fix(Trn ),Ax̄ ∈
Fix(F), and Ax̄ ∈ Fix(F) for each n ∈N. It is easy to see that

Jλn
(
I – ρnA∗

 (I – F)A
)
Trn

(
I – σnA∗

(I – F)A
)
x̄ = x̄

for each n ∈ N.
(ii) Since the solution set of (MSFPFF) is nonempty, there exists w̄ ∈ H such that w̄ ∈

Fix(Jλn )∩ Fix(Trn ), Aw̄ ∈ Fix(F), and Aw̄ ∈ Fix(F). So,

w̄ ∈ Fix(Jλn )∩ Fix
(
I – ρnA∗

 (I – F)A
) ∩ Fix(Trn )∩ Fix

(
I – σnA∗

(I – F)A
) 
= ∅. ()

By Lemma ., we have that

A∗
 (I – F)A is


‖A‖ -ism. ()
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For each n ∈N, by (),  < ρn < 
‖A‖+ , and Lemma .(ii), (iii), we know that

I – ρnA∗
 (I – F)A is averaged. ()

By Lemma . again, we have that

A∗
(I – F)A is


‖A‖ -ism. ()

For each n ∈N, by (),  < σn < 
‖A‖+ , and Lemma .(ii), (iii), we know that

I – σnA∗
(I – F)A is averaged. ()

On the other hand, for each n ∈ N, since Jλn , and Trn are firmly nonexpansive mappings,
it is easy to see that

Jλn and Trn are


averaged. ()

Hence, by (), (), (), and Lemma .(v), we have that for each n ∈N,

x̄ ∈ Fix
(
Jλn

(
I – ρA∗

 (I – F)A
)
Trn

(
I – σA∗

(I – F)A
))

= Fix(Jλn )∩ Fix
(
I – ρA∗

 (I – F)A
) ∩ Fix(Trn )∩ Fix

(
I – σA∗

(I – F)A
)
.

This implies that for each n ∈N,

x̄ = Jλn
(
I – ρA∗

 (I – F)A
)
x̄ and x̄ = Trn

(
I – σA∗

(I – F)A
)
x̄.

By Lemma ., for each n ∈N,

〈(
x̄ – ρA∗

 (I – F)Ax̄
)
– x̄, x̄ –w

〉 ≥  for each w ∈ Fix(Jλn ),〈(
x̄ – ρA∗

(I – F)Ax̄
)
– x̄, x̄ –w

〉 ≥  for each w ∈ Fix(Trn ).

That is, for each n ∈N,

〈
A∗
 (I – F)Ax̄, x̄ –w

〉 ≤  for each w ∈ Fix(Jλn ),〈
A∗
(I – F)Ax̄, x̄ –w

〉 ≤  for each w ∈ Fix(Trn ).
()

For each n ∈N, by () and the fact that A∗
i is the adjoint of Ai for each i = , ,

〈Ax̄ – FAx̄,Ax̄ –Aw〉 ≤  for each w ∈ Fix(Jλn ),

〈Ax̄ – FAx̄,Ax̄ –Aw〉 ≤  for each w ∈ Fix(Trn ).
()

On the other hand, by Lemma . again,

〈Ax̄ – FAx̄, v – FAx̄〉 ≤  for each v ∈ Fix(F),

〈Ax̄ – FAx̄, v – FAx̄〉 ≤  for each v ∈ Fix(F).
()
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For each n ∈N, by () and (),

〈Ax̄ – FAx̄, v – FAx̄ +Ax̄ –Aw〉 ≤ ,

〈Ax̄ – FAx̄, v – FAx̄ +Ax̄ –Aw〉 ≤ 
()

for each w ∈ Fix(Jλn )∩ Fix(Trn ), v ∈ Fix(F), and v ∈ Fix(F).
That is, for each n ∈N,

‖Ax̄ – FAx̄‖ ≤ 〈Ax̄ – FAx̄,Aw – v〉,
‖Ax̄ – FAx̄‖ ≤ 〈Ax̄ – FAx̄,Aw – v〉

()

for each w ∈ Fix(Jλn )∩ Fix(Trn ), v ∈ Fix(F), and v ∈ Fix(F).
Since w̄ is a solution of multiple sets split feasibility problem (MSFPFF), we know that

w̄ ∈ Fix(Jλn )∩Fix(Trn ),Aw̄ ∈ Fix(F), andAw̄ ∈ Fix(F) for each n ∈ N. So, it follows from
() that Ax̄ = Fix(F) and Ax̄ = Fix(F). Furthermore, x̄ ∈ Fix(Jλn ) and x̄ ∈ Fix(Trn ) for
each n ∈N. Therefore, x̄ is a solution of (MSFPFF). �

Applying Theorem . and Theorem ., we can find the solution of the following hier-
archical problem.

Theorem . Let T : C → H be a quasi-nonexpansive mapping with Fix(T) = Fix(T̂).
Let C and Q be two nonempty closed convex subsets of real Hilbert spaces H and H,
respectively. For each i = , , let Fi be a firmly nonexpansive mapping of H into H, let
Ai : H → H be a bounded linear operator, and let A∗

i be the adjoint of Ai. Suppose that
the solution set of (MSFPFF) is  and Fix(T)∩  
= ∅. Let {xn} ⊂H be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Jλn (I – λnA∗
 (I – F)A)Trn (I – rnA∗

(I – F)A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ , and  < a≤ rn ≤ b < 

‖A‖+ ;
(iv) limn→∞ θn = θ for some θ ∈ H .

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩(x̄ –Vx̄ + θ ). This point x̄ is also a unique solution
of the following hierarchical problem: Find x̄ ∈ Fix(T)∩  such that

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ .

Proof Since Fi is firmly nonexpansive, it follows from Lemma . that we have that
A∗
i (I – Fi)Ai : C → H is 

‖Ai‖ -ism for each i = , . For each i = , , put Bi = A∗
i (I – Fi)Ai

in Theorem .. Then algorithm (.) in Theorem . follows immediately from algo-
rithm (.) in Theorem ..
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Since the solution set of (MSFPFF) is nonempty, by (), we have for each n ∈N

w̄ ∈ Fix
(
Jλn

((
I – λnA∗

 (I – F)A
))) ∩ Fix

(
Trn

(
I – rnA∗

(I – F)A
)) 
= ∅. ()

This implies that for each n ∈N,

w̄ ∈ Fix
(
Jλn (I – λnB)

) ∩ Fix
(
Trn (I – rnB)

) 
= ∅. ()

So,

w̄ ∈ (B +G)–∩ (B +G)– 
= ∅. ()

It follows from Theorem . that limn→∞ xn = x̄, where

x̄ = PFix(T)∩(B+G)–∩(B+G)–(x̄ –Vx̄ + θ ).

This point x̄ is also a unique solution of the following hierarchical variational inequality:

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ (B +G)–∩ (B +G)–,

that is, for each n ∈N,

x̄ = Jλn (I – λnB)x̄ = Jλn
(
I – λnA∗

 (I – F)A
)
x̄ ()

and

x̄ = Trn (I – rnB)x̄ = Trn
(
I – rnA∗

(I – F)A
)
x̄. ()

This implies that for each n ∈N,

x̄ = Jλn
(
I – λnA∗

 (I – F)A
)
Trn

(
I – rnA∗

(I – F)A
)
x̄. ()

By assumptions, (), and Theorem .(ii), we know that x̄ is a solution of (MSFPFF). Fur-
thermore, x̄ ∈ Fix(T). Therefore, x̄ ∈ Fix(T) ∩ . By the same argument as (), (), and
(), we also have

〈Vx̄ – θ ,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ .

Therefore, the proof is completed. �

Remark . In Theorem ., we establish a strong convergence theorem for hierarchical
problem (MSFPFF) without calculating the inverse of the operator we consider.
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4 Applications to mathematical programming withmultiple sets split
feasibility constraints

By Theorem ., we obtain mathematical programming with fixed point andmultiple sets
split feasibility constraints.

Theorem . Let T : C → H be a quasi-nonexpansive mapping with Fix(T) = Fix(T̂). In
Theorem ., let h : C →R be a convexGâteaux differential function with Gâteaux deriva-
tive V . Let

 =
{
q ∈H : q ∈ Fix(Jλn )∩ Fix(Trn ),Aq ∈ Fix(F),Aq ∈ Fix(F),n ∈ N

}
.

Then limn→∞ xn = x̄,where x̄ = PFix(T)∩(x̄–Vx̄).This point x̄ is also a unique solution of the
mathematical programming with fixed point and multiple sets split feasibility constraints:
minq∈Fix(T)∩ h(q).

Proof Put θ =  in Theorem .. Then, by Theorem ., there exists x̄ ∈ Fix(T) ∩  such
that

〈Vx̄,q – x̄〉 ≥ , ∀q ∈ F(T)∩ . ()

Since h : C → R is a convex Gâteaux differential function with Gâteaux derivative V , we
obtain that

〈Vx̄, y – x̄〉 = lim
t→

h(x̄ + t(y – x̄)) – h(x̄)
t

= lim
t→

h(( – t)x̄ + ty) – h(x̄)
t

≤ lim
t→

( – t)h(x̄) + th(y) – h(x̄)
t

= h(y) – h(x̄) ()

for all y ∈ C. By () and (), it is easy to see that h(x̄) ≤ h(q) for all q ∈ Fix(T)∩ . �

We can apply Theorem . to study themathematical programming of a quadratic func-
tion with fixed point and multiple sets split feasibility constraints.

Theorem . Let T : C → H be a quasi-nonexpansive mapping with Fix(T) = Fix(T̂). In
Theorem ., let B : C → C be a strongly positive self-adjoint bounded linear operator and
a ∈H . Let

 =
{
q ∈H : q ∈ Fix(Jλn )∩ Fix(Trn ),Aq ∈ Fix(F),Aq ∈ Fix(F),n ∈ N

}
.

Let {xn} ⊂H be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Jλn (I – λnA∗
 (I – F)A)Trn (I – rnA∗

(I – F)A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + (sn – βn(B(sn) – a)))

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
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(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ , and  < a≤ rn ≤ b < 

‖A‖+ ;
(iv) limn→∞ θn = .

Then limn→∞ xn = x̄. This point x̄ is also a unique solution of the mathematical program-
ming of a quadratic function with fixed point and multiple sets split feasibility constraints:
minq∈Fix(T)∩


 〈Bq,q〉 – 〈a,q〉.

Proof Let h : C →R be defined by

h(x) =


〈Bx,x〉 – 〈a,x〉.

It is easy to see that h is a convex function. Since B is a strongly positive self-adjoint oper-
ator, there exists η >  such that 〈Bx,x〉 ≥ η‖x‖. This implies that

〈Bx – By,x – y〉 = 〈
B(x – y),x – y

〉 ≥ η‖x – y‖. ()

Therefore,

〈Bx,x〉 + 〈By, y〉 ≥ 〈Bx, y〉 + 〈By,x〉. ()

From this we can show that h is a convex function. Indeed, for any x, y ∈ C and any λ ∈
[, ]. It follows from () that

h
(
λx + ( – λ)y

)

=


〈
B
(
λx + ( – λ)y

)
,λx + ( – λ)y

〉
–

〈
a,λx + ( – λ)y

〉

=


〈
λBx + ( – λ)By,λx + ( – λ)y

〉
–

〈
a,λx + ( – λ)y

〉

=


λ〈Bx,x〉 + 


λ( – λ)〈Bx, y〉 + 


λ( – λ)〈By,x〉 + 


( – λ)〈By, y〉

– λ〈a,x〉 – ( – λ)〈a, y〉

≤ 

λ〈Bx,x〉 + 


λ( – λ)

(〈Bx,x〉 + 〈By, y〉) + 

( – λ)〈By, y〉

– λ〈a,x〉 – ( – λ)〈a, y〉

≤ 

λ〈Bx,x〉 + 


( – λ)〈By, y〉 – λ〈a,x〉 – ( – λ)〈a, y〉

≤ λh(x) + ( – λ)h(y).

Let V (x) = B(x) – a for all x ∈ C. It is easy to see that V is the Gâteaux derivative of h.
Indeed, for any u ∈ H , x ∈ C and any t ∈ [, ]. Since B is a self-adjoint bounded linear
operator, we see that for each u ∈H ,

h′(x)(u)

= lim
t→

h(x + tu) – h(x)
t
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= lim
t→


 〈B(x + tu),x + tu〉 – 〈a,x + tu〉 – 

 〈Bx,x〉 + 〈a,x〉
t

= lim
t→


 〈tBu + Bx, tu + x〉 – 〈a, tu + x〉 – 

 〈Bx,x〉 + 〈a,x〉
t

= lim
t→


 [t

〈Bu,u〉 + t〈Bu,x〉 + t〈Bx,u〉 + 〈Bx,x〉] – t〈a,u〉 – 〈a,x〉 – 
 〈Bx,x〉 + 〈a,x〉

t

= lim
t→



[
t〈Bu,u〉 + 〈Bu,x〉 + 〈Bx,u〉] – 〈a,u〉

= 〈Bx,u〉 – 〈a,u〉 = 〈Bx – a,u〉 = 〈Vx,u〉.

Therefore, V is the Gâteaux derivative of h. Since B is a strongly positive bounded linear
operator in H , we have that

‖Vx –Vy‖ = ‖Bx – a – By + a‖ = ‖Bx – By‖ ≤ ‖B‖‖x – y‖.

This implies that V is Lipschitz, and we have that

〈Vx –Vy,x – y〉 = 〈Bx – a – By + a,x – y〉 = 〈
B(x – y),x – y

〉 ≥ η‖x – y‖.

This implies that V is strongly monotone. Therefore, Theorem . follows from Theo-
rem .. �

Theorem . Let T : C → H be a quasi-nonexpansive mapping with Fix(T) = Fix(T̂).
In Theorem ., let h : C → R be a convex Gâteaux differential function with Gâteaux
derivative V . Let �i be a maximal monotone mapping on H such that the domain of �i is
included in Q for each i = , , where Q is a closed convex subset of H. Let

 =
{
q ∈H : q ∈G–

 ∩G–
 ,Aq ∈ �–

 ,Aq ∈ �–
 

}
.

Then limn→∞ xn = x̄. This point x̄ is also a unique solution of the mathematical
programming with fixed point and multiple sets split feasibility problem constraints:
minq∈Fix(T)∩ h(q).

Proof Let Jλ = (I + λG)–, Tr = (I + rG)–, F = (I + λ�)–, and F = (I + r�)– for each
λ >  and r >  in Theorem .. Then Fix(Jλ) = G–

 , Fix(Tr) = G–
 , Fix(F) = �–

 , and
Fix(F) = �–

 . Therefore, Theorem . follows from Theorem .. �

Takahashi et al. [] showed the following result.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H , and let
g : C ×C →R be a bifunction satisfying conditions (A)-(A). Define Ag as follows:

(L.) Agx =

⎧⎨
⎩

{z ∈H : g(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then EP(g) = A–
g  and Ag is a maximal monotone operator with the domain of Ag ⊂ C.

Furthermore, for any x ∈ H and r > , the resolvent Tg
r of g coincides with the resolvent of

Ag , i.e., T
g
r x = (I + rAg)–x.
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Now, we consider the following multiple sets split equilibrium problem:
(MSEP) Find x̄ ∈H such that x̄ ∈ EP(g)∩ EP(g), Ax̄ ∈ EP(f) and Ax̄ ∈ EP(f).
Applying Theorems . and ., Lemma ., we can find the minimum norm solution

of (MSEP) and mathematical programming with fixed point and multiple sets split equi-
librium constraints.

Theorem . Let T : C → H be a quasi-nonexpansive mapping with Fix(T) = Fix(T̂).
Let C and Q be nonempty closed convex subsets of Hilbert spaces H and H, respectively.
Let g : C × C → R, g : C × C → R, f : Q × Q → R, and f : Q × Q → R be bifunctions
satisfying conditions (A)-(A), and let Tg

λn , T
g
rn , T

f
λn , T

f
rn be the resolvent of g, g, f, f,

respectively, for λn > , rn > . For i = , , let Ai : H → H be a bounded linear operator,
and let A∗

i be the adjoint of Ai. Let h : C →R be a convexGâteaux differential function with
Gâteaux derivative V . Suppose that  is the solution set of (MSEP) and Fix(T) ∩  
= ∅.
Let {xn} ⊂H be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Tg
λn (I – λnA∗

 (I – Tf
λn )A)T

g
rn (I – rnA∗

(I – Tf
rn )A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ , and  < a≤ rn ≤ b < 

‖A‖+ ;
(iv) limn→∞ θn = .

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩(x̄ – Vx̄). This point x̄ is also a unique solution of
the mathematical programming with fixed point and multiple sets split equilibrium con-
straints: minq∈Fix(T)∩ h(q).

Proof Define Ag as (L.). By Lemma ., we know that EP(g) = A–
g  and Ag is a maximal

monotone operator with the domain of Ag ⊂ C. Furthermore, for any x ∈ H and r > , the
resolventTg

r of g coincideswith the resolvent ofAg , i.e.,T
g
r x = (I+rAg)–x. ByTheorem.,

Tf
λn , T

f
rn are firmly nonexpansive mappings.

PutG = Ag ,G = Ag , F = Tf
λn and F = Tf

rn in Theorem.. Then Jλnx = (I+λnAg )–x =
Tg

λnx, Trnx = (I + rnAg )–x = Tg
rn x. By Theorem ., we have that Fix(Jλn ) = Fix(Tg

λn ) =
EP(g), Fix(Trn ) = Fix(Tg

rn ) = EP(g), Fix(F) = Fix(Tf
λn ) = EP(f) and Fix(F) = Fix(Tf

rn ) =
EP(f). Therefore, the solution set of (MSEP) coincides with the solution set of (MSFPFF).
Therefore, by Theorem ., we get the result. �

The following unique minimum norm common solution of a fixed point problem and
multiple sets split equilibrium problem is a special case of Theorem ..

Corollary . Let C and Q be nonempty closed convex subsets of Hilbert spaces H and
H, respectively. Let g : C × C → R, g : C × C → R, f :Q×Q → R, and f :Q×Q → R

be bifunctions satisfying conditions (A)-(A), and let Tg
λn , T

g
rn , T

f
λn , T

f
rn be the resolvent of

g, g, f, f, respectively, for λn > , rn > . For i = , , let Ai :H →H be a bounded linear
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operator, and let A∗
i be the adjoint of Ai. Suppose that  is the solution set of (MSEP) and

Fix(T)∩  
= ∅. Let {xn} ⊂H be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Tg
λn (I – λnA∗

 (I – Tf
λn )A)T

g
rn (I – rnA∗

(I – Tf
rn )A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βn)sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ , and  < a≤ rn ≤ b < 

‖A‖+ ;
(iv) limn→∞ θn = .
Then limn→∞ xn = x̄, where x̄ = PFix(T)∩. This point x̄ is also a unique minimum norm

solution of the fixed point andmultiple sets split equilibrium constraints:minq∈Fix(T)∩ ‖q‖.

Proof Let h(x) = 
‖x‖, and let V be the Gâteaux derivative of h. It is easy to see V (x) = x

for each x ∈H . Then Corollary . follows immediately from Theorem .. �

Now, we consider the following split equilibrium problem:
(SEP) Find x̄ ∈ C such that x̄ ∈ EP(g) and Ax̄ ∈ EP(f).
Applying Theorems . and ., Lemma ., we can find the unique minimum norm

common solution of fixed point and split equilibriumconstraints and the solution ofmath-
ematical programming with fixed point and split equilibrium constraints.

Theorem. Let C and Q be nonempty closed convex subsets of Hilbert spaces H and H,
respectively. Let g : C × C → R and f : Q × Q → R be bifunctions satisfying conditions
(A)-(A), and let Tg

λn , T
f
λn be the resolvent of g, f, respectively, for λn > , rn > . Let

A :H →H be a bounded linear operator, and let A∗
 be the adjoint of A. Let T : C → C be

a quasi-nonexpansivemapping with F(T) = F(T̂). Let V : C → C be a γ̄ -stronglymonotone
and L-Lipschitzian continuous operator with γ̄ >  and L >  and {θn} ⊆ C. Let h : C → R

be a convex Gâteaux differential function with Gâteaux derivative V . Suppose that  is
the solution set of (SEP) and Fix(T)∩  
= ∅. Let {xn} ⊂H be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Tg
λn (I – λnA∗

 (I – Tf
λn )A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ ;

(iv) limn→∞ θn = .
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Then limn→∞ xn = x̄, where x̄ = PFix(T)∩(x̄ – Vx̄). This point x̄ is also a unique solu-
tion of the mathematical programming with fixed point and split equilibrium constraints:
minq∈Fix(T)∩ h(q).

Proof Define Ag as (L.). By Lemma ., we know that EP(g) = A–
g  and Ag is a maximal

monotone operator with the domain of Ag included in C. Furthermore, for any x ∈ H
and r > , the resolvent Tg

r of g coincides with the resolvent of Ag , i.e., T
g
r x = (I + rAg)–x.

By Theorem ., Tf
λn is a firmly nonexpansive mapping; we also know that the identity

mapping I is a firmly nonexpansive mapping.
Put G = Ag , G = Ag , F = Tf

λn , and F = I in Theorem .. Then Jλnx = (I + λnAg )–x =
Tg

λnx, Trnx = (I + rnAg )–x = Tg
rn x. Let g(x, y) = , ∀x, y ∈ C. Then Trnx = (I + rnAg )–x =

Tg
rn x = PCx. ByTheorem., we have that Fix(Jλn ) = Fix(Tg

λn ) = EP(g), Fix(Trn ) = Fix(PC) =
C, Fix(F) = Fix(Tf

λn ) = EP(f), and Fix(F) = Fix(I) =H. So, we have that the solution set
of (SEP) coincides with the solution set of (MSFPFF). On the other hand, we have that
Tg
rn (I – rnA∗

 (I –F)A)xn = PCxn = xn. Then algorithm (.) in Theorem . follows imme-
diately from algorithm (.) in Theorem .. Therefore, by Theorems . and ., we get
the result. �

Put h(x) = 
‖x‖ for each x ∈ H in Theorem ., we obtain a unique minimum norm

common solution of a fixed point problem and a split equilibrium constraints.

Corollary . Let C and Q be nonempty closed convex subsets of Hilbert spaces H and
H, respectively. Let g : C×C →R and f :Q×Q →R be bifunctions satisfying conditions
(A)-(A), and let Tg

λn , T
f
λn be the resolvent of g, f, respectively, for λn > , rn > . Let

A :H →H be a bounded linear operator, and let A∗
 be the adjoint of A. Let T : C → C be

a quasi-nonexpansivemapping with F(T) = F(T̂). Let V : C → C be a γ̄ -stronglymonotone
and L-Lipschitzian continuous operator with γ̄ >  and L >  and {θn} ⊆ C. Suppose that
the solution set of (SEP) is  and Fix(T)∩  
= ∅. Let {xn} ⊂H be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Tg
λn (I – λnA∗

 (I – Tf
λn )A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ ;

(iv) limn→∞ θn = .
Then limn→∞ xn = x̄,where x̄ = PFix(T)∩(). This point x̄ is also a unique minimum norm

common solution of fixed point and split equilibrium constraints: Find minq∈Fix(T)∩ ‖q‖.

Now, we recall the following split feasibility problem:
(SFP) Find x̄ ∈H such that x̄ ∈ C and Ax̄ ∈Q.
Applying Theorem ., we can find a unique minimum norm common solution with

fixed point and split feasibility constraints, and the solution ofmathematical programming
with fixed point and split feasibility constraints.
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Theorem . Let C and Q be nonempty closed convex subsets of Hilbert spaces H and
H, respectively. Let A :H → H be a bounded linear operator, and let A∗

 be the adjoint
of Ai. Let T : C → C be a quasi-nonexpansive mapping with F(T) = F(T̂). Let V : C →
C be a γ̄ -strongly monotone and L-Lipschitzian continuous operator with γ̄ >  and L >
 and {θn} ⊆ C. Let h : C → R be a convex Gâteaux differential function with Gâteaux
derivative V . Suppose that the solution set of (SFP) is  and Fix(T) ∩  
= ∅. Let {xn} ⊂ H
be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = PC(I – λnA∗
 (I – PQ)A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ ;

(iv) limn→∞ θn = .
Then limn→∞ xn = x̄, where x̄ = PFix(T)∩(x̄ – Vx̄). This point x̄ is also a unique solu-
tion of the mathematical programming with fixed point and split feasibility constraints:
minq∈Fix(T)∩ h(q).

Proof Put g(x, y) = , ∀x, y ∈ C and f(x, y) = , ∀x, y ∈ Q in Theorem .. Then Tg
λn = PC ,

Tf
rn = PQ. Therefore, algorithm (.) in Theorem . follows immediately from algo-

rithm (.) in Theorem ..
By Theorem ., we have that EP(g) = Fix(Tg

λn ) = Fix(PC) = C and EP(f) = Fix(Tf
rn ) =

Fix(PQ) =Q. So, the solution set of (SEP) coincides with the solution set of (SFP). There-
fore, by Theorem ., we get the result. �

For each i = , , let Xi, Yi be two Hilbert spaces, a function F : Xi × Yi → R ∪ {–∞,∞}
is said to be convex-concave iff it is convex in the variable x and concave in the variable y.
To such a function, Rockafellar associated the operator TF , defined by TF = ∂F × ∂(–F),
where ∂ (resp. ∂) stands for the subdifferential of F with respect to the first (resp. the
second) variable. TF is a maximal monotone operator if and only if F is closed and proper
in the Rockafellar sense (see []). Moreover, it is well known that (x̄, ȳ) ∈ H = X × Y

is a saddlepoint of F , namely

F(x̄, y) ≤ F(x̄, ȳ) ≤ F(x, ȳ) for all x ∈ Xi, y ∈ Yi,

if and only if the following monotone variational inclusion holds true, that is, (, ) ∈
TF (x̄, ȳ). If (x̄, ȳ) ∈H = X × Y is a saddlepoint of F , then

inf
x∈X

sup
y∈Y

F(x, y) = F(x̄, ȳ) = sup
y∈Y

inf
x∈X

F(x, y).

For each i = , , let ϕi : X × Y → R ∪ {–∞,∞} and ψi : X × Y → R ∪ {–∞,∞} be
convex-concave functions. Now, we consider the following multiple sets split minimax
problem:
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(MSMMP) Find (x̄, ȳ) ∈H = X × Y such that for each i = , ,

inf
x∈X

sup
y∈Y

ϕi(x, y) = ϕi(x̄, ȳ) = sup
y∈Y

inf
x∈X

ϕi(x, y) and

inf
u∈X

sup
v∈Y

ψi(u, v) =ψi
(
Ai(x̄, ȳ)

)
= sup

v∈Y
inf
u∈X

ψi(u, v).

By Theorem., we can find the uniqueminimumnorm common solution of fixed point
and multiple sets split minimax problems (MSMMP) and the solution of mathematical
programming with fixed point and multiple sets split minimax (MSMMP) constraints.

Theorem . Let T : C ×C → X ×X be a quasi-nonexpansive mapping with Fix(T) =
Fix(T̂). For each i = , , let A : X × Y → X × Y, A : X × Y → X × Y be a bounded
linear operator,A∗

i be the adjoint of Ai. For each i = , , let ϕi : X ×Y →R∪{–∞,∞} and
ψi : X × Y → R ∪ {–∞,∞} be convex-concave functions which are proper and closed in
the Rockafellar sense. Let C,C be closed convex subsets of Hilbert spaces X, Y, and let C =
C ×C be a closed convex subset of H = X ×Y. Let Jλn = (I +λnTϕ )–, Trn = (I + rnTϕ )–,
F = (I +λnTψ )–, F = (I +λnTψ )–. Let h : C ×C →R be a convex Gâteaux differential
function with Gâteaux derivative V . Let V be a γ̄ -strongly monotone and L-Lipschitzian
continuous operator with γ̄ >  and L >  and suppose that the solution of multiple sets
split minimax problem (MSMMP) is  and Fix(T)∩  
= ∅. Let {xn} be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Jλn (I – λnA∗
 (I – F)A)Trn (I – rnA∗

(I – F)A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), {βn} ⊂ (, ), and {rn} ⊂ (,∞). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ , and  < a≤ rn ≤ b < 

‖A‖+ ;
(iv) limn→∞ θn = .

Then limn→∞ xn = x̄, where x̄ = PFix(T)∩(x̄ – Vx̄). This point x̄ is also a unique solution of
the mathematical programming with fixed point and multiple split minimax constraints:
min(q,q)∈Fix(T)∩ h(q,q).

Proof Since Fix(T)∩  
= ∅. There exists (ā, b̄) ∈H = X × Y such that for each i = , ,

inf
x∈X

sup
y∈Y

ϕi(x, y) = ϕi(ā, b̄) = sup
y∈Y

inf
x∈X

ϕi(x, y) and

inf
u∈X

sup
v∈Y

ψi(u, v) = ψi(Ai(ā, b̄) = sup
v∈Y

inf
u∈X

ψi(u, v).
()

That is,

(, ) ∈ Tϕ (ā, b̄)∩ Tϕ (ā, b̄), (, ) ∈ Tψ (ū, v̄) and (, ) ∈ Tψ (ū, v̄),

where (ū, v̄) = A(ā, b̄) and (ū, v̄) = A(ā, b̄). ()
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That is,

(ā, b̄) ∈ T–
ϕ (, )∩ T–

ϕ (, ), (ū, v̄) ∈ T–
ψ (, ), and (ū, v̄) ∈ T–

ψ (, ),

where (ū, v̄) = A(ā, b̄) and (ū, v̄) = A(ā, b̄). ()

That is,

(ā, b̄) ∈ Fix(Jλn )∩ Fix(Trn ), (ū, v̄) ∈ Fix(F), and (ū, v̄) ∈ Fix(F),

where (ū, v̄) = A(ā, b̄) and (ū, v̄) = A(ā, b̄). ()

That is,

(ā, b̄) ∈ Fix(Jλn )∩ Fix(Trn ), A(ā, b̄) ∈ Fix(F), and A(ā, b̄) ∈ Fix(F),

where (ū, v̄) = A(ā, b̄) and (ū, v̄) = A(ā, b̄). ()

This implies that Fix(T)∩  
= ∅, where  is the solution set of (MSFPFF).
By Theorem ., we have that limn→∞ xn = x̄, where x̄ = PFix(T)∩ (x̄ –Vx̄). This point x̄

is also a unique solution of the following hierarchical variational inequality:

〈Vx̄,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ .

By (), (), (), (), and (), and Theorem ., we get the result. �

Now, we recall the following split minimax problem:
(SMMP) Find (x̄, ȳ) ∈H = X × Y such that

inf
x∈X

sup
y∈Y

ϕ(x, y) = ϕ(x̄, ȳ) = sup
y∈Y

inf
x∈X

ϕ(x, y) and

inf
u∈X

sup
v∈Y

ψ(u, v) = ψ
(
A(x̄, ȳ)

)
= sup

v∈Y
inf
u∈X

ψ(u, v).

By Theorem ., we can find the solution of split minimax problem (SMMP) and math-
ematical programming with fixed point and split minimax problem (SMMP) constraints.

Theorem . Let T : C ×C → X ×X be a quasi-nonexpansive mapping with Fix(T) =
Fix(T̂). Let A : X × Y → X × Y be a bounded linear operator. Let A∗

 be the adjoint
of A. Let A, A∗

 , T , V be defined as in Theorem .. Let ϕ, ψ be defined as in Theo-
rem .. Let C, C closed convex subsets of Hilbert spaces X, X, let C = C × C be a
closed convex subset of H = X × Y, and let Jλn = (I + λnTϕ )–, F = (I + λnTψ )–. Let
V : C → C be a γ̄ -strongly monotone and L-Lipschitzian continuous operator with γ̄ > 
and L >  and {θn} ⊆ C. Let h : C → R be a convex Gâteaux differential function with
Gâteaux derivative V . Suppose that the solution of split minimax problem (SMMP) is 
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and Fix(T)∩  
= ∅. Let {xn} be defined by

(.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = Jλn (I – λnA∗
 (I – F)A)xn,

sn = Tyn,

xn+ = αnxn + ( – αn)(βnθn + ( – βnV )sn)

for each n ∈ N, {λn} ⊂ (,∞), {αn} ⊂ (, ), and {βn} ⊂ (, ). Assume that:
(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ βn = , and

∑∞
n= βn =∞;

(iii)  < a ≤ λn ≤ b < 
‖A‖+ ;

(iv) limn→∞ θn = .
Then limn→∞ xn = x̄, where x̄ = PFix(T)∩(x̄ – Vx̄). This point x̄ is also a unique solution of
the mathematical programming with fixed point and split minimax problem constraints:
min(q,q)∈Fix(T)∩ h(q,q).

Proof Define Ag as (L.). By Lemma ., we know that EP(g) = A–
g  and Ag is a maximal

monotone operator with the domain of Ag ⊂ C. Furthermore, for any x ∈ H and r > , the
resolventTg

r of g coincideswith the resolvent ofAg , i.e.,T
g
r x = (I+rAg)–x. ByTheorem.,

Tf
λn is a firmly nonexpansive mapping, we also know that the identity mapping I is a firmly

nonexpansive mapping.
Put G = Ag and F = I in Theorem .. Then Trnx = (I + rnAg )–x = Tg

rn x. Let
g(x, y) = , ∀x, y ∈ C. Then Trnx = (I + rnAg )–x = Tg

rn x = PCx. So, we have that Fix(Trn ) =
Fix(PC) = C and Fix(F) = Fix(I) = H. So, we have that Tg

rn (I – rnA∗
 (I – F)A)xn =

PCxn = xn. Then algorithm (.) in Theorem . follows immediately from algorithm (.)
in Theorem ..
Since Fix(T)∩  
= ∅, there exists (ā, b̄) ∈H = X × Y such that

inf
x∈X

sup
y∈Y

ϕ(x, y) = ϕ(ā, b̄) = sup
y∈Y

inf
x∈X

ϕ(x, y) and

inf
u∈X

sup
v∈Y

ψ(u, v) = ψ
(
A(ā, b̄)

)
= sup

v∈Y
inf
u∈X

ψ(u, v).
()

That is,

(, ) ∈ Tϕ (ā, b̄) and (, ) ∈ Tψ (ū, v̄), where (ū, v̄) = A(ā, b̄). ()

That is,

(ā, b̄) ∈ T–
ϕ (, ) and (ū, v̄) ∈ T–

ψ (, ), where (ū, v̄) = A(ā, b̄). ()

That is,

(ā, b̄) ∈ Fix(Jλn ) and (ū, v̄) ∈ Fix(F), where (ū, v̄) = A(ā, b̄). ()

That is,

(ā, b̄) ∈ Fix(Jλn ) and A(ā, b̄) ∈ Fix(F). ()
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This implies that Fix(T)∩  
= ∅, where  is the solution set of (SFPFF).
By Theorem ., we have that limn→∞ xn = x̄, where x̄ = PFix(T)∩(x̄ – Vx̄). This point x̄

is also a unique solution of the following hierarchical variational inequality:

〈Vx̄,q – x̄〉 ≥ , ∀q ∈ Fix(T)∩ .

By (), (), (), (), and (), and Theorem ., we get the result. �

Now, we recall the following multiple split minimax-equilibrium problem:
(MSMMP) Find (x̄, ȳ) ∈H = X × Y such that for each i = , , (ā, b̄) ∈H = X × Y

such that

inf
x∈X

sup
y∈Y

ϕi(x, y) = ϕi(x̄, ȳ) = sup
y∈Y

inf
x∈X

ϕi(x, y) and

(ū, v̄) = A(x̄, ȳ) ∈ EP(f) and

(ū, v̄) = A(x̄, ȳ) ∈ EP(f).

By the same argument as in Theorems . and ., we can find the solution of multiple
split minimax problem (MSMMEP) andmathematical programming with fixed point and
multiple split minimax problem (MSMMEP) constraints.
By the same argument as in Theorems . and ., we can find the solution of the

split minimax-equilibrium problem (SMMEP) andmathematical programmingwith fixed
point and multiple split minimax-equilibrium problem (SMMEP) constraints.

5 Concluding remark
Applying Theorems .-. and following the same arguments as in Theorem ., we can
study the mathematical programming of a quadratic function with various types of fixed
point and multiple split feasibility constraints.
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