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ries of (super)gravity in D = 4 space-time dimensions, we develop some general meth-

ods, that can be used to determine all homogeneous invariant polynomials on the irre-

ducible (SLh(p,R)⊗G4)-representation (p, R), where p denotes the number of centers,

and SLh(p,R) is the “horizontal” symmetry of the system, acting upon the indices la-

belling the centers. The black hole electric and magnetic charges sit in the symplectic

representation R of the generalized electric-magnetic (U -)duality group G4.

We start with an algebraic approach based on classical invariant theory, using Schur

polynomials and the Cauchy formula. Then, we perform a geometric analysis, involving

Grassmannians, Plücker coordinates, and exploiting Bott’s Theorem.

We focus on non-degenerate groups G4 “of type E7” relevant for (super)gravities whose
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degree-12 invariant polynomials of 3-centered black holes.
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1 Introduction

The Attractor Mechanism [1–5], originally discovered in N = 2, D = 4 Maxwell-Einstein

supergravity and then investigated in other extended supergravities as well as in non-

supersymmetric theories of gravity (see e.g. [6–9] for reviews and list of refs.), plays a central

role in the physics of extremal black holes (BHs), as well as of (intersecting configurations
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of) extremal black p-branes [10], also in D > 4 space-time dimensions. In its simplest

framework, namely in presence of Abelian vectors and scalar fields in the background of

an extremal BH, the area of the event horizon can be expressed purely in terms of the

fluxes of the 2-form Abelian field strengths and of their duals, whose fluxes define the

magnetic and electric BH charges, fitting a symplectic vector Q. The dynamics of the

scalar fields exhibits an attractor phenomenon, namely the value of the field at the BH

event horizon is completely determined in terms of the magnetic and electric charges,

regardless of the initial (boundary) conditions defined for the flow at spatial infinity.1 In

general, the near-horizon attractor dynamics can be reformulated in terms of critical points

of a BH effective potential [5], which in presence of an underlying local supersymmetry also

enjoys a geometric interpretation in terms of central charge(s) and matter charges (if any).

The vector space of electric-magnetic BH charges generally defines an irreducible2

representation (irrep.) space R for the generalized electric-magnetic (U -) duality3 group

G4. Under the action of G4, the irrep. space R undergoes a stratification into orbits,

which in turn are in correspondence with classes of BHs, with both regular and vanishing

near-horizon geometry (corresponding to “large” and “small” BHs, respectively); thus,

the classification of G4-orbits in R results in a group-theoretical characterization of BH

solutions themselves. In Maxwell-Einstein supergravity theories whose scalar manifold is

a symmetric space G4/H4 (with H4 being the maximal compact subgroup of G4), the

classification of orbits can be algebraically achieved in terms of constraints imposed on the

unique [18] algebraically independent G4-invariant homogeneous polynomial I in the irrep.

R (see e.g. [19–22], as well as [23] for a recent résumé and a list of refs.).

Within this rather broad class of D = 4 theories, I is a quadratic polynomial (I = I2)

for N = 2 minimally coupled [24, 25] as well as for N = 3 [26] supergravity. In the

remaining D = 4 theories with symmetric scalar manifolds, G4 can be characterized (in

terms of R) as a group “of type E7” [27–33]. In particular, the charge representation R

satisfies

dim∧2R = dimS4R = 1. (1.1)

Namely, the flux irrep. R is symplectic (i.e., endowed with a unique symplectic structure

C[MN ] := 1 ∈ ∧2R =: R⊗2
a , as it generally holds in D = 4), and it exhibits a unique,

algebraically independent, degree-4 homogeneous invariant polynomial4 I = I4, related

to a rank-4 completely symmetric G4-invariant tensor (the so-called K-tensor [34–37])

K(MNPQ) := 1 ∈ S4R =: R⊗4
s . Simple and semi-simple non-degenerate U -duality groups

1Some exception/violations of the Attractor Mechanism include e.g. the existence of basins of attrac-

tion/area codes [11–13] as well as of moduli spaces/flat directions of attractor flows [10, 14].
2This strictly holds for unified theories, in which all Abelian 2-form field strengths (and their duals)

transform in an irrep. of G4; the following reasoning can be easily generalized to non-unified frameworks.
3Here U -duality is referred to as the “continuous” symmetries of [15, 16]. Their discrete versions are the

U -duality non-perturbative string theory symmetries introduced by Hull and Townsend [17].
4Actually, this characterizes G4 (which can be simple or semi-simple) as a non-degenerate group “of

type E7”. The “degeneration” of the U -duality symmetry in some N = 2 theories [24, 25] and in N =

3 [26] supergravity, and its relation to the minimal coupling of vector and scalar fields in Maxwell-Einstein

(super)gravity theories in D = 4 has recently been investigated in [32].
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G4 “of type E7” relevant to the class of D = 4 Maxwell-Einstein (super)gravity theories

under consideration are listed in table 1 at the start of section 2.3.

The properties of the quartic polynomial I4 constructed from the K-tensor have been

exploited in order to characterize in an algebraic way the various scalar flows in the back-

ground of extremal single-centered BHs [19–22]. The classification can be extended to

multi-centered BHs [38–47]. In the case of 2-centered solutions, a group theoretical study

of the invariant structures which can be defined in the vector space of electric-magnetic

fluxes has been started in [48], and then developed in [33, 35–37]; the connection between

2-centered invariant structures for the so-called stu model [49, 50] of N = 2, D = 4 super-

gravity and Quantum Information Theory has then been investigated in [51]. Furthermore,

relations between the K-tensor of the stu model (giving rise to the so-called Cayley’s hy-

perdeterminant [54–56]) and elliptic curves has been recently studied in [57], and extended

to the 2-centered case in [51].

Besides the importance of the symplectic product W (see eq. (2.17) below) in order

to define mutually non-local charge vectors pertaining to different centers [38, 39], the

physical relevance of some higher-order U -invariant polynomials has been suggested in

recent investigations [46], and further study in such a direction is surely deserved in order to

unravel their role e.g. in the spatial structure of general stationary almost-BPS [43, 45, 47]

and composite non-BPS [45–47] multi-centered BH flows, with flat D = 3 spatial slices as

well as non-flat ones [44, 58, 59].

In the case of BH solutions with p centers, the U -duality group G4 acts on p copies of

R; correspondingly, the charge vectors Qa carry an index referring to the relevant center

(a = 1, . . . , p), and one has to consider polynomial invariants in the p dimR coordinates

on Rp. Thus, a “horizontal” symmetry5 SLh(p,R), commuting with G4, naturally occurs.

This was firstly introduced in [48], and it acts on the index labelling the various centers,

in such a way that G4-invariant polynomials generally decompose into SLh(p,R)-irreps.

In the 2-centered case (p = 2), as mentioned, the problem of determining a complete

basis for the ring of (SLh(p,R)×G4)-invariant homogeneous polynomials has been solved

in [48] and [35], respectively for semi-simple and simple non-degenerate groups “of type E7”

occurring as U -duality groups in D = 4 supergravities with symmetric scalar manifolds.6

Actually, the same results had been obtained, within a completely different approach based

on nilpotent orbits, by Kac many years ago in [18]; therein, it was also shown that the

complete basis composed by polynomials whose homogeneity degree is the lowest possible

is also finitely generating, namely all other higher-order invariant polynomials are simply

polynomials in the elements of the basis.

For example, in the 2-centered simple case [18, 35] there are 7 algebraically independent

U -invariant polynomials, which form a minimal degree complete basis for the corresponding

ring; out of them, 5 are homogeneous of degree 4 and they are arranged into a 5 (spin

s = 2) irrep. of the 2-centered “horizontal” symmetry SLh(2,R), while the remaining ones

are polynomials homogeneous of degree 2 and 6 that are SLh(2,R)-invariant (the one of

5The subscript “h” stands for “horizontal” throughout.
6The same problem was solved, for a generic number p of centers, in [37, 60] for simple, degenerate

groups “of type E7” occurring in N = 2 minimally coupled as well as in N = 3 supergravity in D = 4.

– 3 –



J
H
E
P
0
2
(
2
0
1
3
)
0
4
9

degree 2 is nothing but the symplectic product W defined in (2.17) below). Out of these

7 G4-invariants, one can construct 4 algebraically independent (SLh(2,R)×G4)-invariant

polynomials, homogeneous of degree 2, 6, 8 and 12 [18, 35]. With some abuse of language,

(SLh(p,R)×G4)-invariants have been usually named “horizontal” invariants.

In the (2-centered) semi-simple case [18, 37, 48], further lower-order horizontal invari-

ant structures arise as a consequence of the factorization of the U -duality symmetry G4;

a particular, noteworthy example is provided by the aforementioned stu model, exhibiting

a triality symmetry [49, 50], which should be modded out in order to obtain invariant

structures relevant for BHs (cfr. the treatment of [48] vs. [51], as well as the treatment in

sections 2.3.5 and 4.3.4).

Although some general properties can be inferred from elementary group theoretical

considerations, a systematic study and classification of (p > 2)-centered solutions in terms

of (SLh(p,R)×G4)-orbits is still lacking.

The aim of the present paper is to start developing some general methods that can be

used to determine all invariants associated to p-centered BH solutions, for a generic p. In

particular, we will be interested in p-centered horizontal invariants, namely homogeneous

(SLh(p,R)×G4)-invariant polynomials on the irrep. R
p ⊗ R =: (p, R) of the overall

symmetry SLh(p,R) × G4 itself. The invariant polynomials homogeneous of degree k are

clearly related to the (SLh(p,R)×G4)-invariant tensors in the k-th completely symmetric7

power Sk(Rp ⊗ R) =: (p, R)⊗k
s . This allows for the exploitation of the classical invariant

theory (for which we will mainly refer to the book [52]).

Let us finally recall that in general, given a representation V of a group G, plethysm is

the study of the decompositions into irreducible G-representations of V ⊗V , ∧kV , Symk(V )

and, more generally, of Schur functors applied to V (cfr. e.g. [53]). Plethystic formulas are

thus exactly what we need in our investigation, and this justifies the title of our paper.

The plan of the paper is as follows.

In section 2 we use the representation theory of a product group G × G in order to

determine the corresponding invariant structures. We first recall some general facts about

invariant theory and, in particular, the characterization of the (G ×G)-invariants in the

symmetric products Sk(U ⊗ V ) of the irreps. U and V of G and G, respectively. By

applying these methods to the case G = SLh(p,R) and G = G4 relevant to p-centered

(BH) solutions in D = 4 supergravity, we can then count (SLh(p,R)×G4)-invariants
8 for

all relevant generic, simple cases.

Next, in section 3, we present a geometric analysis of the invariants. We show that in

the p-centered case the invariants can be determined by using the Grassmannian Gr(p,R)

of p-planes in R. This Grassmannian is embedded in a projective space by its Plücker

coordinates, which are global sections of a line bundle L on Gr(p,R). For any positive

7The subscript “s” (“a”) stands for symmetric (antisymmetric) throughout.
8Up to a certain order, fixed by the available computing power (see analysis in section 2.3).
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integer a, the group GL(R), and thus9

G4 ⊂ Sp (R) ⊂ SL (R) ⊂ GL (R) , (1.2)

acts on the sections Γ(Gr(p,R), L⊗a). These sections are homogeneous polynomials of de-

gree a in the Plücker coordinates. Our geometric characterization of the (SLh(p,R)×G4)-

invariant polynomials, in combination with Bott’s theorem [53], shows that all these invari-

ants are given by (SLh(p,R)×G4)-invariant sections. In particular, the (SLh(p,R)×G4)-

invariant polynomials are generated by homogeneous polynomials in the Plücker coordi-

nates.

Finally, in section 4, we present an application of the methods developed in sections 2

and 3: in the semi-simple, triality-symmetric N = 2, D = 4 stu model, we compute a

basis for the 10-dimensional vector space of
(
SLh(3,R)× SL(2,R)3

)
-invariant polynomials

homogeneous of degree 12 for 3-centered BHs; the physical issue of invariance under the

symmetric group S3, implementing the triality symmetry acting on the three copies of

SL(2,R) in the U -duality group G4 = SL(2,R)3, is considered in sections 2.3.5 and 4.3.4.

2 Algebraic approach

2.1 Invariant theory

In order to tackle the problem of determining the invariants associated to multi-centered

BH solutions, we will make use of the classical invariant theory. Let us first collect some

basic facts on how to find invariants in U ⊗V for the action of the group GL(U)×GL(V );

as mentioned above, we will mainly refer to the book [52], to which we address the reader

for further details and a list of refs.

2.1.1 The Schur polynomials

A partition λ of an integer m ∈ Z>0, denoted as λ ⊢ m, is a non-increasing sequence

λ = (p1, . . . , pN ) of integers pi ∈ Z≥0 such that
∑N

i= pi = m. The number of non-zero

elements in λ is denoted by ht(λ) := n, so pi = 0 for i > n.

The Schur polynomial Sλ in N variables x1, . . . , xN , where N ≥ n := ht(λ), is the

symmetric polynomial, with integral coefficients, defined as the quotient ([52], 2.3.2)

Sλ(x) :=
Aλ+ρ (x)

V (x)
, (2.1)

where the partition λ+ρ is defined as λ+ρ := (p1+N−1, p2+N−2, . . . , pN ), and Aλ+ρ (x)

and V (x) (Vandermonde determinant) are two anti-symmetric polynomials in x1, . . . , xN ,

9As also recently discussed in [61], the maximal (but generally non-symmetric) embedding G4 ⊂ Sp(R)

(which in supergravity is named Gaillard-Zumino [62] embedding) can be regarded as a consequence of the

following Theorem by Dynkin (Th. 1.5 of [63], more recently discussed e.g. in [64]): every irreducible group of

unimodular linear transformations of the N -dimensional complex space (namely, a group of transformations

which does not leave invariant a proper subspace of such a space) is maximal either in SL(N) (if the group

does not have a bilinear invariant), or in Sp(N) (if it has a skew-symmetric bilinear invariant), or in O(N)

(if it has a symmetric bilinear invariant). Exceptions to this rule are listed in table VII of [64].

– 5 –
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respectively given by

A(m1,...,mN )(x) :=
∑

σ∈SN

ǫσx
m1

σ(1)x
m2

σ(2) · · ·x
mN

σ(N), (2.2)

where SN is the group of permutations of N variables and ǫσ is the permutation parity,

and

V (x) :=
∏

1≤i<j≤N

(xi − xj). (2.3)

Note that Sλ = 0 if ht(λ) > N .

As from Th. 1 in [52], 2.3.2, the Schur polynomials Sλ with λ ⊢ m and ht(λ) ≤ N

are a basis of the polynomials in N variables which are homogeneous of degree m and are

invariant under permutations of the variables x1, . . . , xN . Examples are provided by the

elementary symmetric functions

S1h =
∑

1≤i1<...<ih≤N

xi1xi2 · · ·xih , λ = 1h := (1, . . . , 1
︸ ︷︷ ︸

h

, 0, . . . , 0); (2.4)

Sk =
∑

1≤i1≤...≤ik≤N

xi1xi2 · · ·xik , λ = k := (k, 0, . . . , 0
︸ ︷︷ ︸

N−1

), (2.5)

which differ only in the possibility to consider or not the same values for at least a pair of

indices in the string i1, . . . , ih.

2.1.2 Traces of GL-representations

Let V be a vector space of dimension N with basis v1, . . . , vN , and let y := (y1, . . . , yN ) ∈

(C∗)N act by diag(y1, . . . , yN ) on V .

A partition λ with ht(λ) ≤ N defines an irreducible representation Sλ(V ) of GL(V ) which

is a summand of ⊗mV where λ ⊢ m ([52] 9.3.1, (3.1.3)). If ht(λ) > N , then Sλ(V ) = 0.

Moreover, any irreducible representation of GL(V ) is isomorphic to an Sλ(V ) for a unique

partition λ with ht(λ) ≤ N ([52], 9.8.1). The trace of diag(y1, . . . , yN ) ∈ (C∗)N (i.e. the

standard maximal torus of GL(V )) on the irreducible representation Sλ(V ) is the Schur

polynomial Sλ(y1, . . . , yN ). The dimension of the representation associated to the partition

(p1, . . . , pN ) is ([52], 9.6.2):

dim Sλ(V ) =
∏

1≤i<j≤N

pi − pj + j − i

j − i
, λ = (p1, . . . , pN ). (2.6)

For instance, λ := 1h defines Sλ(V ) := ∧hV (2.4), the rank-h completely antisymmetric

tensor representation of GL(V ), which has dimension
(
N
h

)
; in particular, the partition

λ = 1N selects the one-dimensional determinant representation on ∧NV (realized by the

Ricci-Levi-Civita symbol ǫi1...iN ).

Another example is provided by the partition λ := k := (k, 0, . . . , 0
︸ ︷︷ ︸

N−1

), which defines Sλ(V ) :=

SkV (2.5), the k-th symmetric product of V , namely the rank-k completely symmetric

tensor representation of GL(V ). A basis of SkV is provided by va11 · · · v
aN
N with ai ≥ 0

– 6 –
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and
∑N

i=1 ai = k, and the action of y on this basis elements is the multiplication by

ya11 · · · y
aN
N . Hence, the trace of y on SkV is the sum of all monomials in y1, . . . , yN which

are homogeneous of degree k. As mentioned, this is the Schur polynomial Sk (2.5), so

tr(y|SkV ) = Sk(y). A generating function for these Sk can be obtained by noting that

(1 + . . .+ ya1ta1 + . . .) (1 + . . .+ ya2ta2 + . . .) . . . (1 + . . .+ yaN taN + . . .)

= 1 + S1 (y) t+ S2(y)t
2 + . . .+ Sk(y)t

k + . . . , (2.7)

and it is given by the Molien formula (S0(y) = 1; [52], 9.4.3, (4.4.3)):

N∏

j=1

1

1− yjt
=

∞∑

k=0

Sk(y)t
k. (2.8)

2.1.3 Decomposing Sk(U ⊗ V )

A generalization of the Molien formula (2.8), which yields the decomposition of Sk(U ⊗V )

under GL(U)×GL(V ), is provided by the following formula, due to Cauchy. Let10 m ≤ n

be two positive integers, then:

m∏

i=1

n∏

j=1

1

1− xiyj
=

∑

λ:ht(λ)≤m≤n

Sλ(x1, . . . , xm)Sλ(y1, . . . , yn). (2.9)

The interpretation of the Cauchy formula (2.9) in terms of characters of representations is

given e.g. in [52], 9.6.3. Let U and V be vector spaces of dimension m and n respectively,

and assume that m ≤ n. Let u1, . . . , um, v1, . . . , vn be bases of U ,V respectively, and

let x ∈ (C∗)m, y ∈ (C∗)n act on these spaces by diag(x1, . . . , xm), diag(y1, . . . , yn). The

eigenvalues of (x, y) on U ⊗ V are then the xiyj with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Thus,

Cauchy formula (2.9) implies that

∞∑

k=0

tr((x, y)|Sk(U ⊗ V ))tk =
∑

λ:ht(λ)≤m≤n

Sλ(x)Sλ(y)t
dλ , λ ⊢ dλ. (2.10)

Using the bijection between traces of irreducible representations and irreducible characters,

it follows that there is an isomorphism of (GL(U)×GL(V ))-representations:

Sk(U ⊗ V ) ∼=
⊕

λ⊢k,ht(λ)≤m

Sλ(U)⊗ Sλ(V ). (2.11)

A particular consequence of the isomorphism (2.11) is that if G × G is a subgroup of

GL(U)×GL(V ), then the vector space
(
Sk(U ⊗ V )

)G×G
of (G ×G)-invariants in Sk(U⊗V )

enjoys the following decomposition:

(

Sk(U ⊗ V )
)G×G

∼=
⊕

λ⊢k,ht(λ)≤m

(Sλ(U)G)⊗ (Sλ(V )G), (2.12)

10The formula (2.9) is proven in [52], 2.3.4 for n = m, but setting xi = 0 for m ≤ i ≤ n, the proof holds

for m ≤ n.
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since the action of G × G on Sλ(U) ⊗ Sλ(V ) preserves the factors. Thus, in order to

compute the (G ×G)-invariants, one can compute the G-invariants on all Sλ(U) and the

G-invariants on all Sλ(V ), and then combine the results.

Given a partition λ = (p1, . . . , pN ), we define an integer k ∈ Z≥0 and a partition µ

with ht(µ) ≤ N − 1 by

λ = (k, . . . , k) + (k1, . . . , kN−1, 0) := (kN ) + µ. (2.13)

Then, the restriction of Sλ(V ) to SL(V ) is isomorphic to Sµ(V ), since (kN ) is the k-th

tensor product of the determinant representation. Ça va sans dire, if ht(λ) > n, then the

definition of Sλ(V ) shows that it is the 0-dimensional vector space.

2.2 Application to p-centered black holes

As in section 1, let G4 be the U -duality group acting on the representation R in which the

(fluxes of the) Abelian 2-form field strengths and their duals sit, in the background of a

p-centered black hole solution in the corresponding D = 4 Maxwell-Einstein (super)gravity

theory. Since the “horizontal” [48] group SLh(p) ≡ SLh(p,R) acts on the labels of the

centers, in order to determine the invariants associated to the p-centered BH one has to

compute the invariants of G ×G = SLh(p)×G4 on U ⊗ V = R
p ⊗R =: (p, R).

The representation Sλ(U), where U = R
p, of G = SLh(p), is irreducible (if non-zero),

and there are very few cases in which it is the trivial 1-dimensional representation. In

fact, recall that Sλ(V ) = 0 if ht(λ) > p, whereas if ht(λ) < p then Sλ(V ) is an irreducible

representation of GL(V ), and hence also of SL(V ). Thus Sλ(V )G = 0, unless Sλ(V ) is

a power of the 1-dimensional determinant representation of GL(V ); namely, unless the

partition reads λ = (a, . . . , a) =: (ap), in which case one has

U = R
p of G = SLh(p) : dim

(

Sλ(U)SLh(U)
)

= 1 ⇐⇒ λ = (ap) = (a, . . . , a)
︸ ︷︷ ︸

p

(2.14)

for some a ∈ Z≥0, and dim
(
Sλ(U)SLh(U)

)
= 0 otherwise.

In virtue of formula (2.12), this implies that the invariants of SLh(p)×G4 in Sk(Rp⊗R)

must come from the invariants of G4 in Sλ(R) where λ = (ap). As (ap) ⊢ pa, it thus also

follows11

dim
(

Spa(Rp ⊗R)SLh(p)×G4

)

= dim
(
S(ap)(R)G4

)
, (2.15)

and there are no invariants12 in Sk(Rp ⊗ R) if k is not a multiple of p. So, if one has a

degree-k (SLh(p)×G4)-invariant homogeneous polynomial in the representation R
p ⊗ R,

then k is a multiple of p (the converse surely does not hold; see e.g. tables (2.31), (2.38),

(2.40), (2.42) and (2.45) below). Before explicitly analyzing some cases relevant to super-

gravity, let us consider the lowest degrees of homogeneity: k = 2 and k = 3.

11In section 3.1 we will discuss in some detail the G4-representation S(ap)(R) which gives rise to all

invariants.
12Besides the above reasoning, another proof of this fact is the following one : the group SL(p,C) contains

the matrices λI where λ = e2πi/p, and the element (λI, I) ∈ SL(p)×G4 acts as multiplication by the scalar

λ on C
p ⊗R, and hence by λk on Sk(Cp ⊗R).
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2.2.1 Homogeneity k = 2

In the case k = 2, the partitions λ with λ ⊢ 2 are λ = (2, 0) =: 2 and λ = (1, 1) =: 12. Since

S2 (V ) = S2V and S12 = ∧2V , one obtains (provided ht (λ) ≤ 2 ≤ min (dimU, dimV )):

S2 (U ⊗ V ) ∼=
(
S2U

)
⊗
(
S2V

)
⊕
(
∧2U

)
⊗
(
∧2V

)
. (2.16)

A particular case, in which the term
(
S2U

)
⊗

(
S2V

)
does not yield any invariant,

is provided by 2-centered (p = 2) BHs in the framework under consideration, namely for

p = 2: U ⊗ V = R
2 ⊗ R of G × G = SLh(2,R) × G4. As both SLh(2,R) and G4 have

an invariant in ∧2R2 ∼= R and in ∧2R, respectively (namely, both the fundamental spin

s = 1/2 irrep. 2 of SLh(2,R) and the irrep. R of G4 are symplectic) one obtains one

invariant from the term
(
∧2U

)
⊗
(
∧2V

)
of (2.16), given by the symplectic product W in R

of G4, namely [35, 37, 48] (a, b = 1, 2, M,N = 1, . . . , dimR):

W := (Q1, Q2) := CMNQM
1 QN

2 =
1

2
ǫabCMNQM

a QN
b , (2.17)

where ǫab is the Ricci-Levi-Civita symbol of SLh (2,R). When W 6= 0, the charge vectors

Q1 and Q2 (respectively pertaining to BH centers 1 and 2) are mutually non-local, and the

distance between the two centers in the BPS 2-centered system is fixed [38, 39]. No other

algebraically independent invariant polynomial homogeneous of degree k = 2 arise, since

the representations U = R
2 =: 2 of SLh(2,R) and V = R of G4 are irreducible, and thus

there are no other invariants in S2U and in S2V .

As discussed at the end of section 3 of [35], some SLh (p,R)-covariant structures for p >

3 can be directly inferred from the 2-centered ones. Indeed, the 2-centered representation

of spin s = J/2 of SLh (2,R) is in general replaced by the completely symmetric rank-J

tensor representation13 SJp of SLh (p,R). On the other hand, for p centers W (2.17)

generally sits in the
(
∧2p,1

)
of SLh (p,R) × G4, where ∧

2p is the rank-2 antisymmetric

tensor representation14 (which, in the case p = 2, becomes a singlet).

2.2.2 Homogeneity k = 3 for G4 = E7

In the case k = 3, the partitions λ with λ ⊢ 3 are λ = (3, 0, 0) =: 3, λ = (2, 1, 0) =: (2, 1)

and λ = (1, 1, 1) =: 13. Since S3 (V ) = S3V and S13 = ∧3V , the GL(V )-representation

S(2,1) (V ) is obtained by the decomposition15 (cfr. e.g. [52], 9.3.1)

V ⊗3 := V ⊗ V ⊗ V ∼=
(
S3V

)
⊕
(
S(2,1) (V )

)⊕2
⊕ ∧3V. (2.18)

The simplest example is provided once again by V = R
2 =: 2 of SLh(2,R), for which

it holds

2⊗ 2⊗ 2 ∼= (3⊕ 1)⊗ 2 ∼= (4⊕ 2)⊕ 2, (2.19)

13In the case of GL(p,R), this is given by Sλ(V ) (2.5) with V = R
p =: p and λ := J := (J, 0, . . . , 0

︸ ︷︷ ︸

p−1

); see

below (2.6). The same holds for SL(p,R).
14In the case of GL(p,R), this is given by Sλ(V ) (2.4) with V = R

p =: p and λ := 12; see below (2.6).

The same holds for SL(p,R).
15This is generalized to V ⊗n (for a generic n) e.g. in [52], 9.3.1.
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where 4 =: S3V is the spin s = 3/2 of SLh(2,R) itself, consistent with the Clebsch-Gordan

formula for this group.

Another example, in which we also exploit the physicists’ notation of representations

by means of their dimension, is provided by V = V (λ7) =: 56 (fundamental) irrep. of

G4 = E7. In this case, the following decomposition holds:16

S3V (λ7)
(56⊗56⊗56)s

∼= V (3λ7)
24320

⊕ V (λ1 + λ7)
6480

⊕ V (λ7)
56

; (2.20)

∧3V (λ7)
(56⊗56⊗56)a

∼= V (λ5)
27664

⊕ V (λ7)
56

. (2.21)

On the other hand:

V ⊗2

56⊗56
:= V ⊗ V ∼=

(
S2V

)

(56⊗56)s

⊕ ∧2V
(56⊗56)a

= (V (2λ7)⊕ V (λ1))
1463⊕133

⊕ (V (λ6)⊕ V (0))
1539⊕1

. (2.22)

Thus, tensoring once more with V (λ7), one obtains

V (2λ7)⊗ V (λ7)
1463⊗56

∼= V (3λ7)
24320

⊕ V (λ6 + λ7)
51072

⊕ V (λ1 + λ7)
6480

⊕ V (λ7)
56

; (2.23)

V (λ6)⊗ V (λ7)
1539⊗56

∼= V (λ6 + λ7)
51072

⊕ V (λ5)
27664

⊕ V (λ1 + λ7)
6480

⊕ V (λ2)
912

⊕ V (λ7)
56

; (2.24)

V (λ1)⊗ V (λ7)
133⊗56

∼= V (λ1 + λ7)
6480

⊕ V (λ2)
512

⊕ V (λ7)
56

. (2.25)

Thus, (2.18) and (2.20)–(2.25) yield

S(2,1) (V (λ7)) ∼= V (λ6 + λ7)
51072

⊕ V (λ1 + λ7)
6480

⊕ V (λ2)
912

⊕ V (λ7)
56

. (2.26)

Therefore, we obtained that

V (0)
1

/∈







S3V (λ7) ;

S(2,1) (V (λ7)) ;

∧3V (λ7) ,

(2.27)

and thus there are no E7-invariants in Sλ (V (λ7)) if λ ⊢ 3. More in general, there are no

E7-invariants on V (λ7)
⊗n for n odd. Since Sλ (V ) ⊂ V ⊗n when λ ⊢ n, it follows that there

are no E7-invariants in Sλ (V (λ7)) when λ is a partition of an odd (positive) integer n.

In other words, there are no invariant polynomials in the fundamental representation

V (λ7) =: 56 of E7 with an odd homogeneity degree, as also confirmed by the treatment of

section 2.3.1; more in general, this will hold at least for all the (simple and semi-simple)

groups “of type E7” which we will consider: there are no invariant polynomials in the

relevant irrep. R of G4 with an odd homogeneity degree.17

16The weights/roots standard notation of irreps. is used throughout.
17The reason can be traced back to the fact that −I on R belongs to G4. For instance, it can be checked

that the −I in the 56 of E7 preserves the symplectic metric C[MN ] in 56⊗2
a and the quartic symmetric

tensor K(MNPQ) in 56⊗4
s (M,N,P,Q = 1, . . . , 56).

– 10 –



J
H
E
P
0
2
(
2
0
1
3
)
0
4
9

J3 G4 R N

JO

3 , JOs
3 E7(−25), E7(7) 56 2, 8

JH
3 , JHs

3 SO∗(12), SO(6, 6) 32(′) 2 or 6, 0

JC
3 , JCs

3 , M1,2 (O) SU (3, 3) , SL(6,R), SU(1, 5) 20 2, 0, 5

JR
3 Sp (6,R) 14′ 2

R

(t3 model)
SL (2,R) 4 2

R⊕ Γm−1,n−1 SL (2,R)× SO(m,n) (2,m+ n)

2 (m or n = 2)

4 (m or n = 6)

0 otherwise

Table 1. Simple and semi-simple, non-degenerate U -duality groups G4 “of type E7” [27]. The

relevant symplectic irrep. R of G4 is also reported. Note that the G4 related to split composition

algebras Os, Hs, Cs is the maximally non-compact (split) real form of the corresponding compact

Lie group. The corresponding scalar manifolds are the symmetric spaces G4

H4

, where H4 is the

maximal compact subgroup (with symmetric embedding) of G4. The number of supercharges N of

the resulting supergravity theory in D = 4 is also listed. The D = 5 uplift of the t3 model (based

on J3 = R) is the pure N = 2, D = 5 supergravity. JH

3
is related to both 8 and 24 supersymmetries,

because the corresponding supergravity theories share the very same bosonic sector [25, 65–69].

2.3 Examples

generalized electric-magnetic (U -)duality group G4; as done above, we denote the relevant

G4-representation in which the (fluxes of the) Abelian 2-form field strengths (and their

duals) sit by18 V = R, and we will specify it case by case.

In particular, we here consider the class of groups “of type E7” [27] which can be

characterized as conformal groups of rank-3, simple Euclidean Jordan algebras JA
3 or JAs

3 ,

or equivalently as the automorphism group of the Freudenthal triple system (FTS) M (J3)

18It is worth pointing out that the irrep. R is real for the very non-compact real forms of G4 pertaining

to the relevant U -duality groups, while usually for the other (non-compact) real forms it is pseudo-real

(quaternionic). This reality property can e.g. be inferred from the corresponding (symmetric) embeddings

into G3, the relevant U -duality symmetry in D = 3 space-time dimensions.

As an example, let us consider the fundamental representation R = 56 of E7: it is real for the relevant non-

compact real forms E7(7) (split) and E7(−25) (minimally non-compact), while it is pseudo-real (quaternionic)

for E7(−133) and E7(−5). Indeed, while E7(7) and E7(−25) respectively embed into E8(8) and E8(−24) through

a SL(2,R) commuting factor:

E8(8) ⊃ E7(7) × SL(2,R), E8(−24) ⊃ E7(−25) × SL(2,R),

E7(−133) and E7(−5) embed into E8(−24) and E8(8) through an SU(2) factor:

E8(−24) ⊃ E7(−133) × SU(2), E8(−24) ⊃ E7(−5) × SU(2);

E8(8) ⊃ E7(−5) × SU(2).
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constructed over such algebras [70–72]:

G4 = Conf (J3) = Aut (M (J3)) . (2.28)

A denotes the division algebras A = O,H,C,R, while As denotes the corresponding

split composition algebras As = Os,Hs,Cs,R. The representation R pertains to M (J3),

and its dimension is 6q + 8, where the parameter q = dimRA(s) = 8, 4, 2, 1 for A(s) =

O(s),H(s),C(s),R, respectively. These class of groups “of type E7” has been recently stud-

ied as U -duality symmetries in the context of D = 4 locally supersymmetric theories of

gravity in [30–32], as well as gauge (and global) symmetries in particular D = 3 gauge

theories [61].

An exception is provided by the stu model [49, 50] (section 2.3.5), whose triality

symmetry is exploited within a particular case in section 4.

From section 2.2, it is here worth recalling that in general there are no polynomial

invariants of (p, R) of SLh (p,R) × G4 with homogeneity degree k if k is not a multiple

of p.

2.3.1 G4 = E7, R = 56

This is the prototypical case of groups “of type E7” [27]. In supergravity, this is related to

theD = 4 theories with symmetric scalar manifold, based on the FTSM

(

JO

3

)

(exceptional

N = 2 Maxwell-Einstein theory, with G4 = E7(−25) [65–67]) andM

(

JOs
3

)

(N = 8 maximal

supergravity, with G4 = E7(7) [15, 16, 73]), where J
O

3 and JOs
3 are rank-3 Euclidean Jordan

algebras over the octonions O and split octonions Os, respectively.

The dimension dimS(ap)(R)E7 for the partition λ = ap and R = V (λ7) =: 56 (funda-

mental irrep.) can be computed e.g. by using the software LiE,19 typing the command20

plethysm([a,. . . ,a],[0,0,0,0,0,0,1],E7)[1]. (2.29)

The “[1]” at the end corresponds to the lowest representation. The output of the command

is an integer, which we denote by d, times X[b1, . . . , b7], where X[b1, . . . , b7] indicates the

representation with highest weight b1λ1+ · · ·+ b7λ7, the λi being the fundamental weights

(i = 1, . . . , 7). If all bi’s are zero, then one has found polynomial invariants of homogeneity

degree pa in p dimR = 56p variables; the real dimension of the vector space of such

invariants is given by (recall (2.15))

dim [Sλ=ap (V (λ7))]
E7 = dim [Spa (p, V (λ7))]

SLh(p,R)×E7

= dim [Spa (p,56)]SLh(p,R)×E7 =: d.
(2.30)

19Available at http://www-math.univ-poitiers.fr/˜maavl/.
20In LiE, one first increases the maximal size by typing the command “maxobjects 99999999”.
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By perusing the first few a’s for the first few p’s, one gets the following table:21

E7, 56 a = 0 1 2 3 4 5 6 7 8 9 10

p = 2 d = 1 1 1 2 3 3 5 6 7 9 11

p = 3 d = 1 0 0 0 5 0 1 0 46

p = 4 d = 1 1 1 4 14 35

p = 5 d = 1 0 0 0 31

p = 6 d = 1 1 2 10

p = 7 d = 1 0 2

p = 8 d = 1 1

(2.31)

(throughout the treatment, the blank entries are seemingly not accessible with the com-

puting facilities available to us.)

In the 2-centered case (p = 2), dimS12(56)
E7 = 1 corresponds to W (2.17). The

interpretation of the other results is as follows:

dimS22(56)
E7 = 1 : W2

dimS32(56)
E7 = 2 : W3, I6

dimS42(56)
E7 = 3 : W4, I6W, Tr

(
I2
)

dimS52(56)
E7 = 3 : W5, I6W

2, Tr
(
I2
)
W

dimS62(56)
E7 = 5 : W6, I2

6
, Tr

(
I2
)
W2, Tr

(
I3
)
, I6W

3

dimS72(56)
E7 = 6 : W7, I2

6
W, I6Tr

(
I2
)
, Tr

(
I3
)
W, Tr

(
I2
)
W3, I6W4

dimS82(56)
E7 = 7 :

{
W8, I2

6
W2, I6Tr

(
I2
)
W, Tr

(
I3
)
W2,

Tr
(
I2
)
W4, I6W

5, Tr2
(
I2
)

dimS92(56)
E7 = 9 :

{
W9, I2

6
W3, I6Tr

(
I2
)
W2, Tr

(
I3
)
W3,

Tr
(
I2
)
W5, I6W

6, Tr2
(
I2
)
W, Tr

(
I3
)
I6, I3

6

dimS102(56)
E7 = 11 :

{
W10, I2

6
W4, I6Tr

(
I2
)
W3, Tr

(
I3
)
W4, Tr

(
I2
)
W6,

I6W
7, Tr2

(
I2
)
W2, Tr

(
I3
)
I6W, I3

6
W, I2

6
Tr

(
I2
)
, Tr

(
I2
)
Tr

(
I3
)
,

(2.32)

where the 2-centered polynomial invariants22 I6 (degree 6), Tr
(
I2
)
(degree 8) and Tr

(
I3
)

(degree 12) have been firstly introduced in [48], and then studied in this very case in [35].

Note that no polynomial 2-centered invariants in the 56 of E7 exist with an odd homogene-

ity degree, consistent with the observation made in section 2.2.2. The interpretation (2.32)

of the p = 2 row of table (2.31) is an evidence for the fact that the set

{
W, I6,Tr

(
I2
)
,Tr

(
I3
)}

(2.33)

is a complete basis for the ring of polynomial invariants of (2,56) of SLh (2,R)×E7, and it

is finitely generating, namely all higher order polynomial invariants are simply polynomials

in the polynomials of the set (2.33) itself [18].

In the 3-centered case (p = 3), table (2.31) yields that there are no E7-invariants for

the partitions λ = 13, 23, 33 and hence there are no polynomial invariants of (3,56) of

21The result dim [Sλ=0p (V )]G4 = 1 always trivially refers to a numerical constant.
22As discussed at the end of section 3 of [35], for p centers I6, as W (2.17), generally sits in the

(
∧2p,1

)

of SLh (p,R)×G4.
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SLh (3,R)×E7 with homogeneity degree ≤ 10. The lowest possible degree is 12, at which

Lie finds 5 invariants. The absence of an invariant corresponding to the partition λ = 13,

i.e. of a “3-centered analogue” of W (2.17) can be explained by the fact that 1 /∈ 56⊗3
a (as

mentioned, no invariant polynomials in the 56 of E7 with an odd homogeneity degree exist

at all). Then, one invariant of degree 18, and as many as 46 invariants of degree 24, are

found.

In the 4-centered case (p = 4), there is an E7-invariant of degree 4 (the lowest possible

degree). It can be regarded as the “4-centered analogue” of W (2.17), whose existence can

be explained by the fact that ∃!1 ∈ 56⊗4
a , given by the complete antisymmetrization of the

product of two symplectic metrics CMN of 56, such that (a = 1, . . . , 4, M = 1, . . . , 56)

dimS14(56)
E7 = 1 :Wp=4 :=

1

4!
C[MNCPQ]ǫ

abcdQM
a QN

b QP
c Q

Q
d . (2.34)

Thus, Wp=4 (2.34) is the unique polynomial invariant of (4,56) of SLh (4,R) ⊗ E7 with

homogeneity degree 4. Its square yields the unique polynomial invariant of (4,56) of

SLh (4,R)× E7 with homogeneity degree 8, as given by table (2.31): dimS24(56)
E7 = 1.

In the 5-centered case (p = 5), there are no invariants of degree ≤ 15, since the

partitions λ = 15, 25 and 35 do not yield any invariant for E7. Once again, the absence

of an invariant corresponding to the partition λ = 15, i.e. of a “5-centered analogue” of

W (2.17), can be explained by the fact that 1 /∈ 56⊗5
a .

Finally, for the p = 6 and 8 -centered cases, we see that there is a unique polynomial

invariant of (p,56) of SLh (p,R) × E7 (corresponding to the partition λ = 1p); again, for

p = 6 and 8 it can be regarded as the “p-centered analogue” of W (2.17), whose existence

can be explained by the fact that ∃!1 ∈ 56⊗6
a and ∃!1 ∈ 56⊗8

a , given by the complete

antisymmetrization of the product of p = 6, 8 symplectic metrics CMN of 56, such that

dimS16(56)
E7 = 1 :Wp=6 :=

1

6!
C[MNCPQCRS]ǫ

abcdefQM
a QN

b QP
c Q

Q
d Q

R
e Q

S
f ; (2.35)

dimS18(56)
E7 = 1 :Wp=8 :=

1

8!
C[MNCPQCRSCTU ]ǫ

abcdefghQM
a QN

b QP
c Q

Q
d Q

R
e Q

S
fQ

T
g Q

U
h ,

(2.36)

where the “horizontal” a-indices range over 1, . . . , 6 and 1, . . . , 8 in (2.35) and (2.36), re-

spectively.

2.3.2 G4 = Sp(6,R), R = 14′

In supergravity, this is related to the D = 4 theory with symmetric scalar manifold, based

on the FTS M
(
JR
3

)
, namely the magic N = 2 Maxwell-Einstein theory over JR

3 (the rank-3

Euclidean Jordan algebras over the reals R [65–67]).

In this case, the relevant Sp(6,R)-representation is23 R = V (λ3) =: 14′, namely the

rank-3 completely antisymmetric skew-traceless representation, which is an irreducible

23There are actually two irreducible representations of Sp(6,R) with dimension 14: the rank-2 antisym-

metric skew-traceless 14, and the rank-3 antisymmetric skew-traceless 14′; this latter characterizes Sp(6,R)

as a group “of type E7” [27].
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component of ∧36 =: 6⊗3
a (where 6 is the fundamental representation). The dimension

dimS(ap)(14
′)Sp(6,R) for the partition λ = ap, yielding the (real) dimension of the vector

space of polynomial invariants of homogeneity degree pa in p dimR = 14p variables, is

given as above:

dim
[
Sλ=ap

(
14′

)]Sp(6,R)
= dim

[
Spa

(
p,14′

)]SLh(p,R)×Sp(6,R)
=: d. (2.37)

By perusing the first few a’s for the first few p’s, one gets the following table:

Sp(6,R), 14′ a = 0 1 2 3 4 5 6 7 8 9 10

p = 2 d = 1 1 1 2 3 3 5 6 7 9 11

p = 3 d = 1 0 0 0 4 0 0 0 33

p = 4 d = 1 1 2 5 13 28

p = 5 d = 1 0 0 0 17

p = 6 d = 1 1 2 8

p = 7 d = 1 0 0 0

p = 8 d = 1 1 2

(2.38)

Considerations essentially analogous to the ones made for the case of G4 = E7 and R = 56

hold in this case, and in subsequent cases, as well.

Note that the p = 2 row of table (2.38) is identical to the p = 2 row of table (2.31);

thus, the structure of the ring of polynomial invariants of (2,14′) of SLh(2,R)× Sp(6,R)

is the very same as the one of (2,56) of SLh(2,R) × E7. The same will hold for all

other examples of groups “of type E7” relevant to D = 4 supergravity which we will

consider below, meaning that the structure of two-centered invariants, as well as their

interpretation (2.32), is the very same in all these cases.

However, this does not hold any more already starting from the 3-centered case (p = 3),

as it is immediate to realize by comparing the p = 3 rows of (2.31) and (2.38). Indeed,

table (2.38), as table (2.31), yields that there are no Sp(6,R)-invariants for the partitions

λ = 13, 23, 33 and hence there are no polynomial invariants of (3,14′) of SLh (3,R) ×

Sp(6,R) with homogeneity degree ≤ 10, the lowest possible degree being 12, at which

however Lie finds 4 invariants, instead of 5 invariants as in the E7 case treated above.

As above, the absence of an invariant corresponding to the partition λ = 13, i.e. of a

“3-centered analogue” of W (2.17), can be explained by the fact that 1 /∈ 14′⊗3
a .

2.3.3 G4 = SO(12), R = 32(′)

This is related to the D = 4 theories with symmetric scalar manifold, based on the FTS’s

M
(
JH
3

)
(magic N = 2 Maxwell-Einstein supergravity, sharing the same bosonic sector of

N = 6 supergravity, both with G4 = SO∗(12) [65–67]) and M

(

JHs
3

)

(non-supersymmetric

theory, with G4 = SO(6, 6) [74]), where JH
3 and JHs

3 are rank-3 Euclidean Jordan algebras

over the quaternions H and split quaternions Hs, respectively.

In this case, the relevant SO(12)-representation is R = 32 or R = 32′, namely one of

the two chiral spinor representations. The dimension dimS(ap)(32
(′))SO(12) for the parti-

tion λ = ap, yielding the (real) dimension of the vector space of polynomial invariants of
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homogeneity degree pa in p dimR = 32p variables, is given as above:

dim
[

Sλ=ap

(

32(′)
)]SO(12)

= dim
[

Spa
(

p,32(′)
)]SLh(p,R)×SO(12)

=: d. (2.39)

By perusing the first few a’s for the first few p’s, one gets the following table:

SO(12), 32(′) a = 0 1 2 3 4 5 6 7 8 9 10

p = 2 d = 1 1 1 2 3 3 5 6 7 9 11

p = 3 d = 1 0 0 0 5 0 0 0

p = 4 d = 1 1 2 5 17 42

p = 5 d = 1 0 0 0 42

p = 6 d = 1 1 3 14

p = 7 d = 1 0 0

p = 8 d = 1 1 4

(2.40)

Considerations essentially analogous to the ones made for the cases of G4 = E7, R = 56

and G4 = Sp(6,R), R = 14′ hold in this case, as well.

2.3.4 G4 = SU(6), R = 20

This is related to the D = 4 theories with symmetric scalar manifold, based on the FTS’s

M
(
JC
3

)
(magic N = 2 Maxwell-Einstein theory over JC

3 , with G4 = SU(3, 3) [65–67]) and

M

(

JCs
3

)

(non-supersymmetric theory, with G4 = SL(6,R) [74]), where JC
3 and JCs

3 are

rank-3 Euclidean Jordan algebras over the complex numbers C and split complex numbers

Cs, respectively.
24

In this case, the relevant SU(6)-representation is R = ∧36 =: 20, namely the rank-3

completely antisymmetric representation, built out from the fundamental representation

6. Due to the existence of the invariant ǫ-tensor in the 6 of SU(6), the irrep. 20 is real.

The dimension dimS(ap)(20)
SU(6) for the partition λ = ap, yielding the (real) dimension

of the vector space of polynomial invariants of homogeneity degree pa in p dimR = 20p

variables, is given as above:

dim [Sλ=ap (20)]
SU(6) = dim [Spa (p,20)]SLh(p,R)×SU(6) =: d. (2.41)

By perusing the first few a’s for the first few p’s, one gets the following table:

SU(6), 20 a = 0 1 2 3 4 5 6 7 8 9 10

p = 2 d = 1 1 1 2 3 3 5 6 7 9 11

p = 3 d = 1 0 1 0 5 0 9

p = 4 d = 1 1 2 5 16 41

p = 5 d = 1 0 1 0 37

p = 6 d = 1 1 3 13

p = 7 d = 1 0 2

p = 8 d = 1 1 3

(2.42)

Considerations essentially analogous to the previous cases hold in this case, as well.

24Actually, another supergravity theory exists in which R = 20, namely N = 5, D = 4 supergravity, with

U -duality group G4 = SU(1, 5). However, this theory cannot be uplifted to D = 5, and it is not related to

a FTS, but rather to the Jordan triple system of 1 × 2 octonionic vectors M1,2 (O) (see e.g. [65–67], and

refs. therein).
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2.3.5 G4 = SL(2,R)× SL(2,R)× SL(2,R), R = (2,2,2)

We now consider the so-called N = 2 stu model [49, 50], whose U -duality group is G4 =

SL(2,R) × SO(2, 2) ∼= SL(2,R)3, with the relevant BH flux representation being the tri-

fundamental R = (2,2,2).

This provides an example of group “of type E7” [27] different from the ones treated

above. Indeed, SL(2,R)3 can still be characterized as a conformal symmetry, but of a semi-

simple, rank-3 Jordan algebra, namely J3 = R⊕R⊕R, or equivalently as the automorphism

group of the FTS M (J3) constructed over such an algebra:

SL(2,R)3 = Conf (R⊕ R⊕ R) = Aut (M (R⊕ R⊕ R)) . (2.43)

Actually, by virtue of the isomorphism R ⊕ R ⊕ R ∼ R ⊕ Γ1,1, this case can be regarded

as the (m,n) = (2, 2) element of the infinite sequence of semi-simple rank-3 Jordan alge-

bras R ⊕ Γm−1,n−1, where Γm−1,n−1 denotes the Clifford algebra of O (m− 1, n− 1) [75].

This sequence can be related to D = 4 supergravity theories (displaying symmetric scalar

manifolds) for m(or equivalently n)= 2 (N = 2) or 6 (N = 4). A complete basis of

minimal degree (which turns out to be finitely generating [18]) of 2-centered BH invariant

polynomials have been firstly determined in [48], and then further analyzed in [36] and [37].

The dimension dimS(ap)((2,2,2))
SL(2,R)3 for the partition λ = ap, yielding the (real)

dimension of the vector space of polynomial invariants of homogeneity degree pa in

p dimR = 8p variables, is given as above:

dim [Sλ=ap ((2,2,2))]
SL(2,R)3 = dim [Spa (p,2,2,2)]SLh(p,R)×SL(2,R)3 =: d. (2.44)

As done above, by perusing the first few a’s for the first few p’s, one gets the following

table:
SL(2,R)3, (2,2,2) a = 0 1 2 3 4 5 6 7 8 9 10

p = 2 d = 1 1 3 4 7 9 14 17 24 29 38

p = 3 d = 1 0 0 0 10 0 1 0 57 0 28

p = 4 d = 1 1 4 8 15 27

p = 5 d = 1 0 0 0 10

p = 6 d = 1 1 3 4

p = 7 d = 1 0 0

p = 8 d = 1 1 1

(2.45)

We observe that the p = 2 row of table (2.45) differs from the one of tables (2.31), (2.38),

(2.40), (2.42), which instead all share the same row. This can be traced back to the semi-

simple nature of the rank-3 Jordan algebra R⊕ Γ1,1 to which the stu model is be related,

to be contrasted to the simple rank-3 Jordan algebras corresponding to the cases treated

above.

Moreover, it should be stressed that table (2.45) does not implement a peculiar sym-

metry of the stu model, namely the triality symmetry,25 corresponding to the invariance

25The relevance of this symmetry to the theory of Quantum Information, and in particular to the clas-

sification of the quantum entanglement of three (and four) qubits has been recently studied, exploiting

techniques and results from the supergravity side, also in the context of the so-called BH/qubit correspon-

dence [56, 76–81].
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under the exchange of the three fundamentals 2’s in R = (2,2,2), achieved by imposing

an invariance under the symmetric group S3 acting on the three 2’s in R.

The implementation of the triality symmetry will be explicitly worked out in section 4

for the case of p = 3 and a = 4, namely for the vector space of 3-centered invariant polyno-

mials of degree 12, which, from table (2.45), has dimension 10; as yielded by the treatment

of section 4.3.4, the dimension of the vector space of 3-centered invariant polynomials of

degree 12 which are triality- (namely, S3-) symmetric, and thus relevant for black holes in

the stu model, is 4.

Our analysis can be refined as follows: by looking directly for the (SLh(2,R)×G4)-

invariants as above, we now consider the G4-invariants in Sk((R2)⊗R). The formula (2.12)

shows that these coincide with the G4-invariants in Sλ(R), tensored by the SLh(2,R)-

representation Sλ(R
2), where λ ⊢ k and ht(λ) ≤ 2. By specifying this for the stu model,

as done in all cases above, in Lie one types, for the partition k = a + b with a ≥ b, the

following command (cfr. e.g. (2.29))

plethysm([a,b],[1,1,1],A1A1A1)[1]. (2.46)

As mentioned, if dX[0, 0, 0] occurs in the output, the coefficient d yields the dimension of the

space of G4-invariants in S(a,b)(R), otherwise there are no invariants in this representation.

In the 2-centered case (p = 2), an S3-symmetric analysis of SL(2,R)3- and
(
SLh(2,R)× SL(2,R)3

)
- invariant homogeneous polynomials for 2-centered BHs in the stu

model has been performed in [36, 37, 48],whereas an S4-symmetric treatment consistent in

connection with the quantum entanglement of four qubits was given in [51].

Indeed, the relevant 2-centered representation for stu model is actually a quadri-

fundamental : for p = 2 centers, one considers the invariants of the group SLh(2,R) ×

SL(2,R)3 in the representation (2,2,2,2). Thus, one may promote the S3-invariance

(triality) to an invariance (tetrality) under the symmetric group S4 acting on the four

fundamentals 2’s in (2,2,2,2). A complete, minimal degree basis for the ring of
(
SLh(2,R)× SL(2,R)3

)
- invariant homogeneous polynomials is given by W, together with

2 quartic polynomials and with a sextic one, denoted by26 I′6 [51].

When considering 2-centered BH physics, one must discriminate between the “hori-

zontal” symmetry SLh(2,R) [48] and the U -duality symmetry G4 = SL(2,R)3, on which a

triality must be implemented. Therefore, by down-grading S4 (pertaining to four qubits in

QIT) to S3 (pertaining to 2-centered stu BHs), the consistent S3-invariant p = 2 counting

performed in [36, 37, 48] yields that an invariant polynomial of degree 8 is no more gen-

erated by the previous ones, and a finitely generating [18] complete basis for the ring of
(
SLh(2,R)× SL(2,R)3

)
- invariant homogeneous polynomials is given by four elements of

degree 2, 4, 6 and 8 [48].

26Indeed, there is a slight difference in the definition of the (SLh (2,R)×G4)-invariant I6 for the models of

D = 4 (super)gravity based on simple J3’s [35] with respect to the definition of (SLh (2,R)×G4)-invariant

I′6 for the models ofD = 4 (super)gravity based on the semi-simple sequence J3,m,n := R⊕Γm−1,n−1 [37, 48];

this is discussed in section 3 of [36].
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3 Geometric interpretation

In this section we consider the invariants for SLh(p)×G4 in (Rp)⊗R =: (p, R) in the case

that27

p ≤ r := dimR. (3.1)

Note that r is even whenever the symplectic invariant 2-form CMN in R⊗2
a is non-degenerate

(as we assume throughout the paper).

We start and recall some classical results (mainly referring to [52]), and then we discuss

the associated geometrical interpretation in terms of Grassmannians.

The main result is the observation that the G4-representation S(ap)(R) which, as dis-

cussed in section 2, produces all invariants in Sap((Rp) ⊗ R), can be identified with the

representation of G4 on the homogeneous polynomials of degree a in the Plücker coor-

dinates of the p-planes in R. Each of these Plücker coordinates is an SLh(p)-invariant

homogeneous polynomial of degree p in the p dimR = pr coordinates on (Rp) ⊗ R. Thus,

the G4-invariant polynomials homogeneous of degree a in these Plücker coordinates provide

exactly the (SLh(p)×G4)-invariant homogeneous polynomials of degree ap which are the

object of our investigation.

3.1 Grassmannians

3.1.1 Invariants of SLh(p)×G4 in (Rp)⊗R

Any tensor t in (Rp) ⊗ R can be written as a sum t =
∑min(r,p)

a=1 xa ⊗ ya, with xa ∈ R
p,

ya ∈ R. Let f1, . . . , fp be the standard basis of Rp. Writing each xa =
∑p

i=1 xaifi, and

using the bilinearity of ⊗, one finds that

t =

p
∑

i=1

fi ⊗ ri, (3.2)

for certain uniquely determined elements ri ∈ R.

Since any (SLh(p)×G4)-invariant F is obviously an (SLh(p)× {I})-invariant, it is

firstly convenient to study the invariants of SLh(p) × {I}. To this end, we only consider

27In the case p > r, one can easily show that there are no non-trivial invariants. This can be realized e.g.

as follows.

One can write a tensor t as t =
∑p

i=1 fi ⊗ ri (see eq. (3.2)). In the case p > r, it is however more

convenient to choose a basis e1, . . . , er of R, so that the same tensor can be rewritten as t =
∑r

j=1 vj ⊗ ej ,

for (uniquely determined) vectors vj ∈ R
p.

For a generic t (to be precise, for t outside the closed subset of codimension > 1 of Rp ⊗R defined by the

vanishing of r×r minors of the matrix with rows v1, . . . , vr), the vectors v1, . . . , vr are linearly independent.

Thus, there exists an element A ∈ SLh(p,R) such that Avi = fi, where {fi} is the standard basis of Rp.

Therefore, under the action of SLh(p,R)×{I} all t’s in a dense open subset of Rp ⊗R can be transformed

into the ‘standard’ tensor t =
∑r

j=1 fj ⊗ ej .

Consequently, there is only one orbit (on this dense open set); as any (SLh(p,R)×G4)-invariant poly-

nomial must be constant on this orbit, such a polynomial must be a constant, and thus trivial. Note that

in the limit case r = p, it could actually be given by the determinant of the matrix (v1, . . . , vp) (this is

actually the unique invariant in the case r = p), but if r < p then the codimension of the complement of

this open orbit is > 1, so a non-constant polynomial would be zero in one point and non-zero in another

point of the open orbit, which yields a contradiction.
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the action of SLh(p) on the first factor of (Rp) ⊗ R, so we are actually dealing with the

direct sum of r copies of the fundamental representation R
p =: p of SLh(p). In the case

r ≥ p (3.1), the ring of invariants in this case is well understood. Fixing a basis e1, . . . , er
of R, this ring is generated by the determinants of the (p× p)-minors of the r × p matrix

T := Tt whose columns are the vectors r1, . . . , rp ([52], 11.1.2).

Note that all invariants F vanish on the tensors t =
∑p

i=1 fi⊗ ri such that the rank of

the matrix Tt is less than p, i.e. when the ri do not span a p-dimensional subspace of R; such

tensors t are called unstable (i.e., not semi-stable) tensors for this action. The (geometric)

quotient ((Rp)⊗R)//SLh(p) is the image of the quotient map π given by generators of the

ring of invariants F ([52], 11.1.2):

π : (Rp)⊗R −→ ∧pR, t =

p
∑

i=1

fi ⊗ ri 7−→ r1 ∧ r2 ∧ . . . ∧ rp. (3.3)

Note that ∧pR =: R⊗p
a = Sλ (R) (with partition λ = 1p) has basis eI = ei1 ∧ . . . ∧ eip ,

with i1 < . . . < ip, and therefore π(t) =
∑

tIeI (with I collectively denoting the indices

i1 < . . . < ip), where tI is the determinant of the minor of Tt formed by the rows i1, . . . , ip.

The image of the quotient map π (3.3) consists of the decomposable tensors in ∧pR.

This map, when restricted to stable points, is the lift to linear spaces of the Plücker map

Gr(p,R) → P(∧pR), where Gr(p,R) denotes the Grassmannian of p-planes in R (see

section 3.1.3).

Let now F be an (SLh(p)×G4)-invariant. Since it is trivially an (SLh(p)× {I})-

invariant, from the above reasoning F is a polynomial in the determinants of (p× p)-minors

of Tt. Therefore, all such invariants can be determined with a two-step approach:28

1] first, one identifies the space of such polynomials as a representation of G4;

2] then, one finds the G4-invariants in that space.

Step 1 is actually well-known when one considers the space of such polynomials as a

representation for the larger group GL(R) =: GL(r) (namely, within (3.1)): as a GL(R)-

representation, the space of polynomials, homogeneous of degree a in the (p× p)-minors of

the p× r matrices, is Sap(R) ([52], 11.1.2).

In order to find the (SLh(p)×G4)-invariants in (Rp) ⊗ R, it then suffices to find the

G4-invariants in the representations Sap(R) (step 2). This conclusion was already reached

in section 2.2; however, the above discussion clarifies how a G4-invariant in Sap(R) produces

a polynomial on (Rp)⊗R.

We are now going to reformulate this reasoning in a geometrical way.

3.1.2 From tensors to planes

In order to study p-centered BHs, for the case (3.1), one can use the Grassmannian Gr(p,R)

of p-planes in R as follows.

28It is funny to note that this approach is actually the opposite of the method which has been exploited in

supergravity (especially in the 2-centered case p = 2): in that framework, the G4-invariants are organized in

irreps. of SLh(p), from which one picks out the trivial (singlet) SLh(p)-representations (see e.g. [35–37, 48]).
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Using the notation of section 3.1.1, any tensor t in (Rp) ⊗ R can be written as t =
∑p

i=1 fi ⊗ ri, for certain uniquely determined elements ri ∈ R. It is here convenient to

consider the dense open subset

(Rp ⊗R)0 :=

{
p

∑

i=1

fi ⊗ ri : dim〈r1, . . . , rp〉 = p

}

, (3.4)

such that the p vectors r1, . . . , rp span a p-dimensional subspace of R (the upperscript “0”

denotes the absence of unstable points). This yields a map G to Gr(p,R) as follows:

G : ((Rp)⊗R)0 −→ Gr(p,R), t =

p
∑

i=1

fi ⊗ ri 7−→ Wt := 〈r1, . . . , rp〉. (3.5)

It is worth noting that the action of SLh(p) on R
p merely changes the basis of Wt, so

the map G is SLh(p)-invariant. It is obviously also GLh(p)-invariant, so it is actually

identifying more tensors than strictly necessary for our purposes. The map G (3.5), besides

being injective, is obviously also surjective: indeed, given a p-plane W ⊂ R, one can choose

a basis r1, . . . , rp, and then W = Wt, where t =
∑p

i=1 fi ⊗ ri. Thus, one gets the following

bijection

((Rp)⊗R)0/GLh(p) ←→ Gr(p,R), t ←→ Wt. (3.6)

In particular, any G4-invariant function on the Grassmannian Gr(p,R) of p-planes in R will

yield an (SLh(p)×G)-invariant function on ((Rp)⊗R)0, which will eventually extend29 to

the whole relevant irrep. (Rp)⊗R.

3.1.3 The Plücker map

As Gr(p,R) is (a real subset of) a projective variety, which is moreover a p (r − p)-

dimensional homogeneous space:

Gr (p, r) ∼=
O (r)

O (p)⊗O (r − p)
, (3.7)

one can proceed as follows. Recall that the Plücker map P is defined as the embedding

P : Gr(p,R) −→ P(∧pR), Wt 7−→ ∧
pWt. (3.8)

In particular, the composition P ◦G of this map with G (3.5) maps t to r1∧ . . .∧rp. Fixing

a basis e1, . . . , er of R, one thus gets the basis eI = ei1 ∧ . . . ∧ eip , with i1 < . . . < ip , of

∧pR (cfr. below (3.3)). The Plücker coordinates of Wt are defined as the (p× p)-minors of

the r × p matrix T := Tt with columns r1, . . . , rp.

The action of the group GLh(R) can be represented on the space of global sections

Γ(Gr(p,R), L) on a line bundle L over Gr(p,R). Working over the complex numbers and

denoting by Pic (X) the Picard group of the variety X, let us recall that Pic (Gr (p,R)) is

generated by a (very ample) line bundle L, whose global sections are the Plücker coordinates

29In the present investigation, as resulting from section 2, we consider homogeneous polynomial invariants;

in such a case, the extension from ((Rp)⊗R)0 to the whole (Rp)⊗R is immediate.
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themselves. In fact, Γ(Gr(p,R), L) ∼= ∧pR, (actually the dual representation thereof, since

the coordinates are linear maps on ∧pR). The action ofGLh(R) on R then induces an action

on the Grassmannian Gr(p,R) and thus on the spaces of global sections Γ(Gr(p,R), L).

By recalling that ∧pR = Sλ (R) with partition λ = 1p (cfr. below (2.6)), Bott’s theorem

(see e.g. [53]) gives, as GLh(R)-representations:

Γ(Gr(p,R), L⊗a) ∼= Saλ(R), aλ := (a, . . . , a)
︸ ︷︷ ︸

p

=: ap. (3.9)

Furthermore, any global section of L⊗a is a linear combination of products of a sections

of L (and therefore the map SaΓ(L) → Γ(L⊗a) is surjective); in terms of representations,

this simply amounts to the statement that Saλ is a summand of Sap(R). Thus, any section

of L⊗a is a homogeneous polynomial in the Plücker coordinates of degree a.

Given a G4-invariant F ∈ Saλ(R) ∼= Γ(Gr(p,R), L⊗a), it corresponds to a degree

a homogeneous polynomial in the Plücker coordinates, defined by the map (recall (3.5)

and (3.6)):

F : Gr(p,R) −→ R, (3.10)

Thus, the composition

F ◦G : ((Rp)⊗R)0 −→ ∧pR −→ R, (3.11)

yields a (SLh(p)×G4)-invariant which extends to the whole (Rp) ⊗ R. This provides a

geometrical explanation of the treatment of section 2, and in particular of the fact that

the Sλ (R) with λ = ap contribute to - and actually are the unique responsible for - the

(SLh(p)×G4)-invariant homogeneous polynomials in (Rp)⊗R.

To summarize, in order to find (SLh(p)⊗G4)-invariant homogeneous polynomials F

in the representation (Rp)⊗R, one needs to find invariant polynomials F̂ for the induced

action of G4 on ∧pR:

F (t) = F̂ (. . . , pi1...ip(t), . . .), (3.12)

where pi1...ip(t) = p[i1...ip](t).

In particular, if an invariant F is a homogeneous polynomial of degree k in the coef-

ficients cij of t =
∑

cijfi ⊗ ej , then, as each Plücker coordinate is homogeneous of degree

p in the cij , F̂ is homogeneous of degree k/p in the Plücker coordinates. Thus, k must be

a multiple of p. This matches the statement made below (2.15), and it is not surprising,

as SL(p,C) contains the diagonal matrices ωI where ω = e2πi/p and these act by multipli-

cation by ωd on polynomials F of degree k; so, if F is SLh(p)-invariant, k must indeed be

a multiple of p. Moreover, these invariants F̂ should be non-zero when restricted to the

(semi-)stable decomposable tensors.

4 3-centered stu black holes

We will now apply the method discussed in sections 2 and 3 to compute the invariants

pertaining to 3-centered (p = 3) BHs in the N = 2, D = 4 stu model [49, 50]. As discussed
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in section 2.3.5, in this case the U -duality group is G4 = SL(2,R)× SO(2, 2) ∼= SL(2,R)3,

with the relevant BH representation being the tri-fundamental R = (2,2,2). Moreover,

the K-tensor (namely, the unique rank-4 symmetric invariant in (2,2,2)⊗4
s ; see section 1)

is given by the Cayley’s hyperdeterminant on R [54–56].

In table (2.45), we have computed the dimension of the spaces of invariants for p = 3

up to degree 30. In particular, the lowest degree non-trivial
(

SLh (3,R)× SL (2,R)3
)

-

invariant homogeneous polynomials in the R
3⊗ (2,2,2) =: (3,2,2,2) have degree 12, and

they span a 10-dimensional space.

From the treatment of sections 2 and 3, as well as from table (2.45), such 3-centered

invariant polynomials lie in S43 ((2,2,2)). In the present section, we will determine a basis

for their 10-dimensional space. Then, in subsubsection 4.3.4 we will implement invariance

(triality) under the S3 symmetric group acting on the three 2’s in R, obtaining a basis

of the resulting 4-dimensional vector space of
(

S3 × SLh (3,R)× SL (2,R)3
)

-invariant ho-

mogeneous polynomials of degree 12 in the (3,2,2,2), thus pertaining to the description

of 3-centered BHs in the stu model.

4.1 Invariant from Cayley’s hyperdeterminant: S4(S13 ((2,2,2)))

A first invariant can be constructed as follows.

Let us recall that the BH flux irrep. R = (2,2,2) is endowed with an invariant

alternating form C, i.e. the symplectic 8×8 metric CMN := (∃!)1 ∈ (2,2,2)⊗2
a . Within the

notation of section 3.1, the restriction of CMN to the 3-dimensional subspace Wt ⊂ (2,2,2)

generated by 3 given charge vectors Qi =: ri ∈ (2,2,2) (we here denote the “horizontal”

index as i = 1, 2, 3 = p) is given by the 3× 3 alternating matrix

Ct := C|Wt⊗Wt
=






0 (r1, r2) (r1, r3)

(r2, r1) 0 (r2, r3)

(r3, r1) (r3, r2) 0




 , Wt := 〈r1, r2, r3〉 ⊂ (2,2,2) , (4.1)

where (cfr. (2.17); M = 1, . . . , 8 = dim (2,2,2))

(Ct)ij = (ri, rj) := CMNrMi rNj =:Wij = −Wji (4.2)

is the SL (2,R)3-invariant symplectic product of ri and rj . It is immediate to realize that

Wij (i, j = 1, 2, 3) belongs to the 3′ = ∧23 of SLh (3,R) (cfr. end of section 2.2.1, as well

as the end of section 3 of [35]); indeed, by using the Ricci-Levi-Civita invariant symbol ǫijk

of SLh (3,R), one can define

W i :=
1

2
ǫijkCMNrMj rNk =

1

2
ǫijkWjk ∈

(
3′,1,1,1

)
of SLh (3,R)× SL (2,R)3 . (4.3)

The vector

vt := (r2, r3)r1 + (r3, r1)r2 + (r1, r2)r3 =
1

2
ǫijkWjkri =

1

2
ǫijkW[jkri] ∈Wt (4.4)

spans the kernel of Ct (4.1), and it can be considered as a multilinear alternating map

vt : (2,2,2)⊗3 −→ (2,2,2) , (r1, r2, r3) 7−→ (r2, r3)r1 + (r3, r1)r2 + (r1, r2)r3. (4.5)
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In order to see this, it suffices to check that it is alternating for the permutations (12)

and (23), which is easily done. Thus, the map vt (4.5) induces a linear map ∧3 (2,2,2)→

(2,2,2); by virtue of the treatment of section 3, this proves that vt is a linear combination

of the ri with coefficients which are linear forms in the Plücker coordinates of t. From the

treatment of section 3, these Plücker coordinates are homogeneous of degree p = 3 in the

coordinates cij of t, and they are invariant under the action of SLh(3,R), hence

vt = v(A,I)t, ∀A ∈ SLh(3,R), (4.6)

implying that

vt ∈ (1,Wt) ⊂ (1,2,2,2) . (4.7)

As the symplectic 2-form C is SL (2,R)3-invariant, by recalling definition (4.4) one

obtains the following formula for the action of B ∈ SL (2,R)3 on vt itself:

Bvt = (r2, r3)Br1 + (r3, r1)Br2 + (r1, r2)Br3
= (Br2, Br3)Br1 + (Br3, Br1)Br2 + (Br1, Br2)Br3
= v(I,B)t.

(4.8)

By virtue of (4.6), since

v(A,B)t = v(A,I)(I,B)t = v(I,B)t = Bvt, (4.9)

any SL (2,R)3-invariant polynomial F of degree g on the tri-fundamental representation

R = (2,2,2) produces an
(

SLh (3,R)× SL (2,R)3
)

-invariant polynomial F0 homogeneous

of degree 3g on (3,2,2,2), defined as follows:

F0(t) := F (vt). (4.10)

A natural choice is F = I4, where I4 is the Cayley’s hyperdeterminant [54, 55]

on (2,2,2) (determined by the K-tensor of (2,2,2) [54–56]); this is an homogeneous

polynomial of degree 4, and it is the unique algebraically independent SL (2,R)3-

invariant polynomial on the (2,2,2) itself. Therefore, the choice F = I4 yields an
(

SLh (3,R)× SL (2,R)3
)

-invariant polynomial F0 homogeneous of degree 3 · 4 = 12 for

3-centered BHs in the stu model:

F0(t) := I4(vt). (4.11)

The construction performed above can be clarified in terms of representation theory

as follows.

From the treatment of sections 2 and 3 (in particular, recalling (3.12)), the

(SLh(3,R)⊗G4)-invariants homogeneous polynomials F on (R3) ⊗ R =: (3, R) are given

by invariants F̂ for the induced action of G4 on ∧3R =: R⊗3
a = Sλ(R) (with partition

λ := 13; see below (2.6)):

F (t) = F̂ (. . . , pi1i2i3(t), . . .), (4.12)

(where pi1i2i3(t) = p[i1i2i3](t)) which should be non-zero when restricted to the (semi-)stable

decomposable tensors.
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In general, the representations of G4 on ∧3R may be reducible. Indeed, for the stu

model we have

S13((2,2,2)) := ∧3 (2,2,2) ≡ (2,2,2)⊗3
a
∼= (2,2,2)⊕ (4,2,2)⊕ (2,4,2)⊕ (2,2,4) ,

(4.13)

where 4 denotes the spin s = 3/2 irrep. of SL(2,R).

The appearance of (2,2,2) in the r.h.s. of (4.13), and in general the fact that R ∈ R⊗3
a ,

can be simply related to the existence of the G4-equivariant map

R −→ ∧3R, r 7−→ C
∗ ∧ r (4.14)

where C ∈ ∧2R∗ corresponds to C
∗ ∈ ∧2R under the duality given by the non-degenerate

symplectic form C ≡ CMN = C[MN ] on R (symplectic structure of - generalized - electric-

magnetic duality in D = 4). This implies that any G4-invariant on R trivially produces a

G4-invariant on ∧
3R.

Let us call Ψt the generalization (for a generic case) of the map vt (4.4)–(4.5) con-

structed above:

Ψt : ∧
3R −→ R, r1 ∧ r2 ∧ r3 7−→ (r2, r3)r1 + (r3, r1)r2 + (r1, r2)r3 (4.15)

which then satisfies (cfr. (4.8))

Ψt(B(r1 ∧ r2 ∧ r3)) := Ψt((Br1) ∧ (Br2) ∧ (Br3)) = BΨt(r1 ∧ r2 ∧ r3), ∀B ∈ G4, (4.16)

since (Bri, Brj) = (ri, rj). Thus the map Ψt (4.15) is, up to scalar multiplication, the

unique G4-equivariant projection of ∧3R onto R.

Thus, coming back to the stu model, it follows that, up to a real scalar, the map

π : (3,2,2,2)→ ∧3 (2,2,2) (cfr. (3.3) for p = 3) is given by

π(t) = vt+wt, vt := Ψt(Wt) ∈ (2,2,2) , wt ∈ (4,2,2)⊕ (2,4,2)⊕ (2,2,4) . (4.17)

This leads to the invariant F0 (4.11), which is thus given by the image of S4(S13 (2,2,2))

in S4,4,4 ((2,2,2)).

From the treatment above, it clearly follows that the degree-12 homogeneous

(SLh(3,R)×G4)-invariant polynomial F0 (4.11) can be consistently defined for all groups

G4 “of type E7”, and in particular at least for the class relevant to D = 4 supergravity

theories with symmetric scalar manifolds, listed in table 1.

4.2 Other invariants from S2(S23 ((2,2,2)))

As a natural next step, one can try to determine other SL (2,R)3-invariants of degree 12

from quadratic invariants in S23 ((2,2,2)).

Using LiE, one can decompose S23 ((2,2,2)) into irreducible SL (2,R)3-

representations:

S23 ((2,2,2)) ∼= (3,1,1)⊕3 ⊕ (1,3,1)⊕3 ⊕ (1,1,3)⊕3 ⊕ . . . , (4.18)
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where the dots denote other 25 terms, which are not relevant for our purposes. 3 denotes

the adjoint (spin s = 1) irrep. of SL(2,R), which has a unique quadratic invariant (the

SL(2,R) ∼ SO(2, 1) Cartan-Killing invariant metric η = diag(1, 1− 1)); as a consequence,

since 1 denotes the singlet, there is a unique quadratic invariant induced onto the (3,1,1),

(1,3,1) and (1,1,3) of SL (2,R)3. Thus, from the representations in the r.h.s. of (4.18),

one obtains 3 · 3 = 9 quadratic SL (2,R)3-invariant structures:

∃! (1,1,1) ∈ (3,1,1)⊗s (3,1,1) (3 times);

∃! (1,1,1) ∈ (1,3,1)⊗s (1,3,1) (3 times);

∃! (1,1,1) ∈ (1,1,3)⊗s (1,1,3) (3 times).

(4.19)

One can check that these 9 invariants, together with F0 (4.11), yield 10 linearly inde-

pendent invariants in S43 ((2,2,2)). Thus, as announced, they do provide a complete basis

for the 10-dimensional space of
(

SLh (3,R)× SL (2,R)3
)

-invariant homogeneous polyno-

mials of degree 12 in the (3,2,2,2), as resulting from table (2.45).

4.3 Explicit construction

Let f1, f2, f3 and e1, . . . , e8 be the standard basis of R3 =: 3 of SLh (3,R), and of (2,2,2)

of SL (2,R)3, respectively. Thus, any tensor t ∈ (3,2,2,2) of SLh (3,R) × SL (2,R)⊗3

can be written as30 (using the notation of section (3.1.1), and in particular denoting the

“horizontal” index by i = 1, 2, 3)

t =
∑

i=1,2,3, j=1,...,8

cijfi ⊗ ej =
3∑

i=1

fi ⊗ ri, (4.20)

for certain uniquely determined elements ri ∈ (2,2,2) of SL (2,R)3.

As discussed in section 3, the Plücker coordinates pi1i2i3(t) of the tensor t are the

determinants of the 3 × 3 matrices formed by the the rows i1, i2, i3 of the 8 × 3 matrix

which has columns r1, r2, r3:

pi1i2i3(t) = det






c1i1 c2i1 c3i1
c1i2 c2i2 c3i2
c1i3 c2i3 c3i3




 . (4.21)

This is the formula defining pi1i2i3 = p[i1i2i3], and their number is indeed
(
8
3

)
= 56.

In the stu model G4 = SL (2,R)3, with Lie algebra G4 = sl (2,R)⊕3. Denoting by Xa

(raising operator), Ya (lowering operator), and Ha := [Xa, Ya] the standard generators of

the a-th (a = 1, 2, 3) copy of the Lie algebra sl (2,R), the action of sl (2,R)⊕3 on a vector

30In 3-centered BH physics, the cij (i = 1, 2, 3, j = 1, . . . , 8) spanning the (3,2,2,2) of SLh (3,R) ×

SL (2,R)3 would usually be denoted as QM
a , with a = 1, 2, 3 being the “horizontal” SLh (3,R)-index, and

M = 1, . . . , 8 denoting the U -duality SL (2,R)3-index.
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(ci1, . . . , ci8) ∈ (2,2,2) can be realized through the identification (i = 1, 2, 3)31

(c11, . . . , c18) = (x000, x001, x010, x011, x100, x101, x110, x111);

(c21, . . . , c28) = (y000, y001, y010, y011, y100, y101, y110, y111);

(c31, . . . , c38) = (z000, z001, z010, z011, z100, z101, z110, z111),

(4.22)

where the fundamental (spin s = 1/2) irrep. 2 of SL (2,R) is spanned by the indices

a = 0, 1. For example, the first copy of sl (2,R) in sl (2,R)⊕3 acts on the xabc (equivalently

denoting xabc or yabc or zabc) as follows:

X1xabc =

{

0 if a = 0;

x0bc if a = 1;
Y1xabc =

{

x1bc if a = 0;

0 if a = 1;
H1xabc =

{

xabc if a = 0;

−xabc if a = 1,

(4.23)

and similarly for the other two copies.

Then, one can compute the action of sl (2,R)⊕3 on the Plücker coordinates (4.21),

exploiting the fact that elements of sl (2,R)⊕3 act as derivations on the pi1i2i3 ’s themselves.

For example, by using the identification (4.22), the action of X1 of the first copy of sl (2,R)

in sl (2,R)⊕3 on p167 (4.21) reads

X1p167 = X1 det






x000 y000 z000
x101 y101 z101
x110 y110 z110




 = det






x000 y000 z000
x001 y001 z001
x110 y110 z110




+ det






x000 y000 z000
x101 y101 z101
x010 y010 z010




 ;

(4.24)

therefore, by using the antisymmetry of the Plücker coordinates (4.21), one finds that

X1p167 = p127 − p136. In this way, one can compute the action of each of the 9 generators

{X1, Y1, H1, X2, Y2, H2, X3, Y3, H3} of sl (2,R)
⊕3 on the representation ∧3(2,2,2) (realized

in terms of Plücker coordinates (4.21); also cfr. (3.8)) of SL (2,R)3. Such an action then

extends to an action by derivations on polynomials in the pi1i2i3 ’s themselves.

4.3.1 The representation V (a1, a2, a3)

Let us now consider the realization of the representation V (a1, a2, a3) of G4 = SL (2,R)3

on the space of homogeneous polynomials; here, we use the standard notation in which

V (a1, a2, a3) := (a1+1,a2+1,a3+1), and thus it has (real) dimension (a1+1)(a2+1)(a3+1)

(namely, (a1, a2, a3) denote the weights of the vector space V as SL (2,R)3-representation).

The highest weight vector v ∈ V (a1, a2, a3) satisfies
{

Hiv = aiv;

Xiv = 0;
i = 1, 2, 3. (4.25)

Thus, V (a1, a2, a3) can be realized as the vector space spanned by certain combinations of

powers of lowering operators Xi’s on its highest weight vector v itself:

V (a1, a2, a3) = 〈Y k
1 Y

l
2Y

m
3 v : 0 ≤ k ≤ a1, 0 ≤ l ≤ a2, 0 ≤ m ≤ a3 〉. (4.26)

31In physics literature, the basis {xabc}a,b,c=0,1 is named qubit basis, because it naturally occurs in the

quantum entanglement of three qubits in Quantum Information Theory. For relation to other symplectic

frames in the stu model as well as recent developments related to the BH/qubit correspondence, see e.g. [49,

50, 81–83] and [76–80], respectively.
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By virtue of (4.25), the vector Y k
1 Y

l
2Y

m
3 v ∈ V (a1, a2, a3) is again an eigenvector of all three

Hi’s with weight (a1 − 2k, a2 − 2l, a3 − 2m).

We are now going to exploit this general description in order to explicitly construct

the 10
(

SLh (3,R)× SL (2,R)3
)

-invariant homogeneous polynomials of degree 12 in the

(3,2,2,2) considered in sections 4.1 and 4.2, which constitute a complete basis for the

corresponding 10-dimensional vector space resulting from table (2.45).

4.3.2 The (2,2,2) in S13((2,2,2))

Below (4.13), we observed that there is a (unique) irreducible tri-fundamental SL (2,R)3-

representation V (1, 1, 1) =: (2,2,2) in S13((2,2,2)) = ∧
3(2,2,2) =: (2,2,2)⊗3

a . In order

to characterize it, we here determine its highest weight vector.

Besides (2,2,2), also each of the other 3 irreducible summands of S13((2,2,2))

in the r.h.s. of (4.13) has a vector with weight (1, 1, 1), therefore the weight space

S13((2,2,2))(1,1,1) is four-dimensional:

S13((2,2,2))(1,1,1) : = {v ∈ S13((2,2,2)) : Hiv = v, i = 1, 2, 3 }

= 〈p145, p136, p235, p127 〉, (4.27)

as one can check within the conventions adopted above. The unique (up to a scalar multiple)

highest weight vector in this space is

v := p145 − p136 − p127, so 〈v〉 = ∩3i=1 ker(Xi) ∩ S13((2,2,2))(1,1,1). (4.28)

Thus, an isomorphism between (2,2,2) ⊂ S13((2,2,2)) and (2,2,2) itself can be obtained,

by setting

xklm := Y k
1 Y

l
2Y

m
3 v, k, l,m ∈ {0, 1}, (4.29)

where v is defined in (4.28).

The usual expression of the SL (2,R)3-invariant Cayley’s hyperdeterminant I4 [54, 55]

in the tri-fundamental (2,2,2) as a quartic homogeneous polynomial in the xijk’s [56]

(in qubit basis; cfr. footnote 30) produces a degree-4 polynomial in the Plücker coordinates

pijk(t) (4.21). As a polynomial in the cij (cfr. e.g. the first line of (4.22)), such a polynomial

is then
(

SLh (3,R)× SL (2,R)3
)

-invariant homogeneous of degree 12 in the (3,2,2,2);

indeed, as expected, one can check that it coincides with the invariant F0(t) (4.11).

4.3.3 The (1,1,3)⊕3 in S23 ((2,2,2))

The SL (2,R)3-representation S23 ((2,2,2)) is a sub-representation of S2(S13 ((2,2,2))) =:
(
(2,2,2)⊗3

a

)⊗2

s
, which is the space of homogenous polynomials of degree 2 in the Plücker

coordinates pijk(t); in fact, by substituting the cubic polynomials (4.21) in the cij for these

pijk, one gets a vector space of degree-6 homogeneous polynomials in the cij ’s, which is

nothing but S23 ((2,2,2)).

Using this fact, one can first determine the weight space

S2(S13 ((2,2,2)))(0,0,2) : = {v ∈ S2(S13 ((2,2,2))) : Hiv = 0, i = 1, 2, H3v = 2v }

= 〈p168p137, . . .〉, (4.30)

which has dimension 52.
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Next, by computing the images of the 52 basis elements under the raising operators

Xi, i = 1, 2, 3, one finds the highest weight vectors in S2(S13 ((2,2,2))) (4.30), which result

to span a 5-dimensional sub-space of such a weight space. As they are rather complicated

(and not particularly illuminating) homogeneous polynomials of degree 2 in the Plücker

coordinates pijk(t), we will refrain from reporting them here explicitly.

Then, by recalling (4.21), one can express pijk in terms of the coordinates cij , thus

obtaining a 3-dimensional sub-space. Let {g1, g2, g3} be a basis of this sub-space; there-

fore, (1,1,3)⊕3 ⊂ S23 ((2,2,2)) (cfr. (4.18)) is spanned by
{
gi, Y3(gi), Y

2
3 (gi)

}

i=1,2,3
. The

SL (2,R)3-representation V (0, 0, 2) =: (1,1,3) has a unique invariant in S2V (0, 0, 2) =:

(1,1,3)⊗2
s , given by the Cartan-Killing metric in the adjoint (spin s = 1) irrep. 3

of the third copy of SL (2,R) in SL (2,R)3 itself, and whose expression in terms of
{
g, Y3(g), Y

2
3 (g)

}
is given by

2gY 2
3 (g)− (Y3(g))

2 . (4.31)

Thus, in S2 (S23 ((2,2,2))) ⊂ S43 ((2,2,2)), one gets 3
(

SLh (3,R)× SL (2,R)3
)

-

invariant homogeneous polynomials of degree 12 in the (3,2,2,2), which can be checked

to be linearly independent as polynomials in the cij ’s.

By considering also the results of the same procedure repeated for (3,1,1)⊕3 ⊂

S23 ((2,2,2)) as well as for (1,3,1)⊕3 ⊂ S23 ((2,2,2)) (cfr. (4.18)), one obtains a total

of 3 SL (2,R)3-invariant homogeneous polynomials of degree 12 in S2 (S23 ((2,2,2))) ⊂

S43 ((2,2,2)).

4.3.4 stu Triality

In order to determine the remaining relevant 6 invariants of degree 12, one can now use the

action of the symmetric group S3 on R = (2,2,2) by permuting the tensor components,

so (12) ∈ S3 will map xabc to xbac, etc. Consequently, S3 will also act on the cij ’s, as

well as on the Plücker coordinates pijk. As we will see below, in the context of stu black

holes, the invariance under S3 must be enforced, because it corresponds to the triality

symmetry [49, 50] exhibited by such a model of N = 2, D = 4 supergravity.

Using this action, the 3 invariants just found in section 4.3.3 give rise to the required

set of 9 invariants.

Including the invariant from section 4.1 (which, as mentioned above, matches the one

obtained in section 4.3.2), one gets a total of 10 invariants of degree 12 in the cij ’s.

Thus, we constructed a basis {I12,α}α=1,...,10 for the 10-dimensional vector space

of
(

SLh (3,R)× SL (2,R)3
)

-invariant homogeneous polynomials of degree 12 in the

(3,2,2,2) (resulting from table (2.45)).

As degree-12 homogeneous polynomials in the cij ∈ (3,2,2,2) of SLh (3,R) ×

SL (2,R)3 (realized e.g. through the identification (4.22)), they have far too many terms,

rendering their explicit expression cumbersome and not particularly illuminating. However,

we observe that each of the invariants I12,α can be rewritten as

I12,α =
10∑

β=1

CαβMβ + . . . , (4.32)
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where Cαβ ∈ Z, and Mβ (β = 1, . . . , 10) denotes the following set of monomials:

M1 := c418c
2
23c25c26c

3
31c32, M2 := c418c

2
23c

2
25c

2
31c

2
32, M3 := c418c22c24c

2
25c

3
31c33,

M4 := c418c22c23c26c27c
4
31, M5 := c418c22c23c25c27c

3
31c32, M6 := c418c

2
22c

2
27c

4
31,

M7 := c311c16c
2
22c

2
27c33c

3
38, M8 := c311c14c

2
22c

2
27c35c

3
38, M9 := c311c14c22c23c26c27c35c

3
38,

M10 := c311c14c
2
23c

2
26c35c

3
38, (4.33)

which completely characterize each I12,α. Indeed, the dots in the right-hand side of (4.32)

stand for many other linear combinations of monomials which are linearly independent on

the Mβ ’s, but which can be determined by the action of the whole group SLh (3,R) ×

SL (2,R)3 itself, once the Cαβ ’s are specified. Of course, there are many sets of 10

monomials with the property (4.32). Given the set Mβ (4.33), each element I12,α of the

10-dimensional complete basis {I12,α}α=1,...,10 constructed above can be written as a vector

in Z
10.

Let us make some examples.

The invariant F0 (4.11), constructed in section 4.1 as well as in section 4.3.2, has

coordinates32

F0 ≡ (0, 0, 0,−2, 4, 1, 4, 4,−8, 4, 4). (4.34)

On the other hand, the following three vectors correspond to the aforementioned

basis {g1, g2, g3} the 3-dimensional sub-space of invariants obtained from (1,1,3)⊕3 ⊂

S23 ((2,2,2)) (cfr. section 4.3.3):

g1 ≡ (−6, 6, 1, 0, 0, 0, 0, 0, 9,−9,−9);

g2 ≡ (2,−2,−1, 2,−4,−2, 10, 10,−15, 5, 5);

g3 ≡ (2,−1, 0, 2,−2,−1, 6, 4,−8, 4, 4).

(4.35)

As mentioned above, the stu triality symmetry (implemented as the symmetric group

S3) permutes the subspaces (1,1,3)⊕3, (1,3,1)⊕3 and (3,1,1)⊕3; as a consequence, there

is a 3-dimensional sub-space of triality-invariant
(

SLh (3,R)× SL (2,R)3
)

-invariants in

their direct sum,33 which is the space spanned by the vectors

F1 ≡ (1,−1, 1, 1,−2,−1, 3, 3,−14, 3, 3);

F2 ≡ (−5, 5,−5, 7,−14,−1,−7,−7,−10,−7,−7);

F3 ≡ (4,−3, 0, 4,−6,−3, 4, 2,−22, 8, 8).

(4.36)

By adding the invariant F0 (4.11) (or equivalently, through (4.32)–(4.33), (4.34)),

which is also triality-invariant, out of {I12,α}α=1,...,10 one gets a 4-dimensional basis

{F0, F1, F2, F3} for degree-12 homogeneous polynomials invariant under the action of

32What we actually write in (4.34), (4.35) and (4.36) are 11 integers (a1, . . . , a11) such that

10∑

α=1

aαI12,α + a11F0 = 0.

33Its complement is the direct sum of three 2-dimensional (irreducible) S3-representations.

– 30 –
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S3 × SLh (3,R) × SL (2,R)3 on (3,2,2,2). Thus, as anticipated in section 4, 4 is the

(real) dimension of the vector space of degree-12
(

SLh (3,R)× SL (2,R)3
)

-invariant poly-

nomials relevant for the 3-centered BHs in the N = 2, D = 4 stu model.
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