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Abstract

Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and
their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially
renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to
encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless
alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign
selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been
co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group
I introns among the bacteria and phages are also addressed.
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Introduction
Group I introns are structured self-splicing introns that
in part persist in genomes by minimizing the impact of
their insertion into host genes. This is accomplished
by autocatalyzing their removal (splicing) from primary
transcripts, restoring a contiguous and functional host
transcript. The ability of group I introns to self-splice
and therefore act as ribozymes was first demonstrated
by Cech’s group for a group I intron inserted within the
nuclear large subunit rRNA gene in the protozoan
Tetrahymena thermophila [1]. At the same time Michel
[2] recognized that organellar group I introns can fold
into conserved secondary structures at the RNA level.
These observations, when combined with the work by
Cech’s group, led to a better understanding of how
group I intron ribozymes promote their splicing from
transcripts and the ligation of the adjoining exons [3].
Many group I introns can self-splice in vitro without
assistance from protein co-factors, although splicing
in vivo is dependent on, or enhanced by, intron- and/or
host-encoded factors [4].
Group I introns can be divided into two general clas-

ses, those that encode open reading frames (ORFs) and
those that do not. Group I introns with ORFs can func-
tion as mobile genetic elements that can move within
* Correspondence: dedgell@uwo.ca
4Department of Biochemistry, Schulich School of Medicine and Dentistry,
Western University, London, ON N6A 5C1, Canada
Full list of author information is available at the end of the article

© 2014 Hausner et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
and between genomes by inserting into cognate alleles
that lack intron insertions [5]. Here, intron-encoded
ORFs function as so-called homing endonucleases
(HEases) that cleave intronless alleles to promote a
DNA-based recombination-dependent mobility mech-
anism referred to as intron homing [5,6]. The first ex-
perimental connection between DNA endonucleases
and intron mobility stemmed from a detailed analysis
of the mtDNA yeast omega (ω) locus [7-9]. Mating of
two yeast, one with the ω locus and one without the
locus, resulted in a much higher frequency of ω inher-
itance than would be anticipated from random assort-
ment of alleles. Later characterization showed that
intron movement was driven by the homing endonucle-
ase encoded within the intron, generating a double-
stranded break in the intronless allele at a position
close to where the intron is inserted in the intron-
containing allele (the intron insertion site). Similar
findings of high frequency inheritance of introns were
later found from mixed infections of intron-containing
and intron-lacking bacteriophages [10]. It is generally
assumed, yet infrequently shown experimentally, that
these findings may also apply to organelles and to some
degree towards bacterial introns.
The phylogenomic distribution of group I introns is di-

verse, as they are found in bacterial, phage, viral, organellar
genomes and often nuclear rDNA genes of fungi, plants,
and algae (Figure 1). Intriguingly, group I introns are scarce
among early branching metazoan mitochondrial genomes
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

https://core.ac.uk/display/81859616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dedgell@uwo.ca
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Bacteria

Archaea

Euglenoids

Stramenopiles 

Ciliates

Slime molds

Red algae

Green algae

Plants 

Fungi

Animals

Bacteriophage

Chlorella virus

B B B B

N

NC

N

N N N N

N

MC MC MC M M MC N C N M

M M

NM M M M M M NM M NMN N

V

V

N N

Group I intron subclasses

MC MC M M MC N MNC NMC

N

N

A
1

A
2

A
3

B
1

B
2

B
3

B
4

C
1

C
2

C
3

D E E
1

E
2

E
3

B B B

Figure 1 The distribution and diversity of group I introns. A small subunit rDNA cladogram shows the biological host range for each group I
intron subclass in bacteria (B) and viruses (V). Distribution of group I introns in Eukarya as well as the cellular location of each subclass is indicated
(N, nucleus; M, mitochondria; C, chloroplast). This figure was generated based on the available information obtained from the Comparative RNA
Website [http://www.rna.icmb.utexas.edu/] and Group I Intron Sequence and Structure Database [http://www.rna.whu.edu.cn/gissd/index.html].
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[11], and so far have not yet been detected in the Archaea
[12]. Bacterial group I introns are mostly confined to struc-
tural RNA genes (rRNA and tRNA) and are less frequently
inserted within protein-coding genes. Group I introns have
also been reported from a variety of bacteriophages [13-15]
where they tend to be inserted within conserved protein-
coding genes. Other intron and intron-like elements are
encountered within prokaryotic genomes, such as group II
introns, Archaeal tRNA introns, and bacterial rDNA inter-
vening sequences [16-18], however this review will focus on
group I introns.

Review
Core features of group I intron RNAs
Group I introns are highly variable at the primary sequence
level yet possess characteristic conserved secondary and
tertiary structures. The secondary structure of group I
introns consists of paired (P) elements designated P1 to
P10 and single-stranded loop regions (Figure 2). Short,
conserved sequences can be recognized in some intron
sequences, and these are named P, Q, R, and S. These se-
quences participate in forming core helical regions, in
which as shown in Figure 2 the P sequence pairs with Q
(contributing towards the P4 helix) and R pairs with S
(contributing towards the P7 helix) [2,19]. The P1 and the
P10 helices form the substrate-binding domain wherein
the 5′ and 3′ splice sites are juxtaposed to each other
[3,20,21]. In some group I introns, P2 is absent. The active
core of the group I ribozyme is assembled by two helical
domains P4/P6 (P4, P5 and P6), which is considered the
scaffolding domain, and P3/P9 (P3, P7, P8 and P9) that
form the catalytic domain [21-23]. The P3-P7-P9 helix
contains the guanosine-5’-triphosphate (GTP) binding
pocket and the exogenous GTP docks onto the G-binding
site located in P7. Here the 3′–OH of an exogenous GTP
is positioned so that it can attack the 5′-3′ phospodiester
bond at the 5′ splice site located within the P1 fold.
There is considerable evidence that at least one or
more divalent metal ions (preferably Mg+2) are present
at the active site and contribute towards the catalysis
of the group I intron [24,25].
Group I introns have been categorized into five clas-

ses, IA, IB, IC, ID and IE [26-28] based on conserva-
tion of core domains, alternative configurations of
secondary structure elements, the presence of periph-
eral elements and features of the P7:P7′ helix (for ex-
ample, P2, P7.1, P7.2) (see Figure 3). Each class is
further subdivided based on the presence or absence of
specific structural features (that is IA1, IA2 and IA3)
[28]. Overall, 14 subgroups of introns have been recog-
nized to date based on structural features [29], and
over 20,000 group I introns have been identified or
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Figure 2 Secondary structure model for group I introns. Generic secondary structure representations for group I introns highlighting the
locations of intron-encoded proteins. (a) The blue lines indicate regions where ORFs that encode homing endonucleases are entirely located in
loops. (b) In some group I introns, the endonuclease ORFs extend and overlap with intron core sequences. In both panels, stem regions are
represented by solid black lines and single-stranded loop regions are represented by grey curved lines. Exon sequences are represented by black
boxes. The ten pairing regions (P1 to P10) are also indicated. The solid green arrowheads indicate the intron-exon junctions (5′ and 3′ splicing
sites). The positions of the internal guide sequence (IGS) and the so called P, Q, R and S sequence elements are indicated by thick orange lines.
The guanosine-5’-triphosphate (GTP) binding pocket within the P7 helix is indicated by an asterisk.

Hausner et al. Mobile DNA 2014, 5:8 Page 3 of 12
http://www.mobilednajournal.com/content/5/1/8
predicted in a variety of organisms. The secondary
structures of some group I introns and a list of rDNA
intron insertions sites have been compiled in the Compara-
tive RNA Web Site [http://www.rna.ccbb.utexas.edu/] [30],
and the group I intron sequence and structure database
[28]. Among bacterial group I introns so far, representatives
of the following intron subgroups have been noted: IA1,
IA2, IA3, IB4, IC1, IC3, and ID [31-33]. When ORFs are
present, they are usually entirely inserted in loops that
protrude from the core secondary structure (see Figure 2)
where the extra sequence associated with the ORF will not
interfere with folding of the ribozyme core [34]. In
cases where the intron ORF sequence extends into core
intron sequences, expression of the intron ORF is
tightly controlled so as not to interfere with intron
folding and splicing [35,36].

The mechanism of group I intron splicing
Group I introns are removed from precursor RNA by an
autocatalytic RNA splicing event that is mediated by the
intron’s RNA tertiary structure. Base-pairing interactions
between the 5′-end of the intron and flanking exon se-
quences define the location of the 5′ and 3′ splice sites.
The Internal Guide Sequence (IGS), which is a short
intronic sequence near the 5′-end that pairs with se-
quences of the upstream exon to form P1, determines
the 5′ splice site (Figure 2). The 3′ splice site is deter-
mined by pairing of a short sequence of the downstream
exon with a portion of the IGS, forming P10 and mediat-
ing interactions between P9 and the P3/P8 helices that
form the catalytic core [3,26,37-39].
Splicing of the group I intron RNA is by a two-step

transesterification reaction with an exogenous GTP (αG)
with its 3′–OH acting as an initiating nucleophile (Figure 4).
Binding of the αG in the G-binding site in P7 positions the
3′–OH of GTP to attack the 5′ splice site. During the first
transesterification step the αG is attached to the 5′-end of
the intron RNA by a 3′-5′ phosphodiester bond. This step
is followed by conformational changes allowing the up-
stream exon′s terminal 3′ guanosine (ωG) to trade position
with the αG and occupy the G-binding site to initiate the
second transesterification reaction [26]. The 3′–OH of the
upstream exon attacks the 3′ splice site (an interaction fa-
cilitated by the formation of P10) promoting the ligation of
upstream and downstream exons and the release of the in-
tron RNA [3,40-42]. Splicing is absolutely dependent on a
divalent metal ion to stabilize RNA secondary and tertiary
structures and to activate the nucleophilic attack by the
3′–OH groups [24,25]. Crystal structures of several group
I introns have been resolved, including Azoarcus sp. BH72
pre-tRNAIle intron-exon complexes [24,42,43], Tetrahy-
mena pre-rRNA apo enzyme [44,45], and the bacterio-
phage Twort pre-mRNA ribozyme-product complex [22].
The crystal structures of these introns support the in-
volvement of a two-metal ion mechanism in group I
intron splicing.
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Figure 3 Differences between group I intron classes (IA to IE). Shown are secondary structure representatives for the group I intron classes
[26-33]. The IA to ID classes are commonly found in bacteria. The IE class is also depicted for comparative purposes. For all group I intron RNA
structures the catalytic core is highlighted in yellow. Beside each secondary structure model is a sequence logo alignment of the P7:P7′ pairing
for the intron subclasses. The P7:P7′ pairing is important because it is a highly conserved region and is diagnostic for discriminating between
various group I intron subclasses. With regards to the sequence logos the information content at each position (in bits, from 0 to 2) is represented by
the height of the nucleotide. A score of 2 bits corresponds to high conservation, while a score of 0 corresponds to low conservation. The number of
sequences used to generate each sequence logo is indicated below the intron subtype. Asterisks indicate the possible locations of peripheral insertions
within the intron. The catalytic domain is highlighted in yellow.
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Intron- and host-encoded factors that facilitate splicing
Efficient in vivo splicing of group I introns often requires
proteins with maturase function that can either be intron-
or host-encoded [46-50]. The reliance on intron-encoded
maturases or host factors implies that the intrinsic intron
splicing rate may not be sufficient in a cellular context, and
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Figure 4 Schematic representation of group I intron splicing. The splicing pathway consists of two sequential transesterification reactions.
The first reaction is initiated by the 3′–OH group of an exogenous GTP (αG) that docks into the G-binding pocket located in the P7 region and
the 3′–OH group attacks the 5′ splice site. In the second reaction, the 3′–OH of the released 5′ exon attacks the phosphodiester bond between
the intronic terminal G (ωG) and the 3′ exon, resulting in the liberation of the intron and the ligation of the exons.
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that introns have co-opted cellular factors to facilitate
splicing to ensure little or no phenotypic effect on host
gene function. For example, three nuclear mutations (cyt-4,
cyt-18, cyt-19) were identified that showed cytochrome de-
ficiencies due to defective splicing of the mL2449 group I
intron in Neurospora crassa [51-53]. Cyt-4 was shown to be
an RNase II-like protein that might be involved in the turn-
over of the excised group I intron [52], and Cyt-18 was re-
vealed to be a tyrosyl-tRNA synthetase that promotes
splicing by helping the intron RNA fold into a catalytically
active structure [54,55]. Cyt-19 is a member of the DEAD-
box protein superfamily of RNA helicases that appears to
be an ATP-dependent RNA chaperone that can recognize
and destabilize non-native RNA folds that might arise
during Cyt-18 mediated folding of group I intron RNAs
[29,56-59]. A general theme that emerges from these stud-
ies is that intron RNAs interact with cellular RNA-binding
proteins to promote the formation of splicing-competent
RNA structures.
With regard to bacterial group I introns, comparatively

little is known about host- and intron-encoded splicing
co-factors [46,49,50]. In the hyperthermophile Thermotoga
neapolitana, the group I intron interrupting the 23S gene
encodes a LAGLIDADG protein with maturase-like activity
that stabilizes and activates its cognate intron at high tem-
peratures [47]. Studies on Escherichia coli phage T4 introns
revealed that host factors such as the StpA protein can act
as an RNA chaperone and thus compensate for a group I
intron splicing defect in vivo [46,60,61]. Ribosomal protein
S12 was shown to facilitate the in vitro splicing of T4 in-
trons [62], and translation initiation factor IF1 has RNA
chaperone activity that can promote the splicing of the T4
phage thymidylate synthase intron [63]. In vitro work has
shown that eukaryotic proteins such as Cyt-18 [29,64], and
DEAD-box proteins like Cyt-19, and Mss116p [59] pro-
mote splicing of some bacterial introns, suggesting that
bacterial group I introns may benefit from interactions with
proteins that assist in intron RNAs folding into splicing
competent structures. There is also considerable evidence
that the ribosome acts as an RNA chaperone for the T4 in-
trons by sequestering upstream exon sequences that may
otherwise compete with intron sequence to form non-
productive RNA structures for splicing [65,66]. Collectively,
these observations also suggest that intron splicing and
gene expression have to be coordinated and therefore in-
trons may not be neutral with regards to their impact on
their host cells [36,66].

Intron-encoded HEases
Intron-encoded HEases are site-specific DNA endonucle-
ases that recognize and cleave specific target sites (the hom-
ing site) in genomes that lack the intron (Figure 5a) [10,67].
Homing sites are typically centered on the intron-insertion
site, and include DNA sequences both up- and down-
stream of the insertion site (that is in the up- and
down-stream exons). The presence of a group I intron thus
disrupts the homing site, rendering intron-containing
alleles immune to cleavage by their encoded homing endo-
nuclease, and providing a mechanism to discriminate self
(intron-containing) from non-self (intronless) alleles. Most
characterized HEases possess lengthy recognition sites (>
14 bp) that often encode codons specifying functionally
critical amino acids or RNA sequences of the target gene
[68-70]. Targeting of conserved sequences is one strategy to
ensure that an appropriate homing site is present within
closely related genomes. Moreover, many characterized
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HEases tolerate nucleotide substitutions within their
homing sites, facilitating cleavage of variant cognate
homing sites that arise by genetic drift.
Currently, there are six families of HEases, classified

primarily on the basis of conserved amino acids that
correspond to structural or active site residues; the
LAGLIDADG, H-N-H, His-Cys box, GIY-YIG, PD-(D/E)
xK, and EDxHD families [71-73]. The active site archi-
tecture of the His-Cys box and H-N-H families is very
similar, and it has been suggested that they are divergent
members of a ββα-metal motif. A similar argument can
be made for a shared active site architecture of the PD-
(D/E)xK and EDxHD families. The LAGLIDADG family
is the largest and most diverse group with a wide host
range including the organellar genomes of plants, fungi,
protists, early branching metazoans, bacterial and archaeal
genomes. The GIY-YIG, H-N-H, PD-(D/E)xK, and EDxHD
enzymes are most often encoded within group I introns
found in phage genomes, and less frequently in introns
interrupting genes on bacterial chromosomes. His-Cys box
enzymes have an extremely limited phylogenetic distribu-
tion, found almost exclusively in protists.

Intron mobility
Group I intron mobility is catalyzed by the intron-
encoded HEases [6,74,75] (Figure 5). The HEases have
specific target sites, with some allowance for sequence
variation in their homing sites (Figure 5a). Recognition
of variant homing sites ensures propagation in the face
of substitutions that accumulate over time in the target
site. Recently, trans-acting HEases have been described
in T4 and related phages that can promote the homing
of either group I introns lacking ORFs or group I introns
that encode defunct (degenerated) HEases (Figure 5b)
[67,72,76,77]. Intron homing is initiated by the HEase
that introduces a double-strand break (DSB), or nick, in
an intronless allele [77]. The homing process is com-
pleted by host DSB-repair or synthesis-dependent strand
annealing (SDSA) pathway [78-81] that use the intron-
containing allele as a donor to repair the break in the re-
cipient intronless allele (Figure 5). The end result is the
nonreciprocal transfer of the mobile intron element into
the intronless allele (that is recipient). As stated previ-
ously, nicking HEases can stimulate intron mobility
but the actual mechanism of how a single-strand nick
stimulates recombination is not understood. The hom-
ing event is frequently associated with co-conversion of
markers flanking the intron insertion site, and the HEase
can influence the extent of co-conversion by remaining
bound to one of the cleavage products, preventing access
of the recombination and repair machinery including
exonucleases [79,80,82,83]. It should be noted that hom-
ing endonuclease genes can be free-standing and move
into new sites by a mechanism referred to as intronless
homing, a mechanism that is similar to the one described
above (see Figure 5c).
It is generally thought that group I introns propagate

through a population of intronless alleles with ‘super-
Mendelian’ inheritance, and that all available alleles for
homing quickly become occupied. At this point, the HEase
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can quickly accumulate deleterious mutations that inacti-
vate the enzyme, or the HEase assumes another function
(possibly a maturase) to avoid loss. Alternatively, it is
thought that group I introns can ‘escape’ to a new popula-
tion of intronless alleles by transposition to new sites (ec-
topic integration) by reverse splicing. Reverse splicing is the
reverse of the forward splicing reaction, and theoretically al-
lows a group I intron RNA to insert into a RNA molecule
with four to six complementary bases to the P1 stem of the
intron RNA [84,85]. This proposed pathway of RNA-based
mobility also requires the additional steps of reverse tran-
scription of the reverse-spliced intron and target RNA
followed by integration of the cDNA into the genome by
recombination, yet there is no direct experimental evidence
to support this pathway. The best circumstantial evidence
for reverse splicing has been documented for rDNA introns
where related introns are inserted in two different locations
within rDNA genes [55,86].
Another mechanism for ectopic integration or trans-

position relates to the relaxed specificity of many intron-
encoded HEases. For instance, cleavage at a site similar
to a HEase’s native target site may promote intron mo-
bility, and it has been shown that the cleavage specificity
of the I-TevI HEase can be influenced by oxidative stress
[87]. However, the low cleavage rates at ectopic sites will
limit the frequency of intron movement by this mechan-
ism. Because homologous recombination between unre-
lated sequences will be inefficient, it is thought that
illegitimate recombination pathways would be necessary
for intron transposition [88].

Domestication of group I introns and the formation of
novel genetic elements
There are a few instances where group I introns or their
components may have been domesticated by their host
genomes, or by other types of mobile genetic elements.
The bacterial DUF199/WhiA protein is a transcription
factor and its N-terminal region contains the same pro-
tein fold as found in monomeric LAGLIDADG HEases
encoded within group I introns [89,90]. This similarity
suggests that an invasive element was co-opted to serve
as a regulatory protein [91]. The ability of group I intron
RNAs to form complex tertiary structures has been
harnessed in Clostridium difficile as a feature of a two-
component riboswitch that involves c-di-GMP as an
allosteric activator [92]. Here, in the 5′ untranslated
region of an mRNA, a c-di-GMP binding aptamer is
located upstream of a group I intron; the binding of
c-di-GMP to its aptamer modifies the group I intron
fold and shifts the 5′ splice site. In the presence of c-di-
GMP, RNA processing yields an mRNA where the ribo-
some binding site is moved upstream of the start codon,
whereas splicing without c-di-GMP results in a version
of the transcript where the ribosome binding site is
removed as part of the intron RNA [92]. In essence, the
allosteric self-splicing intron has been domesticated as a
metabolite sensor and genetic regulatory element.
A unique composite element has been described in

some enterotoxin producing strains of C. difficile in the
tcdA locus. The composite element, termed an IStron, is
composed of a splicing-competent group I intron (IA2
subgroup) that has an insertion element (IS, of the IS605
element family) embedded within its 3′-end and encod-
ing two transposases [93,94]. One of the transposases is
a TnpA-like protein that belongs to the HUH endo-
nuclease superfamily [95]. TnpA can promote mobility
events of the IS200/IS605 family of bacterial insertion
elements by cleavage and rejoining of single-stranded
DNA. These endonucleases cleave their target sites by
cutting the lagging strand within a DNA replication fork
[96,97]. This mobility mechanism might be analogous to
how the H-N-H family of nicking HEases promotes the
mobility of group I introns. IStrons have the potential to
transpose into genes but its capacity to self-splice should
minimize its impact on the host gene [98]. Although
IStrons appear to have the best of both worlds in the sense
that they encode elements to promote spread (transposase)
and aid in their persistence (self-splicing intron), they have
limited phylogenetic distribution [99,100].

Group I intron distribution in bacteria: genes and
genomes
Within bacteria, group I introns are predominately inserted
within structural RNA genes such as tRNA and rRNA
genes [31-33,101-107]. This bias has been explained in part
by the conservation among structural RNA genes. Con-
versely, insertion of group I introns into protein-coding
genes may be selected against, as the coupling of transcrip-
tion and translation would interfere with folding of the
group I intron to facilitate ribozyme formation and thus
splicing [13,108]. The presence of a stop codon in-frame
with the upstream exon of many group I introns is viewed
as evidence that stalling of the ribosome might be a strategy
to facilitate intron RNA folding and splicing [98,108-110].
Nevertheless, there have been reports of bacterial protein-
coding genes that have been invaded by group I introns,
such as the flagellin gene in a thermophilic Bacillus
species [111,112], recA and nrdE genes in various
Bacillus species [99,113], and some cyanobacterial
nrdE genes [109,110]. This trend of insertion into
protein-coding genes is particularly evident in bacte-
riophages, as all introns observed to date are inserted
in protein-coding genes, in spite of the presence of
many phage-encoded tRNA genes [14,100,114-117].
This distribution may be related to the fact that opti-
mal DNA targets for HEases occur within conserved
protein-coding genes, which, in the context of the rela-
tively small coding potential of many phage genomes,
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includes targets such as DNA polymerases, ribonucleotide
reductases, and terminases.
Interestingly, group I introns have so far not been dis-

covered in archaeal genomes, although group I intron
derived HEase sequences are sometimes associated with
archaeal introns [117-122]. The archaeal-specific introns
are removed by a mechanism that involves tRNA spli-
cing endonucleases [12,123-126]. It has been suggested
that the efficient protein-dependent splicing of archaeal
introns may have outcompeted RNA-based self-splicing
introns by minimizing any phenotypic effect on host
genomes from slow in vivo splicing rates, and that self-
splicing RNA introns became extinct in the archaeal
lineage [12]. This scenario implies a cost associated to the
host genome with maintaining group I ribozyme based
splicing elements and/or their co-factors (maturases/chap-
erones), which may have limited their spread and persist-
ence of self-splicing introns among the bacteria and their
associated phages.
The persistence and spread of group I introns in pro-

karyotic genomes is dependent on a number of factors
including (1) the phenotypic cost associated with the
insertion of a group I intron, (2) the availability of
intronless alleles for endonuclease-mediated homing, (3)
the presence of efficient homology-based DSB repair
systems, (4) the availability of DNA or RNA transfer
mechanisms such as DNA uptake by natural transform-
ation, conjugation and plasmid transfer, and phages.
Interestingly, recent work on the Bacillus cereus group
suggested that some of the genomic recA, nrdE, nrdF in-
trons are similar to phage introns, indicating that phage
infection could serve as a vector system for the lateral
movement of introns among different genomes [100].
However, there is little evidence to show that bacterial
introns are moved horizontally among bacterial species.
One study [127] showed that placing a group I intron
from Tetrahymena into the E. coli 23S gene resulted in
the reduction of the growth rate which was correlated
with poor splicing of the Tetrahymena intron. Moreover,
the intron RNA was shown to associate with the 50 S
ribosomal subunit and possibly interfere with transla-
tion. Clearly, there are barriers to intron spread in bac-
teria [13] that are curiously absent from organellar
genomes where group I introns are very abundant.

The evolution of a composite mobile element
One of the most intriguing questions about mobile group I
introns concerns their evolutionary origin. The current
consensus is that HEases and group I introns had distinct
evolutionary origins, and that HEases have on multiple in-
dependent occasions invaded an endonuclease-free intron.
The alternative scenario, that group I introns always pos-
sessed an endonuclease gene is problematic for a number
of reasons, including the fact that many group I introns do
not contain ORFs, and the notion that group I introns were
direct descents of catalytic RNAs from the RNA world.
Moreover, the finding that HEases can exist outside of the
protective confines of introns, as so-called free-standing
homing endonucleases, lent credibility to the hypothesis
that these free-standing enzymes could be a potential
source of the ‘invading’ endonuclease. Two mechanisms
that would lead to the formation of such a composite mo-
bile intron have been proposed. Loizos et al. [128] noted
that in the sunY gene of the T4 phage the intron sequences
flanking the HEase ORF (I-TevII) were similar to the exon
junction sequences that comprise the I-TevII target se-
quence. Importantly, they were able to demonstrate that a
synthetic construct that included the fused sequence com-
posed of the up- and down-stream sequences that flank the
I-TevII ORF was indeed cleaved by I-TevII. This result pro-
vided strong circumstantial evidence for the ‘endonuclease-
gene invasion’ hypothesis whereby a free-standing HEase
cut an intron sequence that fortuitously contained a similar
HEase target site. During the recombination-based repair
process, the endonuclease gene sequence was inserted into
the cleaved intron sequence, thus generating a composite
potentially mobile intron.
Recent studies [72,76] provide a second mechanism,

termed collaborative homing, for the origin of mobile in-
trons. Work on two different phages revealed systems
where a free- standing HEase and an ORF-less group I
intron converged on the same conserved target site
(Figure 5b). That is, the target site of the endonuclease
corresponded to the intron-insertion site. Thus, the endo-
nuclease was ‘pre-adapted’ to target the intron-insertion
site, and an illegitimate recombination event that moved
the free-standing endonuclease gene into the intron would
quickly create an efficient composite mobile intron capable
of mobility [76].
Regardless of the origin of mobile group I introns, one

would assume that endonuclease invasion would have a
deleterious effect on intron splicing. In this respect, it is
interesting to note that many endonuclease ORFs are
inserted in loops that presumably do not interfere with
folding and splicing. It is also possible that the intron-
encoded endonucleases and/or host factors were able to
compensate by stabilizing the intron tertiary RNA struc-
ture or discouraging misfolding of the intron RNAs
[129-132]. This would effectively stabilize the intron/endo-
nuclease relationship within the genome as splicing compe-
tency would be under a strong selective pressure if the
intron was inserted in a functionally important gene. Long-
term persistence of the composite element is dependent on
the opportunity to invade intronless alleles, as detailed by
Goddard and Burt and others [132,133].
This returns us to the enigma of why group I introns and

their associated HEases have been successful in spreading
among the organellar genomes of plants, protozoans, and
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fungi but have very limited representation among bacterial
and phage genomes. Koonin [134] proposed that group I
introns evolved as parasitic selfish-RNAs (ribozymes) in
abiotic compartments that housed early forms of the ‘RNA
world’. If indeed these elements are ancient, it is surprising
that now they have such a limited distribution, being absent
in the Archaea and only rarely encountered among bac-
teria. One intriguing possibility is that the CRISPR/Cas
RNA-based genome defense system, that restricts foreign
DNAs such as plasmids or phage DNAs, has a role in limit-
ing the spread of mobile group I introns present on these
elements, specifically the type III CRISPR systems can tar-
get ssRNA in addition to DNA [135-137]. An interesting
observation is that CRISPR/Cas systems are extremely
prevalent in Archaea, but less so in bacteria, correlating
with the absence of group I introns from Archaea.

Conclusions
The mechanisms that promote and prevent group I in-
trons from proliferating among bacterial genomes are
poorly understood, as is the long-term impact of introns
on organismal viability. When present, it is assumed that
introns are phenotypically neutral, yet the co-opting of
intron functions by a riboswitch or the domestication of
intron-encoded homing endonuclease as a regulatory
protein (WhiA) indicates that introns can be a source of
genetic novelty. Future research efforts directed at un-
derstanding the effect of group I introns on host gene
expression, mechanisms of mobility to ectopic sites and
their spread among bacterial genomes and phages will
lead to valuable insights regarding the dynamics and
evolution of group I introns.
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