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Abstract
The single image super-resolution (SISR) problem represents a class of efficient
models appealing in many computer vision applications. In this paper, we focus on
designing a proximal symmetric alternating direction method of multipliers (SADMM)
for the SISR problem. By taking full exploitation of the special structure, the method
enjoys the advantage of being easily implementable by linearizing the quadratic term
of subproblems in the SISR problem. With this linearization, the resulting
subproblems easily achieve closed-form solutions. A global convergence result is
established for the proposed method. Preliminary numerical results demonstrate that
the proposed method is efficient and the computing time is saved by nearly 40%
compared with several state-of-the-art methods.

Keywords: proximal symmetric alternating direction method of multipliers;
linearized Peaceman-Rechford splitting method; convex minimization; strictly
contractive; single image super-resolution

1 Introduction
SISR is a technique that aims at restoring a high-resolution (HR) image from a single de-
graded low-resolution (LR) image. Since the HR image contains more details than the LR
one, the image of HR is preferred in many practical cases, such as video surveillance, the
hyperspectral technique, and remote sensing. Super-resolution (SR) is a typical ill-posed
inverse problem since a multiplicity of solutions exist for any input LR pixel []. To tackle
such a problem, most of the SR methods reduce the size of the solution space by incor-
porating strong prior information, which can be obtained by training data, using vari-
ous regularization methods, and capturing specific image features []. Motivated by those
ideas, the SISR schemes can be broadly divided into three categories: interpolation-based
methods, learning-based methods, and reconstruction-based methods.

Interpolation-based methods such as the bicubic approach are simple and easy to imple-
ment but tend to blur the high frequency details and produce aliasing artifacts at salient
edges []. The learning-based algorithms recover the missing high frequency details by
learning the relations between LR and HR image patches from a given database []. How-
ever, they highly rely on the similarity between the training set and the test images and
generally have high computational complexity. Reconstruction-based methods that are
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considered in this paper belong to the third category of SISR schemes [–]. As SISR es-
sentially is a highly ill-posed problem, the performance of such approaches mainly relies
on the prior knowledge. Among all the priors, smoothness priors such as the total variation
(TV) prior have been widely used in many image processing applications []. To reduce
its computational complexity, a fast SR alternating direction method of multipliers (FSR-
ADMM) based on the TV model is proposed in []. Considering the efficiency of a sym-
metric alternating direction method of multipliers (SADMM) [], our paper aims at con-
structing a fast SR symmetric alternating direction method of multipliers (FSR-SADMM).

In the SISR problem, the observed LR image is modeled as a noisy version of the blurred
and downsampled HR image estimated as follows:

y = �Hx + ν, (.)

where the vector y ∈R
Nl (Nl = ml ×nl) corresponds to the LR observed image and x ∈ R

Nh

(Nh = mh × nh) denotes the HR image with Nh > Nl . ν ∈R
Nl represents a zero-mean addi-

tive white Gaussian noise (AWGN), � ∈ R
Nl×Nh and H ∈R

Nh×Nh stand for the downsam-
pling and the blurring operations, respectively.

Concisely, the SISR TV model corresponds to solving the following optimization prob-
lem:

min
x




‖y – �Hx‖


︸ ︷︷ ︸

data fidelity

+α ‖x‖TV
︸ ︷︷ ︸

TV regularization

, (.)

where ‖y – �Hx‖
 stands for the data fidelity term while ‖x‖TV = φ(Ax) =

√‖∇hx‖
 + ‖∇νx‖

 represents the regularizationa prior with A = [∇h,∇ν]T ∈ R
Nh×Nh , and

α denotes the regularization parameter balancing the regularization term and the data fi-
delity term. The direct ADMM in [] is given hereinafter which first rewrites the problem
(.) as

min
x,z,u



‖y – �z‖

 + αφ(u)

s.t. Hx = z,

Ax = u,

and adopts the following iterative scheme:

xk+ = argmin
x

μ


∥

∥Hx – zk + dk

∥

∥

 +

μ


∥

∥Ax – uk + dk

∥

∥

, (.a)

zk+ = argmin
z



‖y – �z‖

 +
μ


∥

∥Hxk+ – z + dk

∥

∥

, (.b)

uk+ = argmin
u

αφ(u) +
μ


∥

∥Axk+ – u + dk

∥

∥

, (.c)

dk+
 = dk

 +
(

�xk+ – zk+), (.d)

dk+
 = dk

 +
(

Axk+ – uk+). (.e)
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Recently, Zhao et al. [] proposed a fast single image super-resolution by adopting a new
efficient analytical solution for �-norm regularized problems, which can reduce the num-
ber of iterations in each loop from five steps to three steps by tackling the downsampling
operator � and the blurring operator H simultaneously. By rewriting (.) as the following
constrained optimization problem:

min
x,u



‖y – �Hx‖

 + αφ(u)

s.t. Ax = u,
(.)

they proposed the easier ADMM-type iterative scheme, i.e., FSR-ADMM:

xk+ = argmin
x

‖y – �Hx‖
 + μ

∥

∥Ax – uk + dk∥
∥


, (.a)

uk+ = argmin
u

αφ(u) +
μ


∥

∥Axk+ – u + dk∥
∥


, (.b)

dk+ = dk +
(

Axk+ – uk+). (.c)

Note that (.a) is the classical least square problem and has the solution given by

xk+ =
(

HT�T�H + μATA
)–(HT�Ty + μAT(uk – dk)). (.)

As to such an expensive inversion process, the methods to alleviate the computational bur-
den can be roughly categorized into two main categories, one is to ideally assume ATA = I .
Then such formula can be solved efficiently by a Thomas algorithm in N

h flops []. The
other option is to establish a block circulant matrix with circulant blocks (BCCB) A. Under
such conditions, the Woodbury formula can be utilized to decrease the order of compu-
tation complexity from O(N

h ) to O(Nh log Nh) []. Nevertheless, in realistic settings
the problem is that one does not necessarily know in advance if the BCCB assumption is
good for SISR because it may lead to the appearance of ringing artifacts emanating from
the boundaries, which is a well-known mismatch and degradation consequence of such
deconvolved images [].

To alleviate the above dilemma and further apply FSR-ADMM into wider scenarios
with proper matrix A, we propose a new method with two-fold solution. () Compute
(HT�T�H + μ

τ
INh )– instead of computing (HT�T�H + μATA)– so as to bypass the need

of special condition of A. () Accelerate FSR-ADMM by introducing a new dual multiplier
λk+ 

 .
In light of the above analysis, this paper proposes the following iterative scheme based

on semiproximal symmetric ADMM (FSR-SADMM):b

xk+ =
(

HT�T�H +
μ

τ
INh

)–(

HT�Ty +
μ

τ
xk – μAT

(

Axk – uk –
λk

μ

))

, (.a)

λk+ 
 = λk – rμ

(

Axk+ – λk), (.b)

uk+ = argmin
u

αφ(u) +
μ


∥

∥Axk+ – u – λk+ 
 /μ
∥

∥

, (.c)

λk+ = λk – sμ
(

Axk+ – λk+). (.d)
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In a nutshell, the contributions of this article can be summarized as follows:
. We propose a customized semiproximal term especially suitable for SR imaging

system which can avoid computing some boring matrix inversion such as
(HT�T�H + μATA)– existing in (.a). Consequently, FSR-SADMM can be applied
in wider scenarios without a strict condition of A.

. Based on the iterative scheme of strictly contractive semiproximal
Peaceman-Rachford splitting method, our proposed FSR-SADMM can significantly
reduce the total iteration count while only involving additional dual update (i.e.,
λk+ 

 ) which added negligible computational burden for each iteration. As a result,
our proposed FSR-SADMM prefers to maintain a better convergence rate which can
experimentally reduce the computing time by %.

. We prove that the FSR-SADMM is convergent under mild conditions.
The rest of this paper is organized as follows. In Section , we present some preliminaries

which are useful for the subsequent analysis. In Section , we illustrate the FSR-SADMM
to reconstruct the single image super-resolution. Section  provides convergence analysis
of the proposed method. Section  presents extensive numerical results that evaluate the
performance of the proposed reconstruction algorithm in comparison with some state-
of-the-art algorithms. Finally, concluding remarks are provided in Section .

2 Preliminaries
2.1 Variational reformulation of (1.4)
In this section, following He and Yuan’s approach [], we reformulate the convex min-
imization model (.) as a variational form, which is useful for succedent algorithmic il-
lustration and convergence analysis. Let us denote z = x, z = u, B = A, B = –INh , then
(.) becomes

min
z∈RNh ,z∈RNh

θ(z) + θ(z)

s.t. Bz + Bz = ,
(.)

where θ(z) = 
μ

‖y – �Hz‖
 and θ(z) = αφ(z). The Lagrangian function and aug-

mented Lagrangian function of (.) can be written as

L(z, z,λ) = θ(z) + θ(z) – λT(Bz + Bz) (.)

and

Lμ(z, z,λ) = θ(z) + θ(z) – λT(Bz + Bz) +
μ


‖Bz + Bz‖, (.)

respectively, where λ ∈ R
Nh is a Lagrangian multiplier. Then seeking a saddle point of

L(z, z,λ) is to find (z∗
 , z∗

,λ∗) such that

L
λ∈RNh

(

z∗
 , z∗

,λ
)≤L

(

z∗
 , z∗

,λ∗)≤Lz∈RNh ,z∈RNh

(

z, z,λ∗). (.)

That is, for any (z, z,λ), we have

θ(z) + θ(z) –
(

θ
(

z∗

)

+ θ
(

z∗

))

–
(

z – z∗

)TBT

λ
∗ –
(

z – z∗

)TBT

λ
∗ ≥ , (.a)
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(

λ – λ∗)T(Bz + Bz) ≥ . (.b)

Therefore, solving (.) is equivalent to finding w = (z∗
 , z∗

,λ∗) such that

VI(
, F , θ ): θ (u) – θ
(

u∗) +
(

w – w∗)TF
(

w∗)≥ , ∀w ∈ 
, (.)

where

u :=

(

z

z

)

, w :=

⎛

⎜

⎝

z

z

λ

⎞

⎟

⎠ , θ (u) := θ(z) + θ(z), (.)

and

F(w) :=

⎛

⎜

⎝

–BT
λ

–BT
λ

Bz + Bz

⎞

⎟

⎠ , 
 := R
Nh ×R

Nh ×R
Nh . (.)

Note that the mapping F(w) defined in (.) is affine with a skew-symmetric matrix, it is
monotone. We denote by 
∗ the solution set of VI(
, F , θ ).

2.2 Some notations
We use ‖·‖ to denote the -norm of a vector and let ‖z‖

G = zTGz for z ∈ R
N and G ∈R

N×N .
For a real symmetric matrix S, we denote S 	  (S 
 ) if S is positive semidefinite (positive
definite). For convenient analysis, we define the following matrices:

H =

⎛

⎜

⎝

R  
 r+s–rs

r+s μBT
B – r

r+s BT


 – r
r+s B


(r+s)μ INh

⎞

⎟

⎠ , (.)

M =

⎛

⎜

⎝

INh  
 INh 
 –sμB (r + s)INh

⎞

⎟

⎠ , (.)

and

Q =

⎛

⎜

⎝

R  
 μBT

B –rBT


 –B

μ

INh

⎞

⎟

⎠ . (.)

Below we prove three assertions regarding the matrices just defined. These assertions
make it possible to present our convergence analysis for the new algorithm compactly with
alleviated notation.

Lemma . If R 
 , μ ∈ (, ), r ∈ (, ), s ∈ (, ], and B is full column rank, then the
matrices H , M, and Q defined, respectively, in (.), (.), and (.) satisfy

H 
 , HM = Q, (.)



Gao et al. Journal of Inequalities and Applications  (2016) 2016:197 Page 6 of 18

and

G := QT + Q – MTHM 	 . (.)

Proof We consider two cases.
(I) r ∈ (, ), s ∈ (, ). Since R 	 , B is assumed to be full column rank, we only need

to check that

H̄ =

(

μ(r + s – rs) –r
–r 

μ

)


 .

Note that

{

r + s – rs = r + s( – r) > ,
r + s – rs – r = (r + s)( – r) > .

Then we have

H̄ 
 .

Therefore, the assertion H 
  is verified.
Under the definition of the matrices H , M, and Q, by a simple manipulation, we get

HM =

⎛

⎜

⎝

R  
 r+s–rs

r+s μBT
B – r

r+s BT


 – r
r+s B


(r+s)μ INh

⎞

⎟

⎠

⎛

⎜

⎝

INh  
 INh 
 –sμB (r + s)INh

⎞

⎟

⎠

=

⎛

⎜

⎝

R  
 μBT

B –rBT


 –B

μ

INh

⎞

⎟

⎠ = Q. (.)

The second assertion HM = Q is proved. Consequently, we have

MTHM = MTQ =

⎛

⎜

⎝

INh  
 INh –sμBT



  (r + s)INh

⎞

⎟

⎠

⎛

⎜

⎝

R  
 μINh –rBT



 –B

μ

INh

⎞

⎟

⎠ (.)

=

⎛

⎜

⎝

R  
 ( + s)μBT

B –(r + s)BT


 –(r + s)B
r+s
μ

INh

⎞

⎟

⎠ . (.)

Using (.), (.), and the above equation, we get

G = QT + Q – MTHM

=

⎛

⎜

⎝

R  
 μBT

B –( + r)BT


 –( + r)B

μ

INh

⎞

⎟

⎠
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–

⎛

⎜

⎝

R  
 ( + s)μBT

B –(r + s)BT


 –(r + s)B
r+s
μ

INh

⎞

⎟

⎠

=

⎛

⎜

⎝

R  
 ( – s)μBT

B (s – )BT


 (s – )B
–r–s

μ
INh

⎞

⎟

⎠ .

Similarly, note that

{

 – s > ,
( – s)( – r – s) – ( – s) = ( – s){( – s) + ( – r)} – ( – s) > .

Therefore, the matrix G is positive definite.
(II) r ∈ (, ) and s = . Note that

H =

⎛

⎜

⎝

R  
 μ

r+ BT
B – r

r+ BT


 – r
r+ B


(r+)μ INh

⎞

⎟

⎠

and

G =

⎛

⎜

⎝

R  
  
  –r

μ
INh

⎞

⎟

⎠ .

Thus H and G are positive definite and positive semidefinite, respectively. Here, we would
emphasize that we do not require the positive definiteness of G. Instead, positive semidef-
initeness of G is enough for our algorithmic analysis. �

3 Algorithm
3.1 FSR-SADMM
In this section, we will present our new algorithm to solve (.). But we first present the
iterative scheme by using the standard strictly contractive Peaceman-Rachford splitting
method with two different relaxation factors:

zk+
 = argmin

z∈RNh
Lμ

(

z, zk
,λk), (.a)

λk+ 
 = λk – rμ

(

Bzk+
 + Bzk


)

, (.b)

zk+
 = argmin

z∈RNh
Lμ

(

zk+
 , z,λk+ 


)

, (.c)

λk+ = λk+ 
 – sμ

(

Bzk+
 + Bzk+


)

. (.d)

By introducing a customized semiproximal term especially for TV super-resolution
imaging, our FSR-SADMM has the iterative scheme

zk+
 = argmin

z∈RNh
Lμ

(

z, zk
,λk) +



∥

∥z – zk

∥

∥

R, (.a)
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λk+ 
 = λk – rμ

(

Bzk+
 + Bzk


)

, (.b)

zk+
 = argmin

z∈RNh
Lμ

(

zk+
 , z,λk+ 


)

, (.c)

λk+ = λk+ 
 – sμ

(

Bzk+
 + Bzk+


)

, (.d)

where R = μ

τ
INh – μBT

 B is a customized semidefinite matrix.

3.2 Related methods
The methods proposed in [] and [] belong to the category of SADMM-type ap-
proaches with logarithmic-quadratic proximal regularization, which have larger step sizes
compared with SADMM. The former is with the step sizes of r ∈ (, ), s ∈ (, ) while the
latter s ∈ (, ), r ∈ (,  – s), which are different from r ∈ (, ), s ∈ (, ] considered in this
paper. The parameters r and s in SADMM have also been studied intensively by He et al.
[] and Gu et al. []. However, both of them cannot fully utilize the special structure
of SISR scenarios involved in this paper. And computing (HT�T�H + μATA)– cannot be
avoided.

4 Global convergence
To make the analysis more elegant, we reformulate FSR-SADMM (.a)-(.d) into the
formc

zk+
 = argmin

z∈RNh

{

θ(z) –
(

λk)TBz +
μ


∥

∥Bz + Bzk

∥

∥
 +



∥

∥z – zk

∥

∥

R

}

, (.a)

λk+ 
 = λk – rμ

(

Bzk+
 + Bzk


)

, (.b)

zk+
 = argmin

z∈RNh

{

θ(z) –
(

λk+ 

)TBz +

μ


∥

∥Bzk+
 + Bz

∥

∥

}

, (.c)

λk+ = λk+ 
 – sμ

(

Bzk+
 + Bzk+


)

. (.d)

Now we analyze the convergence for our proposed FSR-SADMM (.a)-(.d). We prove
its global convergence from the contraction perspective. In order to further alleviate the
notation in our analysis, we define an auxiliary sequence w̃k as

w̃k =

⎛

⎜

⎝

z̃k


z̃k


λ̃k

⎞

⎟

⎠ =

⎛

⎜

⎝

zk+


zk+


λk – μ(Bzk+
 + Bzk

)

⎞

⎟

⎠ , (.)

where (zk+
 , zk+

 ) is produced by (.a) and (.c), and we immediately get

zk+
 = z̃k

 , zk+
 = z̃k

, λk+ 
 = λk – r

(

λk – λ̃k),

and

λk+ = λk+ 
 – sμ

(

Bz̃k
 + Bz̃k


)

= λk – r
(

λk – λ̃k) – s
[

μ
(

Bz̃k
 + Bzk


)

– μB
(

zk
 – z̃k


)]
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= λk – r
(

λk – λ̃k) – s
[

λk – λ̃k – μB
(

zk
 – z̃k


)]

= λk –
[

(r + s)
(

λk – λ̃k) – sμB
(

zk
 – z̃k


)]

.

Moreover, we have the following relationship:

⎛

⎜

⎝

zk+


zk+


λk+

⎞

⎟

⎠ =

⎛

⎜

⎝

zk


zk


λk

⎞

⎟

⎠ –

⎛

⎜

⎝

IN  
 IN 
 –sμB (r + s)INh

⎞

⎟

⎠

⎛

⎜

⎝

zk
 – z̃k



zk
 – z̃k



λk – λ̃k

⎞

⎟

⎠ ,

which can be reformulated as a compact form under the notation of wk and w̃k :

wk+ = wk – M
(

wk – w̃k), (.)

where M is defined in (.).
Now we start to prove some properties for the sequence {w̃k} defined in (.). We are

interested in estimating how accurate the point w̃k is to a solution point w∗ of VI(
, F , θ ).
The main result is proved in Theorem .. To prove this main result, we require two lem-
mas. The first key lemma provides a lower bound on specially constructed functional in
terms of a quadratic term involving the matrix Q defined in (.).

Lemma . For given wk ∈ 
, let wk+ be generated by FSR-SADMM (.a)-(.d) and w̃k

be defined in (.). Then we have w̃ ∈ 
 and

θ (u) – θ
(

ũk) +
(

w – w̃k)TF
(

w̃k)≥ (w – w̃k)TQ
(

wk – w̃k), ∀w ∈ 
, (.)

where Q is defined in (.).

Proof From the first-order optimality condition of z-subproblem in (.a), for any z ∈
R

Nh , we obtain

θ(z) – θ
(

zk+

)

+
(

z – zk+

)T{–BT

λ
k + μBT


(

Bzk+
 + Bzk


)

+ R
(

zk+
 – zk


)}≥ . (.)

By the definition of z̃k
 and λ̃k in (.), the above inequality can be written as

θ(z) – θ
(

z̃k

)

+
(

z – z̃k

)T{–BT

 λ̃
k + R

(

z̃k
 – zk


)}≥ . (.)

Similarly, from the first-order optimization condition of z-subproblem in (.c), we
achieve

θ(z) – θ
(

zk+

)

+
(

z – zk+

)T{–BT

λ
k+ 

 +μBT

(

Bzk+
 + Bzk+


)}

≥ , ∀z ∈ RNh . (.)

From the definitions of λk+ 
 , z̃k

 and λ̃k , we get

λk+ 
 – μ

(

Bzk+
 + Bzk+


)

= λk – rμ
(

Bzk+
 + Bzk


)

– μ
(

Bzk+
 + Bzk


)

– μB
(

zk+
 – zk


)
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= λk – μ
(

Bzk+
 + Bzk


)

– r
(

λk – λ̃k) – μB
(

z̃k
 – zk


)

= λ̃k – r
(

λk – λ̃k) – μB
(

z̃k
 – zk


)

. (.)

Substituting this into (.) and considering the definition of z̃k
 in (.), we have

θ(z) – θ
(

z̃k

)

+
(

z – z̃k

)T{–BT

λ̃
k + rBT


(

λk – λ̃k) + μBT
B
(

z̃k
 – zk


)}≥ . (.)

In addition, as follows from (.) again, we have

(

Bz̃k
 + Bz̃k


)

– B
(

z̃k
 – zk


)

+

μ

(

λ̃k – λk) = . (.)

Combining (.), (.), and (.), we obtain

θ (u) – θ
(

ũk) +

⎛

⎜

⎝

z – z̃k


z – z̃k


λ – λ̃k

⎞

⎟

⎠

T⎧
⎪
⎨

⎪
⎩

⎛

⎜

⎝

–BT
 λ̃

k

–BT
λ̃

k

Bz̃k
 + Bz̃k



⎞

⎟

⎠ –

⎛

⎜

⎝

R(zk
 – z̃k

 )
μBT

B(zk
 – z̃k

) – rBT
(λk – λ̃k)

–B(zk
 – z̃k

) + 
μ

(λk – λ̃k)

⎞

⎟

⎠

⎫

⎪
⎬

⎪
⎭

≥ . (.)

By using the notation of Q in (.), and w and F in (.), the compact form of the above
inequality is exactly (.). �

In the next lemma, we further analyze the right-hand side of the inequality (.) and
reformulate it as the sum of some quadratic terms. This new form is more convenient for
our further analysis.

Lemma . For given wk ∈ 
, let wk+ be generated by FSR-SADMM (.a)-(.d) and w̃k

be defined in (.). Then for any w ∈ 
, we get

(

w – w̃k)TQ
(

wk – w̃k) =


(∥

∥w – wk+∥
∥


H –

∥

∥w – wk∥
∥


H

)

+


∥

∥wk – w̃k∥
∥


G. (.)

Proof By using Q = HM and M(wk – w̃k) = (wk – wk+) (see (.)), we have

(

w – w̃k)TQ
(

wk – w̃k) =
(

w – w̃k)THM
(

wk – w̃k) =
(

w – w̃k)TH
(

wk – wk+). (.)

For any vectors a, b, c, d ∈ R
Nh and a matrix H ∈R

n×n, it follows that

(a – b)TH(c – d) =


(‖a – d‖

H – ‖a – c‖
H
)

+


(‖c – b‖

H – ‖d – b‖
H
)

. (.)

Applying the above identity with a = w, b = w̃k , c = wk , and d = wk+ gives

(

w – w̃k)TH
(

wk – wk+) =


(∥

∥w – wk+∥
∥


H –

∥

∥w – wk∥
∥


H

)

+


(∥

∥wk – w̃k∥
∥


H –

∥

∥wk+ – w̃k∥
∥


H

)

. (.)
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Rearranging the last term in the above identity by using (.), (.), and (.), we obtain

∥

∥wk – w̃k∥
∥


H –

∥

∥wk+ – w̃k∥
∥


H =

∥

∥wk – w̃k∥
∥


H –

∥

∥

(

wk – w̃k) –
(

wk – wk+)∥
∥


H

(.)=
∥

∥wk – w̃k∥
∥


H –

∥

∥

(

wk – w̃k) – M
(

wk – w̃k)∥
∥


H

= 
(

wk – w̃k)THM
(

wk – w̃k)

–
(

wk – w̃k)TMTHM
(

wk – w̃k)

(.)=
(

wk – w̃k)T(QT + Q – MTHM
)(

wk – w̃k)

(.)=
∥

∥wk – w̃k∥
∥


G.

Substituting it in (.) and considering (.), we immediately obtain the assertion (.).
The proof is complete. �

Now, we try to find a lower bound in terms of the discrepancy between ‖w – wk+‖
H and

‖w – wk‖
H for any w ∈ 
.

Theorem . For given wk ∈ 
, let wk+ be generated by FSR-SADMM (.a)-(.d) and
w̃k be defined in (.). Then for any w ∈ 
, we have

θ
(

ũk) – θ (u) +
(

w̃k – w
)TF(w) ≤ 


(∥

∥w – wk∥
∥


H –

∥

∥w – wk+∥
∥


H

)

–


∥

∥wk – w̃k∥
∥


G. (.)

Proof Note that F is monotone, we obtain

(

w̃k – w
)TF(w) ≤ (w̃k – w

)TF
(

w̃k). (.)

We have from the above inequality and (.)

θ
(

ũk) – θ (u) +
(

w̃k – w
)TF(w) ≤ –

(

w – w̃k)TQ
(

wk – w̃k), ∀w ∈ 
. (.)

The assertion (.) holds immediately from (.) and (.). The proof is complete. �

The next lemma demonstrates the contraction property of the sequence (wk)∞k= gener-
ated by FSR-SADMM (.a)-(.d).

Lemma . Let (wk)∞k= be the sequence generated by the FSR-SADMM (.a)-(.d) and
{w̃k} be defined in (.). Then for any w∗ ∈ 
∗, we have

∥

∥wk+ – w∗∥
∥


H ≤ ∥∥wk – w∗∥

∥

H –

∥

∥wk – w̃k∥
∥


G. (.)

Proof Setting w = w∗ in (.), we have

∥

∥wk – w∗∥
∥


H –

∥

∥wk+ – w∗∥
∥


H ≥ ∥∥wk – w̃k∥

∥

G + 

[

θ
(

ũk) – θ
(

u∗) +
(

w̃k – w∗)TF
(

w∗)]

≥ ∥∥wk – w̃k∥
∥


G, (.)
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where the last inequality follows from the fact that w∗ ∈ 
∗ (see (.)). The proof is com-
plete. �

Recall that for the case  < r < ,  < s < , the matrix G is positive definite, while when  <
r < , s = , G may not be positive definite. We need further investigate the term ‖wk –w̃k‖

G.
For the case  < r < , s = , we have

∥

∥wk – w̃k∥
∥


G =
∥

∥zk
 – z̃k


∥

∥

R +

 – r
μ

∥

∥λk – λ̃k∥
∥

. (.)

Notice that

λk+ (.d)= λk+ 
 – μ

(

Bzk+
 + Bzk+


)

(.)= λk – r
(

λk – λ̃k) – μ
(

Bzk+
 + Bzk+


)

= λk – r
(

λk – λ̃k) – μ
(

Bzk+
 + Bzk


)

– μB
(

zk+
 – zk


)

= λk – ( + r)
(

λk – λ̃k) – μB
(

zk+
 – zk


)

.

Thus, we have

λk – λ̃k =


 + r
(

λk – λk+) +


 + r
μB

(

zk
 – zk+


)

. (.)

Then we get

∥

∥λk – λ̃k∥
∥

 =


( + r)

∥

∥

(

λk – λk+) + μB
(

zk
 – zk+


)∥

∥


=


( + r)

∥

∥

(

λk – λk+)∥
∥

 +
μ

( + r)

∥

∥B
(

zk
 – zk+


)∥

∥


+
μ

( + r)

(

λk – λk+)TB
(

zk
 – zk+


)

. (.)

Now, we treat the cross term in the above equation. For the previous iteration, we have

θ(z) – θ
(

zk

)

+
(

z – zk

)T{–BT

λ
k– 

 + μBT

(

Bzk
 +Bzk


)}≥ , ∀z ∈R

Nh . (.)

Reconsidering s =  in (.d) and applying in (.), we achieve

θ(z) – θ
(

zk

)

+
(

z – zk

)T{–BT

λ
k}≥ , ∀z ∈R

Nh . (.)

Similarly, we get

θ(z) – θ
(

zk+

)

+
(

z – zk+

)T{–BT

λ
k+}≥ , ∀z ∈R

Nh . (.)

Setting z = zk+
 and z = zk

 in (.) and (.), respectively, and then adding them, we
get

(

λk – λk+)TB
(

zk
 – zk+


)≥ . (.)
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Combining with (.), (.), and (.), we obtain

∥

∥wk – w̃k∥
∥


G ≥ ∥∥zk

 – zk+

∥

∥

R +

 – r
( + r)μ

∥

∥λk – λk+∥
∥



+
( – r)μ
( + r)

∥

∥zk
 – zk+


∥

∥

BT

B
. (.)

Recall w̃k defined by (.) and combining with (.), we have the following lemma, which
is important for the proof of the convergence.

Lemma . Let (wk)∞k= be the sequence generated by the FSR-SADMM (.a)-(.d) with
r ∈ (, ), s = , and {w̃k} be defined in (.). Then we have

∥

∥wk+ – w∗∥
∥


H ≤ ∥∥wk – w∗∥

∥

H –

{

∥

∥zk
 – z̃k


∥

∥

R +

 – r
( + r)μ

∥

∥λk – λk+∥
∥



+
( – r)μ
( + r)

∥

∥zk
 – z̃k


∥

∥

BT

B

}

. (.)

With the above lemmas, we are now ready to establish the global convergence of FSR-
SADMM for solving VI(
, F , θ ).

Theorem . The sequence (wk)∞k= generated by FSR-SADMM (.a)-(.d) converges to
some w∞ that is a solution of VI(
, F , θ ).

Proof (I) For the case r ∈ (, ), s ∈ (, ). Summing (.) over k = , . . . ,∞ yields

∞
∑

k=

∥

∥wk – w̃k∥
∥


G ≤ ∥∥w – w∗∥

∥

H , (.)

which implies that

lim
k→∞

∥

∥wk – w̃k∥
∥

G = . (.)

Recall the sequence {wk} is bounded (see Lemma .), we see that the sequence {w̃k} is
also bounded, and it has at least one cluster point. Let w∞ be a cluster of {w̃k} and the
subsequence w̃kj converge to w∞. Combining (.) and (.), we get

θ (u) – θ
(

ũkj
)

+
(

w – w̃kj
)TF
(

w̃kj
)≥ , ∀w ∈ 
. (.)

Taking j → ∞ in the left term of the above inequality yields

θ (u) – θ
(

u∞) +
(

w – w∞)TF
(

w∞)≥ , ∀w ∈ 
, (.)

which implies that w∞ ∈ 
∗. From limk→∞ ‖wk – w̃k‖G = , we can deduce limk→∞ ‖wk –
wk‖H = . Recall {w̃kj} → w∞, thus for any given ε > , there exists an integer l such that

∥

∥wkl – w̃kl
∥

∥

H ≤ ε


and

∥

∥w̃kl – w∞∥
∥

H ≤ ε


. (.)
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Thus, for any k ≥ kl , it follows from the above two inequalities and (.) that

∥

∥wk – w∞∥
∥

H ≤ ∥∥wkl – w∞∥
∥

H ≤ ∥∥wkl – w̃kl
∥

∥

H +
∥

∥w̃kl – w∞∥
∥

H < ε. (.)

This implies that the sequence {wk} converges to w∞ ∈ 
∗. This completes the proof.
(II) For the case r ∈ (, ), s = . Summing (.) over k = , . . . ,∞ yields

∞
∑

k=

∥

∥zk
 – z̃k


∥

∥

R +

( – r)μ
( + r)

∞
∑

k=

∥

∥zk
 – z̃k


∥

∥

BT

B
+

 – r
( + r)μ

∞
∑

k=

∥

∥λk – λk+∥
∥



≤ ∥∥w – w∗∥
∥


H , (.)

which implies thatd

lim
k→∞

∥

∥zk
 – z̃k


∥

∥

R = , lim
k→∞

∥

∥zk
 – z̃k


∥

∥ =  and lim
k→∞

∥

∥λk – λ̃k∥
∥ = . (.)

Recall the bounded sequence {wk} again, we see that the sequence {w̃k} is also bounded,
and it has at least one cluster point. The following proof for the assertion is similar and
omitted. �

5 Numerical results
In this section, we study the performance of the FSR-SADMM for solving (.). Our codes
were written in MATLAB Ra. In addition, all of the experiments were performed on
a laptop with an Intel Core  Duo CPU at . GHz and  GB memory.e

Experiments were conducted on three different text images: Peppers, Lena, and Baboon.
Images are all with  ×  ×  RGB images. Color images were processed using the
illuminate channel only, as in []. Precisely, the RGB images were transformed into YUV
coordinates and the color channels (Cb, Cr) were upsampled using bicubic interpolation.
The results were quantitatively evaluated by using the standard peak signal-to-noise ratio
(PSNR) [], defined as

PSNR =  log
L

‖x – x̂‖ , (.)

where x and x̂ are the original and reconstructed images, L denotes the maximum intensity
value in x. We compare direct ADMM, FSR-ADMM and FSR-SADMM under the stop
criterion such as ‖xk –xk–‖

‖xk–‖ < {e–, e–, e–}.
Figures - compare the PSNR outputs of our FSR-SADMM with direct ADMM and

FSR-ADMM, while Figure  depicts the comparison of total computational time of the
three methods. Direct ADMM splits the super-resolution imaging problem into three
subproblems by using two dual multipliers while FSR-ADMM reduces the computational
complexity of each iteration by efficiently reducing the order of computation complex-
ity of their subproblems from O(N

h ) to O(Nh log Nh). Similarly, our FSR-SADMM has
the computation complexity of O(Nh log Nh) and shares much better convergence perfor-
mance. In our experiments, we set μ = . for all three methods. In all figures, we list the
PSNR below the reconstructed image corresponding to compared methods. As the recon-
structed images shown in Figures -, there are not noticeable differences in the texture
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Figure 1 From left to right: super-resolution Peppers by direct ADMM, FSR-ADMM, and FSR-SADMM.

Figure 2 From left to right: super-resolution Lena by direct ADMM, FSR-ADMM, and FSR-SADMM.

Figure 3 From left to right: super-resolution Baboon by direct ADMM, FSR-ADMM, and FSR-SADMM.

of the Peppers, the wrinkles on the eyes of Lena, and also hair on Boboon’s nose. FSR-
SADMM can only get a little higher PSNR rather than Direct ADMM and FSR-ADMM
for various tolerance. However, the results shown in Figure  indicate that, compared with
FSR-ADMM, our FSR-SADMM saves roughly % computational time with high preci-
sion Tolerance = – and can still save roughly % computational time under low pre-
cision Tolerance = –. On the whole average, % computational time can be reduced,
which efficiently accelerates the super-resolution imaging process.

We also test the influence of relaxation parameter r for FSR-SADMM. We fix s = ,
μ = . and choose different values of r in the interval [., ] (more specifically, we
choose r = {., ., ., ., }). For comparison purposes, we also plot for FSR-ADMM
with μ = .. As shown in Figure , we see that the relaxation parameter r works well
for a wide range of values. In particular, when r ≥ ., the PSNR cannot be improved
and even decrease in the first  iterations, while the effectiveness of the improvement of
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Figure 4 The original signal, noisy measurement, and reconstruction results by using different
methods.

Figure 5 Evolutions of PSNR with respect to
iterations for Peppers under different
parameter r.

Table 1 The performance of different SADMM-type algorithms in terms of PSNR and SSIM

Tolerance Images Peppers Lena Baboon

PSNR
(dB)

Time
(sec.)

Iter. PSNR
(dB)

Time
(sec.)

Iter. PSNR
(dB)

Time
(sec.)

Iter.

10–6 ADMM 30.6 205 1,420 30.9 246 1,725 22.5 274 1,941
FSR-ADMM 30.6 71.7 337 31.2 65.9 311 22.5 98 463
FSR-SADMM 30.6 37.6 176 31.2 31.1 144 22.5 56.3 262

10–5 ADMM 30.6 80.7 566 31 94.3 667 22.5 111 783
FSR-ADMM 30.6 40.9 190 31.2 51.5 245 22.5 85.9 407
FSR-SADMM 30.6 21.1 98 31.2 26.4 122 22.5 56.4 262

10–4 ADMM 30.6 21 150 31.2 19.8 136 22.6 46.8 333
FSR-ADMM 30.6 29.1 136 31.2 33.1 158 22.6 42.2 198
FSR-SADMM 30.6 17.6 83 31.2 19.1 88 22.6 35.9 166

The best and second best for each algorithm are indicated by red and blue, respectively, with respect to r = 0.6.

PSNR is not obvious especially when r is less than or equal to .. As such, some offending
values for the interval [., .] are preferred.

From Table , our proposed FSR-SADMM outperforms ADMM and FSR-ADMM for all
the tolerance. Especially, FSR-SADMM costs much less computing time and has a shorter
iteration number for tolerance with higher precision such as –.
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6 Conclusions
For solving the SISR problem (.), we proposed a new algorithm based on the strictly
contractive semiproximal Peaceman-Rachford splitting method in this paper. The global
convergence of our algorithm is established. Then the computational results indicate that
our algorithm achieves better performance compared with start-of-the-art methods in-
cluding direct ADMM and FSR-ADMM. More specifically with Tolerance = –, our al-
gorithm can save computing time about % and % compared with direct ADMM and
FSR-ADMM, respectively.

Appendix: Proof of the equivalence of (3.2a) and (1.7a)
Proof From (.a) and the definitions B and B above (.), it is not difficult to verify

xk+ = argmin
x∈RNh



‖y – �Hx‖

 – λk(Ax – uk) +
μ


∥

∥Ax – uk∥
∥


 +

μ


∥

∥x – xk∥
∥



τ –ATA

= argmin
x∈RNh



‖y – �Hx‖

 +
μ



∥

∥

∥

∥
Ax – uk –

λk

μ

∥

∥

∥

∥




+

μ


∥

∥x – xk∥
∥



τ –ATA

= argmin
x∈RNh



‖y – �Hx‖

 +
μ

τ

∥

∥x – xk∥
∥


 –

μ


∥

∥Ax – Axk∥
∥


 +

μ



∥

∥

∥

∥
Ax – uk –

λk

μ

∥

∥

∥

∥





= argmin
x∈RNh



‖y – �Hx‖

 +
μ

τ

∥

∥x – xk∥
∥


 + μxTAT

(

Ax – uk –
λk

μ

)

= argmin
x∈RNh



‖y – �Hx‖

 +
μ

τ

∥

∥

∥

∥
x – xk + τAT

(

Axk – uk –
λk

μ

)∥

∥

∥

∥





=
(

HT�T�H +
μ

τ
INh

)–(

HT�Ty +
μ

τ
xk – μAT

(

Axk – uk –
λk

μ

))

.

The above equation is exactly (.a); the proof is complete. �
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Endnotes
a Note that TV model can be defined anisotropically or isotropically, i.e.,

‖x‖TV :=
{ |(∇hx)| + |(∇vx)| (anisotropic);
√‖∇hx‖22 + ‖∇vx‖22 (isotropic).

As our proposed method can be applied in the two different TV models in a similar way, we just consider the
isotropical model and omit the anisotropical case.

b The symmetric ADMM is also known as the Peaceman-Rachford splittting method [10].
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c Note that the proximal term μ
2 ‖z1 – zk1‖2R plays an important role to linearize the term –(λk)TB1z1 +

μ
2 ‖B1z1 – B2zk2‖22

so as to avoid computing (HT�T�H +μBT1B1)
–1 to find an analytical solution of (1.7a). In fact, many manuscripts

using approximate linearization process [18], they first denote h(x) = 1
2 ‖B1z1 – B2zk2 – λk/μ‖22 , given the Lipschitz

constant τ , and use the Taylor approximation h(x) = ∇h(zk1)(z1 – z
k
1) +

1
τ
‖z1 – zk1‖22 to approximate the term

μ‖B1z1 – zk2 – λk/μ‖22 , which increases the difficulty of convergence analysis and needs a specific customized stop
criterion [19].

d Note that in this paper BT2B2 = I2Nh , R is assumed to be semidefinite and the last term in (4.37) is deduced with the
aid of (4.22).

e The MATLAB code has been released on Github https://github.com/gaobingaobingaobin/SISR.
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