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Abstract

Background: Improving feed efficiency (FE) of pigs by genetic selection is of economic and environmental
significance. An increasingly accepted measure of feed efficiency is residual feed intake (RFI). Currently, the
molecular mechanisms underlying RFI are largely unknown. Additionally, to incorporate RFI into animal breeding
programs, feed intake must be recorded on individual pigs, which is costly and time-consuming. Thus, convenient
and predictive biomarkers for RFI that can be measured at an early age are greatly desired. In this study, we aimed
to explore whether differences exist in the global gene expression profiles of peripheral blood of 35 to 42 day-old
pigs with extremely low (more efficient) and high RFI (less efficient) values from two lines that were divergently
selected for RFI during the grow-finish phase, to use such information to explore the potential molecular basis of
RFI differences, and to initiate development of predictive biomarkers for RFI.

Results: We identified 1972 differentially expressed genes (DEGs) (q ≤ 0.15) between the low (n = 15) and high
(n = 16) RFI groups of animals by using RNA sequencing technology. We validated 24 of 37 selected DEGs by
reverse transcription-quantitative PCR (RT-qPCR) in a joint analysis of 24 (12 per line) of the 31 samples already used
for RNA-seq plus 24 (12 per line) novel samples from the same contemporary group of pigs. Using an analysis of
the 24 novel samples alone, only nine of the 37 selected DEGs were validated. Genes involved in small molecule
biosynthetic process, antigen processing and presentation of peptide antigen via major histocompatibility complex
(MHC) class I, and steroid biosynthetic process were overrepresented among DEGs that had higher expression in
the low versus high RFI animals. Genes known to function in the proteasome complex or mitochondrion were also
significantly enriched among genes with higher expression in the low versus high RFI animals. Alternatively, genes
involved in signal transduction, bone mineralization and regulation of phosphorylation were overrepresented
among DEGs with lower expression in the low versus high RFI animals. The DEGs significantly overlapped with
genes associated with disease, including hyperphagia, eating disorders and mitochondrial diseases (q < 1E-05). A
weighted gene co-expression network analysis (WGCNA) identified four co-expression modules that were
differentially expressed between the low and high RFI groups. Genes involved in lipid metabolism, regulation of
bone mineralization, cellular immunity and response to stimulus were overrepresented within the two modules that
were most significantly differentially expressed between the low and high RFI groups. We also found five of the
DEGs and one of the co-expression modules were significantly associated with the RFI phenotype of individual
animals (q < 0.05).
(Continued on next page)
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Conclusions: The post-weaning blood transcriptome was clearly different between the low and high RFI groups.
The identified DEGs suggested potential differences in mitochondrial and proteasomal activities, small molecule
biosynthetic process, and signal transduction between the two RFI groups and provided potential new insights into
the molecular basis of RFI in pigs, although the observed relationship between the post-weaning blood gene
expression and RFI phenotype measured during the grow-finish phase was not strong. DEGs and representative
genes in co-expression modules that were associated with RFI phenotype provide a preliminary list for developing
predictive biomarkers for RFI in pigs.
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Background
Feed efficiency (FE) is one of the important traits directly
related to profitability, productivity, and sustainability in
the pork industry [1, 2]. While many non-genetic strat-
egies have been developed to improve feed efficiency of
pigs [3], improving feed efficiency by genetic selection can
be a sustainable alternative. An increasingly popular meas-
ure of FE is residual feed intake (RFI), which is the differ-
ence between the actual and expected feed intake of an
animal for production and maintenance [4]. Importantly,
RFI is moderately heritable and responds well to genetic
selection in pigs [5, 6].
Over the last decade, significant efforts have been

made to understand the molecular, genetic and physio-
logical basis of RFI in pigs. Researchers have found many
interesting differences across multiple tissues between
pigs with divergent RFI phenotypes [7, 8]. For example,
as compared to high RFI pigs (less efficient), low RFI
pigs (more efficient) have altered feeding behaviors [9],
slightly lower growth rate [10], less back fat [6, 11, 12],
lower protein turnover rate in the muscle [13], altered
mitochondrial protein profiles [14, 15], less mitochondrial
reactive oxygen species (ROS) production [16], and lower
levels of leptin [17, 18] and juvenile IGF-1 in circulating
blood [10]. To explore the genetic basis of RFI in pigs, sev-
eral genome-wide association studies (GWAS) have been
conducted [19–22]. Some chromosomal regions tagged by
single nucleotide polymorphisms (SNPs) have been found
to be associated with RFI, but these associations were not
consistent across studies and explained only small por-
tions of the genetic variance for RFI [19–22]. The wide
range of differences across multiple tissues between lines
of pigs with divergent RFI and the lack of SNPs with
major effects on RFI suggest that RFI is a highly polygenic,
quantitative trait with multiple tissues contributing to its
variation.
Global gene expression profiling technologies have

also been used to explore the molecular basis of RFI in
pigs. By profiling the transcriptomes of the adipose tis-
sue of two lines of pigs divergently selected for RFI with
gene expression microarrays, Lkhagvadorj et al. [23]
found that genes involved in the lipid metabolic pathway

were overrepresented among the differentially expressed
genes (DEGs) that had lower expression in low versus
high RFI pigs, and genes involved in carbohydrate me-
tabolism and response to stress were overrepresented
among the DEGs that had higher expression in low ver-
sus high RFI pigs [23]. They also found the leptin-
related gene network to be different between the two
lines [23]. Recently, Vincent et al. [24] and Jing et al.
[25] profiled the transcriptome of the longissimus dorsi
(LD) muscle from pigs with divergent RFI by gene ex-
pression microarray and RNA-seq, respectively. Using
pigs from lines divergently selected for RFI, Vincent
et al. [24] found genes involved in protein synthesis and
glycolysis, and genes associated with mitochondrial en-
ergy/oxidative metabolism had higher and lower expres-
sion, respectively, in the low versus high RFI line. Using
Yorkshire barrows with extreme phenotypes for RFI, Jing
et al. [25] found that genes involved in glycolysis had
lower expression in the low versus high RFI group, while
genes involved in muscle proliferation and differenti-
ation had higher expression in the low versus high RFI
group. Surprisingly, these two studies shared no DEGs
and proposed opposite differences in glycolytic activities
in the low versus high RFI pigs. Therefore, in consider-
ation of the complexity of RFI and the inconsistency
from study to study, the molecular mechanisms under-
lying RFI in pigs are still largely unclear.
To incorporate RFI into animal breeding programs for

improving feed efficiency, feed intake, body weight gain
and back fat depth must be recorded on individual pigs.
As it is very expensive and time-consuming to record
feed intake on individual animals [5, 6], convenient and
predictive biomarkers for RFI that can be measured at
an early age are in demand. In cattle, Chen et al. [26]
successfully used 14 DEGs identified in the liver of
Angus bulls that were divergently selected for RFI to
classify Angus steers from the same divergent RFI lines,
and Al-Husseini et al. [27] developed a RFI predictor
using 8 of these 14 DEGs and validated it in an inde-
pendent Angus population. These biomarkers are, how-
ever, not very practical because invasive liver biopsies
are needed.
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The peripheral blood is an informative tissue not only
because it carries a variety of cells directly involved in
immunity and inflammation, but also because it interacts
with every organ and tissue in the body via bioactive cir-
culating factors, such as nutrients, metabolites, cytokines,
hormones and exosomal cargoes, which are released from
the same or different organs or tissues [28]. These bio-
active factors interact with blood cells and thus might
modify the gene expression profiles of the blood cells dy-
namically. Molecular signatures in circulating blood, in-
cluding gene expression profiles, have been shown to
reflect the physiopathological status, growth stage and
lifestyle of subjects [28–32]. Due to its easy accessibility
and informativeness, blood has become a popular sam-
ple (direct or as a surrogate) for disease diagnosis, pre-
diction, prognosis, and biomarker discovery [28, 29].
Interestingly, the concentration of IGF-1 in serum at a
young age has been shown to be different between ani-
mals with divergent RFI in poultry and livestock, includ-
ing pigs [10, 17, 33, 34]. Blood cell profiles at early
growth stages have also been found to be different be-
tween livestock with divergent RFI phenotypes, includ-
ing pigs [35] and cattle [36]. These results suggest that
animals with divergent RFI phenotypes, measured later
in life, have early physiological differences in circulating
blood that may be reflected in blood gene expression
profiles at these early stages.
In this study, our objective was to determine the blood

transcriptomic differences between post-weaning pigs
from two lines divergently selected for RFI, to explore
potential molecular mechanisms underlying RFI in per-
ipheral blood and to develop a list of candidate bio-
markers for RFI prediction. We hypothesized that post-
weaning expression levels of some genes in whole blood
were correlated with RFI phenotype measured during
the grow-finish phase. We identified 1972 DEGs with
q ≤ 0.15 and four co-expression modules that were dif-
ferentially expressed between the low and high RFI
groups. A set of selected DEGs were validated by reverse
transcription-quantitative PCR (RT-qPCR). Several inter-
esting biological processes underlying DEGs and differ-
ential co-expression modules were suggested. We also
identified several candidate biomarkers for RFI.

Methods
Animals, blood sample collection and complete blood
count (CBC) test
The experimental protocols for this study were approved
by the Institutional Animal Care and Use Committee
(IACUC) at Iowa State University under permit number
11-1-4996-S. All pigs were from parity 2 of generation
nine of the two lines divergently selected for residual
feed intake: the low and high RFI lines [6, 19, 35]. Bunter
et al. found that the IGF-1 concentration in blood

measured between 35 to 42 days of age differed between
the two lines and were genetically correlated with RFI
measured later during the grow-finish phase [10]. So
blood samples were collected from the jugular vein into
Tempus™ Blood RNA tubes (Life Technologies, Grand
Island, NY) for long-term storage at −80 °C from 233
post-weaning piglets of the two lines in this age range.
Meanwhile, blood from those animals was also collected
into EDTA tubes (BD, Franklin Lakes, NJ) and kept at 4 °C
before CBC tests, which were performed on the bleeding
day, if possible, or the next morning as described [35, 37].
Differences in CBC profiles between the two lines have
been published elsewhere [35]. At 107.0 ± 8.3 (mean ±
standard deviation) days of age and 42.2 ± 7.2 kg of body
weight (BW), 88 gilts and 78 barrows were randomly
assigned to 12 mixed-line, mixed-sex finishing pens with
electronic single-space feeders (FIRE, Osborne Industries
Inc., Osborne, KS) for feed efficiency test, with 6 pens be-
ing randomly assigned to either of two diets: a high-fiber,
low-energy diet (HFD) and a low-fiber, high-energy diet
(LFD) [38]. The animals on feed efficiency test consisted of
21 barrows and 22 gilts from the low RFI line plus 14 bar-
rows and 23 gilts from the high RFI line fed the HFD, and
23 barrows and 23 gilts from the low RFI line plus 20 bar-
rows and 20 gilts from the high RFI line fed the LFD. All
pigs had ad libitum access to feed and water. Individual
feed intake was real-time recorded, body weight was re-
corded biweekly, and backfat (BF) depth above the 10th
rib and loin muscle area were recorded at the end of the
test, when the pigs were 227.0 ± 1.4 days of age and
127.7 ± 8.8 kg of body weight. RFI of individual pigs
were calculated as described [19] with modifications
and shown in Fig. 1. Briefly, average daily feed intake
(ADFI) was estimated by fitting a quadratic polynomial
regression model of the daily feed intake from the on-
test day to the off-test day on the number of days on test
for each pig; and individual average daily gain (ADG)
was estimated as the slope from simple linear regression
of bi-weekly BW on the number of days on test [6]. A
single trait animal model was used to analyze ADFI with
adjustments for fixed covariates of metabolic mid-body
weight (average body weight during the test period
raised to the power of 0.75, MBW), ADG, BF, deviation
of the on-test weight from 50 kg, deviation of the off-
test weight from 118 kg, and deviation of the on-test
age from 90 days, and the random effect of pen. The
RFI value for each pig was estimated as the residual of
the fitted model (Young J and Dekkers JCM, unpub-
lished). The growth performance and feed intake data of
these animals have been published [39].

RNA extraction and globin depletion
Based on the RFI phenotype of individual pigs, the ju-
venile blood samples of 32 out of the 88 gilts were
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selected for RNA-seq. In detail, for the low RFI line, we
selected eight samples from animals with extremely low
RFI values on the LFD and eight samples from animals
with extremely low RFI values on the HFD (designated as
low RFI group); while for the high RFI line, we selected
eight samples from animals with extremely high RFI
values on the LFD and eight samples from animals with
extremely high RFI values on the HFD (designated as high
RFI group) (Fig. 1). Total RNA extraction of the 32 sam-
ples was processed in four batches such that for each
batch, two samples were randomly selected from each line
by diet combination. Within each batch, the processing
order of samples was randomized beforehand and
followed in all subsequent procedures where blocking was
necessary. The total RNA was extracted from blood sam-
ples using preserved blood RNA purification kit I (Norgen
Biotek Corp, Thorold, Ontario) by following the kit’s man-
ual. On-column DNA digestion was performed as de-
scribed using DNase I (Qiagen, Valencia, CA). Globin
transcripts (HBB [ENSSSCG00000007978] and HBA
[ENSSSCG00000014725]) were depleted by following an
RNase H-mediated method [40]. The quantity and integ-
rity of the RNA were determined by using Nanodrop 2000
(Thermo Scientific, Waltham, MA) and Bioanalyzer 2100
(Agilent Technologies, Santa Clara, CA) before and after
globin depletion. The efficiency of globin depletion of each
sample was checked by conventional RT-qPCR with β-
actin (ACTB) and glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) as the internal reference genes. The total
RNA of one selected blood sample from the low RFI line
on the LFD was dropped from this study due to its low
RNA quality (original RNA integrity number (RIN) was

7.5, lower than our criterion of RIN ≥ 8.0 before globin de-
pletion). The average RIN for the 31 remaining samples
before and after globin depletion were 9.05 ± 0.31 and
8.26 ± 0.30, respectively. Detailed information about the
selected samples, including pedigree, RNA quality, batch,
and CBC is available in Additional file 1: Table S1.

RNA-sequencing
Library construction and sequencing were performed by
the DNA facility at Iowa State University. Briefly, the
RNA-seq libraries were constructed using the Illumina
TruSeq RNA Sample Preparation Kit v2 (Illumina, San
Diego, CA) according to manufacturer’s instructions. For
each sample, poly (A)-containing transcripts was enriched
with oligo-dT-coated magnetic beads from 0.7 to 2 μg of
total RNA with globin transcript depleted. The enriched
RNA was fragmented by heat and reverse transcribed with
hexamer random primers. For each sample, adapters with
unique barcodes were ligated to the end-polished cDNA
fragments. The libraries were linearly amplified by PCR,
size selected and quantitated. The individual libraries were
diluted to 2 nM and pooled in approximately equimolar
amounts according to the processing batches mentioned
above with eight libraries per pool, except for one pool of
seven libraries. One hundred base paired-end sequencing
was run on an Illumina HiSeq2000 platform with one pool
per lane on a flow cell.

Quality control, preprocessing and alignment of RNA-seq
reads
Read quality was checked by using FastQC (version
0.10.1) [41]. Adapters and low quality bases were trimmed

Fig. 1 Distribution of RFI values and sample selection for RNA-seq and RT-qPCR assays. Post-weaning blood samples of 16 pigs (8 per diet) with
extremely low RFI from gilts of the low RFI line (LRFI) and 16 pigs (8 per diet) with extremely high RFI from gilts of the high RFI line (HRFI) fed
the high-fiber, low-energy diet (HFD) or the low-fiber, high-energy diet (LFD) were selected for RNA-seq. One sample in the LRFI-LFD group was
excluded from RNA sequencing because of low quality RNA, leaving a total of 31 samples for RNA-seq. The green and red dots represent individuals
selected for RNA-seq. Twelve samples from each line by diet combination were selected for RT-qPCR validation of DEGs such that the corresponding
RFI phenotypes were representative. The red and blue dots represent the samples selected for RT-qPCR assays. The 24 novel blood samples were
selected such that the RFI values of the corresponding animals were roughly evenly distributed across the ranges of RFI not covered by the RFI
phenotypes of the 24 animals originally selected for RNA-seq. The distribution of RFI values of barrows from each line by diet combination is also
shown for reference
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by running Trimmomatic (version 0.32) [42] in the
paired-end mode with the following options, ILLUMINA-
CLIP:adapters.fa:2:30:10:1:true LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MIN
LEN:36, such that the average base quality was not lower
than 15 for every sliding window of 4 bases and the mini-
mum length of kept reads was 36 bases. For each set of
raw paired-end reads, Trimmomatic outputted a pair of
files for the kept paired-end reads, a file for unpaired for-
ward reads (R1), and a file for unpaired backward reads
(R2). Trimmed paired-end and unpaired reads were separ-
ately aligned to the pig reference genome Sscrofa 10.2
(version 77, Ensembl) using 2-pass rna-STAR (version
2.3.0), using the default settings [43, 44]. Read counts per
gene per library were summarized by using featureCounts
(version 1.4.4) [45], with the resulting SAM files for
uniquely mapped, paired-end and unpaired reads as in-
puts, separately, and using the pig genome GTF file
(version 77, Ensembl) as the genomic annotation refer-
ence file. The default settings for other featureCounts
options were used [45]. A final table of read counts per
gene of the 31 samples (designated as the count table)
was generated by summing up the individual count ta-
bles for paired-end and unpaired reads. Prior to differ-
ential expression analysis, hemoglobin genes (HBA and
HBB) and genes with few reads (average read count no
larger than eight, or 28 or more zero read counts across
the 31 samples) were removed from the count table to
obtain a final count table with 12280 genes. This count
table was used for the subsequent differential expression
analysis and weighted gene co-expression network analysis
(WGCNA) after further transformation and adjustment.

Differential expression analysis
The statistical programming language R (version 3.1.0)
was used for all statistical analyses, unless indicated
otherwise. Differential expression analysis was carried
out by using the R package “QuasiSeq” (version 1.0-4)
[46]. For each of the 12280 genes in the final count
table, we used QuasiSeq to fit a full generalized linear
model with a negative binomial response and a log link
that included an upper-quartile normalization offset [43]
and the fixed effects of RFI group (low and high RFI
groups), diet (low and high fiber diets), batch (sample
processing batches 1 to 4), and the linear covariates of
RFI phenotype (estimated RFI value),pre_conc (RNA
concentration before globin depletion), pre_RIN (RIN
before globin depletion), post_conc (RNA concentration
after globin depletion), post_RIN (RIN before globin de-
pletion), and concentrations of neutrophils, lymphocytes,
monocytes, eosinophils and basophils. Note that, al-
though blood was collected before pigs were fed the dif-
ferent diets, a diet effect was included in our initial full
model because diet affected the component traits that

were used to estimate RFI and thus the estimation of
RFI. Because not all the variables included in the initial
full model may be associated with transcript levels, we
used a backward variable selection algorithm to identify
the most relevant variables [47]. The final model in-
cluded RFI group, batch, pre_conc, post_RIN, and the
concentrations of neutrophils, lymphocytes, monocytes
and basophils as independent variables. The default set-
tings for arguments in all function calls were used unless
specified otherwise. In the QL.fit function, the “method” ar-
gument was set to “optim”. The reported p-values, q-values
and log2 (fold change) associated with all tests of signifi-
cance were calculated by using the QLSpline method.

Weighted gene co-expression network analysis (WGCNA)
Before co-expression analysis using the R package
“WGCNA” (version 1.46) [48], the expression levels for
the 12280 genes in the count table were adjusted for all in-
dependent variables in the final model used for differential
expression analysis except RFI group. Briefly, log-counts
per million (designated as log-cpm) were calculated using
the voom function of the Bioconductor package “limma”
(version 3.20.9) with the upper-quartile normalized counts
as input [49, 50]. The lmFit function was used to fit a lin-
ear model with log-cpm per gene feature as the respon-
sible variable, and RFI group, batch, and the linear
covariates of pre_conc, post_RIN, and concentrations of
neutrophils, lymphocytes, monocytes and basophils as in-
dependent variables. Effects associated with relevant vari-
ables (batch, pre_conc, post_RIN, and the concentration
of neutrophils, lymphocytes, monocytes and basophils)
were subtracted from the original log-cpm, to create ad-
justed transformed gene expression values. The data
matrix consisting of adjusted log-cpm per gene for the 31
samples (hereafter called the adjusted transformed gene
expression matrix) was used as the input for WGCNA.
WGCNA was performed by following tutorial I [51], with
slight modifications as needed. In WGCNA, all correlation
coefficients between gene pairs were calculated by using
Pearson’s method. A soft-thresholding power of seven was
used by assuming the topology of the unsigned weighted
gene co-expression network was scale-free. The average
linkage method was used for all clustering procedures.
The function cutTreeDynamic was used for identification
of modules. Only modules with a minimum of 30 genes
were considered. Modules with eigengene correlations no
less than 0.75 were merged using the mergeCloseModules
function with cutHeight = 0.25. The eigengene of a mod-
ule is the first principal component of the gene expression
values of that module and can be considered as a repre-
sentation of the expression profiles of genes in the module
[48]. We then fitted linear regression models with expres-
sion levels of the module eigengenes as the response vari-
able and RFI group as the independent variable. The
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estimated effect of RFI group and the associated p-value
for the null hypothesis that the RFI group term was not
useful in explaining expression of the eigengene of the
module were used to quantify the strength and signifi-
cance of the association between the eigengene of a mod-
ule and RFI group.

Hierarchical clustering, generation of heat map, and
multi-dimension scaling analysis
The adjusted gene expression matrix was used for hier-
archical clustering, heatmap generation, and multi-
dimensional scaling (MDS) analyses. Spearman correl-
ation coefficients for gene expression between samples
were calculated and 1 minus this correlation coefficient
was used as the distance between a pair of samples for
both hierarchical clustering and heatmap construction.
The Ward method was used in the function hclust for
hierarchical clustering of the samples. A heatmap was
generated with the heat.map2 function to visualize the
DEGs (q ≤ 0.05). MDS with the first two dimensions was
used to visualize the relationships of samples with each
other by using the function plotMDS from the Biocon-
ductor package “limma” (version 3.20.9) [50]. For MDS,
the distance between each pair of samples was the Eu-
clidian distance between them based on the expression
of all 12280 genes.

Gene ontology term and pathway enrichment analyses
For all GO term and Ingenuity Pathway Analysis (IPA)-
based pathway enrichment analyses, unadjusted p-values
were reported [52]. We used Bioconductor package
“topGO” (version 2.16.0) [52] to perform gene ontology
(GO) term analysis, including GO biological process
(GO-BP), GO molecular function (GO-MF) and GO cel-
lular component (GO-CC). GO terms associated with
each gene were downloaded from Ensembl Biomart (ver-
sion 79). The “classical” algorithm, which treats all GO
terms to be independent of each other, and Fisher’s exact
test were used to estimate significance of such enrich-
ment using the function runTest. For GO term enrich-
ment analysis of DEGs (q ≤ 0.15), we analyzed DEGs
with higher and lower expression in the low versus high
RFI group separately, while for GO term enrichment
analysis of WGCNA modules, genes in a whole module
were analyzed together. The maximum subset of the
12280 genes that was associated with at least one GO-
BP, GO-MF or GO-CC term, respectively, was used as
the reference set (also known as background) in the cor-
responding GO term enrichment analyses. Significantly
enriched GO terms associated with more than 10 anno-
tated genes in the pig genome annotation (version 79)
were reported.
We performed other enrichment analyses of the DEGs

(q ≤ 0.15) using Ingenuity Pathway Analysis (IPA, 2015

spring release) and the Integrated Pathway Analysis
Database (IPAD) for Systematic enrichment analysis
[53]. For IPA-based analysis, 8965 of the 12280 genes
could be mapped to IPA identifiers via the gene symbols
of pig genes and these genes were used as the reference
set. For networks and upstream regulator analysis, both
direct and indirect relationships were considered. The
options, “all data sources”, “confidence” and “mutation”,
were checked. For species, “all mammals” was checked.
For tissues and cell lines, only data on tissues and pri-
mary cells were considered. The cutoff for the log2 (fold
change) was set to 0 and the q-value cutoff was set to
0.15. All DEGs were analyzed together, with 1488 of
1972 DEGs mapped to IPA identifiers. For IPAD-based
analysis of DEGs, the IPAD web server [54] was used. Of
the 1972 DEGs (q ≤ 0.15), 1536 genes with human gene
symbols were analyzed together. The default reference
set was used, as the IPAD server does not allow the user
to provide a reference set. The raw p-values were cor-
rected for multiple testing using the “BH” method [55]
for IPAD-based analysis.

Validation by RT-qPCR
We attempted to validate DEGs between the RFI groups
with q ≤ 0.15, |log2 (fold change)| ≥ 1 and averaged
FPKM (fragments per kilobase of exon per million frag-
ments mapped) [56] within either RFI group ≥ 1, which
resulted in 46 genes. All pairs of primers corresponding
to the 46 DEGs and six internal reference genes were de-
signed and synthesized by the Fluidigm Corporation
(Fluidigm, San Francisco, CA), such that the two primers of
each pair were separated by exon-exon boundaries and
could amplify all isoforms of the target gene if possible (see
Additional file 2: Table S2). The efficiency of each primer
pair was tested by conventional RT-qPCR on the DNA
Engine Opticon 2 system (BioRad, Hercules, California) by
using the standard curve method [57] and only primer pairs
with amplification efficiency no less than 0.95 were further
considered. As for specificity, only primer pairs that gave
products with single peaks in melting curve analyses were
used for the downstream RT-qPCR assays. This resulted in
37 pairs of primers for DEGs and two for internal reference
genes (YWHAZ and RPL32) passing the test (Additional
file 2: Table S2). The samples we used for RT-qPCR valid-
ation of the DEGs included 24 of the 31 RNA samples that
we had sequenced by RNA-seq, and another 24 novel sam-
ples from gilts from the same contemporary group of pigs,
with 6 samples from each line by diet combination. The
24 novel blood samples were selected such that the RFI
phenotypes of the corresponding animals were evenly dis-
tributed across the distribution of RFI phenotypes that
was not covered by the RFI phenotypes of the 24 animals
originally selected for RNA-seq (Fig. 1). Detailed informa-
tion about the 48 samples used for validation of DEGs is
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in Additional file 1: Table S1. RNA was extracted from the
novel samples as above in three batches, with two samples
from each line by diet combination per batch. The con-
centration and quality of 24 novel RNA samples were de-
termined as above. Total RNA without undergoing globin
depletion was used for cDNA synthesis. By following the
Fluidigm User Guide for Real-Time PCR Analysis [58],
Real Time-qPCR was done on a 48.48 dynamic array chip
(Fisher Scientific, Pittsburgh, PA) using the Biomarker HD
system (Fluidigm, San Francisco, CA). Data were analyzed
with the Fluidigm Real-Time PCR analysis software with
the default settings, to obtain raw Ct values. The raw Ct

values were corrected for differences in the amount of in-
put RNA by using the geometric mean of the Ct values of
the two internal reference genes for the same RNA sam-
ples to get – ΔCt = − (Ctgene – Ctreference) [59, 60]. Differen-
tial expression analysis was performed by fitting linear
models with – ΔCt values as the response variables and
RFI group, RNA extraction batch, and the linear covari-
ates of the concentrations of neutrophils, lymphocytes,
monocytes and basophils as independent variables. With
the high RFI group as the reference, the estimated effects
on – ΔCt for RFI group were defined as the –ΔΔCt values.
The p-values associated with the effect of RFI group were
adjusted to get q-values by using the “BH” method [55]. If
the q-value of the significance test of the RFI group was
less than 0.15, the corresponding gene was considered dif-
ferentially expressed between the low and high RFI groups
by RT-qPCR. Because the amplification efficiencies (see
Additional file 2: Table S2) of the primers were close to 1,
the fold changes of gene expression between the low and
high RFI group were calculated as 2–ΔΔCt [59].

Association analysis of (eigen)gene expression with RFI
phenotype
For association analysis of the expression levels of eigen-
genes of modules identified by WGCNA with RFI
phenotype, the eigengene expression levels were first an-
alyzed with a linear model that included RFI group and
diet as fixed effects and RFI phenotype as a covariate,
along with the two-way and three-way interactions
among these three factors. We did not include RNA
processing batch, RIN, and concentrations of the blood
cell types in the linear model because the eigengene ex-
pression levels were calculated based on gene expression
values that had already been adjusted for these effects.
Gene expression determined by RT-qPCR was also used
to identify genes associated with RFI phenotype. The –
ΔCt values for the 37 target genes in the 48 samples
were calculated as above and analyzed with a linear
model that included RFI group, RNA extraction batch
and diet as fixed effects, and RFI phenotype and the
concentrations of neutrophils, lymphocytes, monocyte
and basophils as covariates, along with the two-way and

3-way interactions among RFI group, diet and RFI
phenotype. However, none of the interaction terms were
significant after correcting for multiple testing with the
“BH” method (q > 0.15), thus interaction terms were re-
moved from the models. The p-values associated with
the regression coefficient(s) on the RFI phenotype covar-
iate were adjusted to get q-values by the “BH” method
[55]. If the q-value was less than 0.05, the association be-
tween the (eigen)gene and the RFI phenotype was con-
sidered significant.

Results
Differentially expressed genes between low and high RFI
groups
Mauch et al. [39] showed that the low RFI line had sig-
nificantly lower RFI than the high RFI line on the LFD
(p < 0.007), but the low RFI line only tended to have
lower RFI than the high RFI line on the HFD (p > 0.05).
Thus, to maximize the contrast, we selected blood sam-
ples for RNA-seq from gilts of the low RFI line with ex-
tremely low RFI values when fed the LFD or the HFD
(designated as low RFI group), and from gilts of the high
RFI line with extremely high RFI values when fed the
LFD or the HFD (designated as low RFI group) (Fig. 1).
The metadata, including RNA concentration, RINs be-
fore and after globin depletion, RFI phenotype and CBC
test results are in Additional file 1: Table S1. The distri-
bution of the RFI values for all gilts of each line by diet
combination is in Fig. 1. To increase the power to detect
lowly expressed genes in the whole blood transcriptome,
we depleted the most highly expressed transcripts,
hemoglobin A and B (HBA and HBB), using the RNase H-
mediated method [40]. Alignment of RNA-seq reads to the
reference genome showed that globin transcripts had been
effectively reduced (Additional file 3: Table S3). After globin
depletion, on average, only 0.22 ± 0.29 and 1.86 ± 2.70 % of
the trimmed reads mapped to the HBA and HBB genes, re-
spectively. The numbers of raw reads, trimmed reads, and
mapped reads for each sample are in Additional file 3:
Table S3. In summary, 20.4 ± 7.8 million pairs of 100-bp
raw reads were sequenced per sample. After trimming,
81.4 ± 8.0 % of raw paired-end reads were kept as paired-
end reads, while 17.6 ± 8.0 % of raw forward reads (R1) and
0.27 ± 0.05 % of raw reverse reads (R2) were unpaired reads.
91 ± 1 % of trimmed fragments were mapped to the pig ref-
erence genome, with 83.0 ± 1.2 % (mean ± sd) of trimmed
fragments being uniquely mapped. After removing genes
with extremely low expression (See Methods), and HBA
and HBB from the count table, we had expression data for
12280 genes for downstream analyses.
Mpetile et al. [35] showed that pigs at 35 to 42 days of

age from the low RFI line had lower concentrations of
lymphocytes, monocytes and basophils than those from
the high RFI line in their peripheral blood. Therefore,
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we decided to account for the concentration of different
blood cell types in our analyses so that we could adjust
gene expression for these concentration differences. Al-
though the animals were randomly assigned to one of
the two diets after the blood samples were collected, we
started with a full model that included diet and RFI
phenotype (estimated RFI value) and performed back-
ward selection to establish a final model for the follow-
ing reasons: 1) the samples for RNA-seq were selected
based on the RFI phenotype of the animals; 2) the RFI
phenotype depended on both line and diet effects; 3) we
were interested in identifying genes that might be associ-
ated with RFI phenotype. However, after accounting for
RFI group (i.e. the low RFI and high RFI groups) and
other variables identified via backward selection (batch,
pre_conc, post_RIN, and the concentrations of neutrophils,
lymphocytes, monocytes and basophils), we found the RFI
phenotype, diet, pre_RIN, post_conc and the concentration
of eosinophils were not significantly associated with the ex-
pression levels of most genes (p > 0.05). With our final se-
lected model, we found expression levels of 836, 0, 3, and
42 genes to be significantly associated with the concentra-
tions of neutrophils, lymphocytes, monocytes and baso-
phils, respectively (q ≤ 0.05) (Additional file 4: Table S4).
However, we were most interested in DEGs whose expres-
sion differences were primarily dependent on line differ-
ences. Therefore, for all downstream analysis, we only
considered DEGs between the low and high RFI groups,
while accounting for the effects of relevant variables: batch,
post_RIN, and the concentrations of neutrophils, lympho-
cytes, basophils and monocytes.
The numbers of DEGs between the low and high RFI

groups based on different stringencies in terms of q-value
and fold change cutoffs are in Table 1. A full list of the
1972 DEGs for q ≤ 0.15 is in Additional file 4: Table S4. Dif-
ferential expression of the 454 DEGs with q ≤ 0.05 is shown
in Fig. 2a. As the volcano plot (Fig. 2b) shows, the fold
change between the low and high RFI groups was small for
most genes. For a q-value cutoff of 0.05, only 50 DEGs had
a fold change ≥ 2 or a fold change ≤ 0.5. However, the tran-
scriptomes of the two groups of animals were collectively
different, as the 31 samples were grouped into two clusters

by RFI group based on hierarchical clustering and MDS
analyses (Fig. 2c and Additional file 5: Figure S1).

Annotation of differentially expressed genes by GO term
and pathway enrichment analyses
To understand the biological differences between RFI
groups based on the differential expression analyses, we
carried out GO term analysis of DEGs using a less strin-
gent cutoff of q-value (q ≤ 0.15) such that we could de-
tect a broader group of significant GO terms. These
analyses were conducted separately for DEGs with
higher and lower expression in the low versus high RFI
group. GO-BP term analysis showed that genes involved
in small molecule biosynthesis, carboxylic acid biosyn-
thesis, organic acid biosynthesis, steroid biosynthesis,
antigen processing and presentation of peptide antigen
via MHC (major histocompatibility complex) class I, and
organic hydroxy compound biosynthesis were overrepre-
sented among DEGs with higher expression in the low
versus high RFI group (p < 0.001, Table 2). Among the
DEGs with lower expression in the low RFI group, genes
involved in signal transduction, bone mineralization,
regulation of phosphorylation, and phosphorylation were
overrepresented (p < 9E-05). Interestingly, GO-CC term
analysis showed that genes functioning in the prote-
asome complex or the mitochondrion were enriched
among the DEGs with higher expression in the low ver-
sus high RFI group (p < 5E-06).
In addition, we conducted pathway enrichment analyses

of the DEGs (q ≤ 0.15) by assuming pig genes have similar
biological functions as their human orthologs. Detailed re-
sults from these IPA-based analyses are in Additional file 6:
Table S5. In summary, IPA-based analysis suggested genes
functioning in several canonical pathways tended to
be enriched among the DEGs, including p53 signaling
(p =2.18E-03), T cell receptor signaling (p = 1.25E-02),
antigen presentation (p = 1.63E-02), IL-15 signaling (p =
2.16E-02) and IL-9 signaling (p = 2.21E-02). But after cor-
recting for multiple testing, none of these pathways were
significantly enriched among the DEGs (q > 0.1). In
addition, IPA-based analyses suggested that activities of
genes involved in regulating the quantity of T lymphocytes
(p = 7.46E-05), consumption of oxygen (p = 1.33E-04), in-
sulin resistance (p = 1.98E-04), cell survival (p = 4.67E-04),
glucose metabolism and transport (p < 5.64E-03), respir-
ation of mitochondrion (p = 5.74E-03) and body mass
index (p = 1.03E-02) were different between the two RFI
groups. IPA-based analysis also suggested several potential
upstream regulators of the DEGs, including IL15, which
had a higher expression in the low versus high RFI group
(p < 3.6E-03). The inferred regulatory network for IL15 is
shown in Additional file 7: Figure S2.
Using the Integrated Pathway Analysis Database (IPAD)

for Systematic Enrichment Analysis [53], we found genes

Table 1 The number of differentially expressed genes identified
at different q-value and fold change cutoffs

Cutoff of
q-value

Cutoff of fold change

│log2(FC)│ > 0 a │log2(FC)│≥ log2 1.5 │log2(FC)│≥ 1

q≤ 0.05 454 140 50

q≤ 0.1 1185 266 80

q≤ 0.15 1972 344 93
aFC, fold change calculated as the ratio of mean gene expression in the low
RFI group to mean gene expression in the high RFI group after accounting for
the other relevant variables (see Methods)
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involved in the immune system (pathway ID: 168256)
(q = 0.013) and metabolism (pathway ID: 1430728) (q =
0.066) were enriched among the DEGs. IPAD-based
disease-associated gene enrichment analysis suggested
genes involved in several diseases were overrepresented
among DEGs (q < 1E-05), including taste disorder, eat-
ing disorder, anorexia, hyperphagia, obesity, insulin re-
sistance, mitochondrial diseases and lymphocytosis.
Details are in Additional file 8: Table S6. This is consist-
ent with the phenotypic differences in feeding behavior
[9], body composition [12], and growth rate [10] that
have been observed between the two RFI lines.

Validation of DEGs
We used RT-qPCR to validate the differential expression
of 37 DEGs that were selected based on average expression
levels within RFI group (FPKM> 1), differential expression
levels between RFI groups (|log2(fold change)| ≥ 1 and q ≤
0.15) and primer performance. To test whether the expres-
sion differences we detected were due to differences be-
tween the lines, rather than due to the comparison of pigs
of the low RFI group to pigs of the high RFI group, we se-
lected another 24 samples from the same parity of the 9th
generation of the two RFI lines. These 24 samples were se-
lected such that the RFI values of the corresponding ani-
mals were roughly evenly distributed across the ranges of
RFI values for each line by diet combination, which were
not covered by the RFI values of the 24 animals originally
selected for RNA-seq (Fig. 1). The RNA from these new
samples as well as the 24 samples used for RNAseq ana-
lyses were used in RT-qPCR analyses. Data from the ori-
ginal 24 samples and the new 24 samples were analyzed
independently as well as jointly. A total of 24 of the 37
DEGs were confirmed in the joint analysis of all 48 sam-
ples (q < 0.15, Fig. 3), while 22 of the 37 DEGs were con-
firmed when analyzing the original 24 samples (q < 0.15).
However, only 9 of the 37 DEGs were validated in the ana-
lysis of the novel 24 samples (q < 0.15, Additional file 9:
Table S7).
Based on the RT-qPCR results of the 48 samples, we

found the expression of 5 of the 37 DEGs (determined
by RNA-seq) to be significantly associated with RFI

phenotype (q < 0.05). They were LRP6 (low density lipo-
protein receptor-related protein 6), ENSSSCG00000024
900 (T-cell receptor beta chain), ENSSSCG00000008771,
PDL1 (CD274 molecule) and ENSSSCG00000020945
(Additional file 10: Table S8).

Co-expressed gene modules associated with RFI
Since conventional differential expression analysis con-
siders each gene independently and suffers from loss
of power due to correction for multiple testing, we
performed weighted gene co-expression gene network
analysis (WGCNA) [48] based on the adjusted gene
expression matrix (see Methods) to identify modules
(groups of co-expressed genes) differentially expressed
between the RFI groups and associated with RFI
phenotype. We identified four modules, designated as
C1-lightcyan, C2-darkturqoise, C3-skyblue3, and C4-
black, whose eigengene expression levels were signifi-
cantly differentially expressed between the low and high
RFI groups (Table 3 and Additional file 11: Table S9). The
eigengene of a module is a weighted average of the
expression profiles of genes in the module, calculated
as the first principal component score. The expression
levels of the eigengenes for the 31 samples are shown
in Fig. 4a. Among the genes in module C1-lightcyan,
those involved in lipid metabolism-related biological
processes, such as lipid metabolic process, lipid bio-
synthesis and steroid biosynthesis were overrepre-
sented (p < 0.006). In module C2-darkturqoise, genes
involved in biological processes related to bone
mineralization, immunity and stress response and lipid
metabolism were overrepresented (Additional file 12:
Table S10). We also found that DEGs identified by RNA-
seq (q ≤ 0.15) significantly overlapped with each of the
four differentially expressed modules (Fig. 4b), which sug-
gests that the modules identified by WGCNA are not
computational artifacts as they were enriched for the
DEGs between the RFI lines. In addition, we found that
the expression levels of the eigengenes of modules C3-
skyblue3 were significantly associated with RFI phenotype
(q < 0.05) (Additional file 13: Table S11).

(See figure on previous page.)
Fig. 2 Differentially expressed genes and transcriptomic differences between the low and high RFI groups. a Heatmap showing 454 DEGs
(q ≤ 0.05) between low and high RFI groups identified by RNA-seq. Sample names are designated as RFI line followed by the pig identifier.
LRFI, low RFI line; HRFI, high RFI line. Animals with sample names in blue were fed the high-fiber, low-energy diet (LFD), while animals with
sample names in black were fed the low-fiber, high-energy diet (HFD). The relative orders of genes and samples were determined by
two-way hierarchical clustering based on the adjusted transformed gene expression of the 454 DEGs. The adjusted gene expression was
gene-wise standardized to get the z-score as displayed. b Volcano plot showing the magnitude and significance of differential expression
of genes between low and high RFI groups. Black vertical dash lines correspond to │log2(fold change)│ = 1, while red horizontal dash line
correspond to q-value of 0.15. FC, fold change calculated as the ratio of mean gene expression in the low RFI group to mean gene
expression in the high RFI group after accounting for the other relevant variables. c Hierarchical clustering showing relationship of the 31
RNA-seq samples. The samples were hierarchically clustered by using Ward method with 1 minus Spearman correlation as distance. The
Spearman correlations between pairs of samples were calculated based on the adjusted transformed expression of the 12280 genes
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Table 2 GO terms overrepresented among differentially expressed genes

ID Domain Term Annotateda Significantb Expectedc p-value

GO terms overrepresented among DEGs with higher expression in the low RFI group than in the high RFI group

GO:0044283 BP Small molecule biosynthetic process 170 33 13.77 1.70E-06

GO:0046394 BP Carboxylic acid biosynthetic process 113 22 9.15 8.70E-05

GO:0016053 BP Organic acid biosynthetic process 113 22 9.15 8.70E-05

GO:0006694 BP Steroid biosynthetic process 44 12 3.56 0.00014

GO:0046165 BP Alcohol biosynthetic process 48 12 3.89 0.00033

GO:0002474 BP Antigen processing and presentation of peptide
antigen via MHC class I

20 7 1.62 0.00067

GO:1901617 BP Organic hydroxy compound biosynthetic process 60 13 4.86 0.00084

GO:0004298 MF Threonine-type endopeptidase activity 15 9 1.18 3.50E-07

GO:0005839 CC Proteasome core complex 15 9 1.23 5.10E-07

GO:0000502 CC Proteasome complex 39 14 3.2 1.20E-06

GO:0005739 CC Mitochondrion 955 116 78.35 4.60E-06

GO:0005689 CC U12-type spliceosomal complex 17 8 1.39 2.50E-05

GO:0043227 CC Membrane-bounded organelle 5518 491 452.73 0.00039

GO:0032991 CC Macromolecular complex 2416 237 198.23 0.00041

GO terms overrepresented among DEGs with lower expression in the low RFI group than in the high RFI group

GO:0065007 BP Biological regulation 4577 285 237.14 1.10E-06

GO:0050789 BP Regulation of biological process 4395 272 227.71 7.00E-06

GO:0007165 BP Signal transduction 2117 149 109.68 9.70E-06

GO:0030282 BP Bone mineralization 45 11 2.33 1.30E-05

GO:0023052 BP Signaling 2276 156 117.92 2.50E-05

GO:0044700 BP Single organism signaling 2276 156 117.92 2.50E-05

GO:0007166 BP Cell surface receptor signaling pathway 979 79 50.72 2.90E-05

GO:0031214 BP Biomineral tissue development 49 11 2.54 3.10E-05

GO:0050794 BP Regulation of cellular process 4126 254 213.77 4.40E-05

GO:0007154 BP Cell communication 2328 157 120.61 5.70E-05

GO:0042325 BP Regulation of phosphorylation 525 48 27.2 7.10E-05

GO:0016310 BP Phosphorylation 1024 80 53.05 8.10E-05

GO:0044763 BP Single-organism cellular process 5419 315 280.76 0.00021

GO:0018212 BP Peptidyl-tyrosine modification 125 17 6.48 0.00023

GO:0001932 BP Regulation of protein phosphorylation 407 38 21.09 0.00027

GO:0006468 BP Protein phosphorylation 774 62 40.1 0.0003

GO:0051716 BP Cellular response to stimulus 2670 171 138.33 0.00041

GO:0060070 BP Canonical Wnt signaling pathway 86 13 4.46 0.00044

GO:0016477 BP Cell migration 405 37 20.98 0.0005

GO:0051239 BP Regulation of multicellular organismal process 841 65 43.57 0.00056

GO:0018108 BP Peptidyl-tyrosine phosphorylation 123 16 6.37 0.00058

GO:2000026 BP Regulation of multicellular organismal development 526 44 27.25 0.00099

GO:0040011 BP Locomotion 511 43 26.48 0.00101

GO:0060089 MF Molecular transducer activity 409 41 21.42 4.30E-05

GO:0044459 CC Plasma membrane part 537 45 27.48 0.00063
aNumber of genes detected in the blood and associated with a given GO term
bNumber of DEGs associated with a given GO term
cExpected number of DEGs associated with a given GO term
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Discussion
Small but significant blood transcriptomic differences
between the low and high RFI groups
By transcriptomic analyses, we identified 454, 1185 and
1972 DEGs between the low and high RFI groups at q-
value cutoffs of 0.05, 0.1 and 0.15, respectively. We vali-
dated 24 of the 37 selected DEGs by RT-qPCR in a joint
analysis of 48 samples: 24 of the 31 samples used for
RNA-seq plus 24 novel samples from the same popula-
tion (Fig. 1, Fig. 3 and Additional file 9: Table S7). We
validated 22 of the 37 selected DEGs by RT-qPCR when
using 24 of the 31 samples that were used for RNA-seq,
but only 9 of the 37 selected DEGs were validated when
using only the 24 novel samples (Fig. 1 and Additional
file 9: Table S7). Our validation rate by RT-qPCR of
DEGs detected by RNA-seq was low compared to the
high validation rate reported by Wang et al. [61], espe-
cially when based on the 24 novel samples. There are
several possible reasons for failure to validate some of

the 37 DEGs that were detected by RNA-seq by RT-
qPCR in this study. First, some of the selected DEGs
could be false positives, especially as we selected DEGs
with q ≤ 0.15 for validation, although we did not detect
an obvious association between the validation rate and
the q values for the DEGs. Second, the primers used for
RT-qPCR maybe did not quantify all isoforms that were
measured by RNA-seq. Although the primers were de-
signed to amplify all isoforms, these designs were based
on poorly annotated gene models: most of the 37 genes
only have one isoform in the Ensembl pig genome anno-
tation (Additional file 2: Table S2). Third, the 24 novel
samples used for RT-qPCR were not the exact biological
replicates of the 24 samples used for RNA-seq given
their different RFI phenotype. In addition, as observed in
other differential expression analyses between low and
high RFI groups conducted in poultry, pigs and cattle
[23, 62–65], the magnitude of the differential expression
in terms of fold change was generally small for most
genes. This could be because the experimental units for
the low and high RFI groups were genetically heteroge-
neous within each group, which cancelled out some dif-
ferences between extreme individuals of the two groups.
In addition, the experiments were conducted without
strong external stimuli, thus the expression levels of
genes were in their normal physiological range. It was
also possible that the differences in gene expression in
blood at the post-weaning stage were not as dramatic as
during the grow-finish phase when feed efficiency was
tested. However, it is possible that small changes in the
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Fig. 3 Validation of DEGs by RT-qPCR. 24 of the 37 selected DEGs between low and high RFI groups were confirmed by RT-qPCR when using the
48 samples, 24 of which were used for RNA-seq and another 24 of which were novel, as shown in this figure (q≤ 0.15); 22 of the 37 selected
DEGs were confirmed by RT-qPCR when using the 24 samples that were used for RNA-seq (q≤ 0.15); but only 9 of the 37 selected DEGs were
validated by RT-qPCR when using the 24 novel samples (q≤ 0.15) (Addition file 9: Table S7). For comparison, the log2 (fold change) of these
genes determined by RNA-seq were also displayed. Genes were ordered based on their log2 (fold change) as determined by RT-qPCR for display.
Error bars for RT-qPCR assays show the standard errors of mean log2 (fold change). DEGs not confirmed by RT-qPCR are labeled in red. Genes
without corresponding human orthologs are labeled with the last 5 digits of their Ensembl gene IDs, with common prefix “ENSSSCG000000”
omitted for simplicity. For example, the ID for “29500” should be ENSSSCG00000029500

Table 3 Summary of WGCNA modules differentially expressed
between the low and high RFI groups

ID Size Reg. coef.a p-value Adjusted R2

C1_ lightcyan 198 −0.33 4.7E-13 0.83

C2_darkturquoise 142 0.30 2.9E-09 0.70

C3_ skyblue3 89 0.29 2.7E-08 0.65

C4_ black 786 −0.28 3.9E-07 0.58
aReg. coef., regression coefficient estimated by regressing the expression level
of the eigengene of a module on RFI groups, with the high RFI group as
the reference
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transcript abundance of some genes involved in metab-
olism, transcription regulation, and signal transduction,
could have significant effects on RFI phenotype. As our
differential analysis indicated, a significant portion of
genes involved in several biosynthetic processes, signal
transduction, and regulation of phosphorylation were
differentially expressed between the low and high RFI
groups. Lastly, we cannot exclude the possibility that
there is a weak or indirect relationship between early
blood gene expression and later RFI phenotype. Never-
theless, based on the adjusted global gene expression
profiles of all samples, hierarchical clustering and MDS
analyses revealed that the post-weaning blood transcrip-
tome was different between the two RFI groups.

Potential relationship of the DEGs and differentially
co-expressed gene modules in blood with RFI
Although we did not attempt to validate most of the
DEGs or the differentially co-expressed gene modules
between the two RFI groups due to the generally small
fold changes, we found some interesting biological pro-
cesses and cellular components underlying them, which
suggested their potential relationships with RFI pheno-
type. GO term enrichment analysis of DEGs suggested
that genes involved in small molecule (including organic

acid, carboxylic acid, and alcohol) biosynthesis, antigen
processing and presentation of peptide antigen via MHC
class I, and steroid biosynthesis were enriched among
DEGs with higher expression in the low versus high RFI
group. DEGs involved in small molecular biosynthesis
included FADS1, FADS2, and ELOVL3. FADS1 and
FADS2 are important genes in regulating the synthesis
of polyunsaturated fatty acids, which have pleiotropic in-
fluences on health and diseases by functioning in several
pathways, including metabolism and immunity [66]. Of
note, FADS2 also had a higher expression level in the
liver in the low RFI versus high RFI group of Nelore
steers [62]. ELOVL3 encodes one of the rate-limiting en-
zymes in elongation of very long chain fatty acids (with
more than 17 carbon atoms). In mice, a proposed
physiological function of ELOVL3 is to maintain lipid
homeostasis by replenishing the intracellular pool of tri-
acylglycerol [67]. MAT2B, is one of the genes associated
with steroid biosynthesis but had lower expression in the
low versus high RFI group. It encodes a regulatory subunit
of methionine adenosyltransferase, MAT II, which cata-
lyzes the synthesis of S-adenosyl methionine (SAM). SAM
is a key methyl donor in transmethylation reaction and
polyamine biosynthesis and also functions as a cofactor in
key metabolic pathways. Down-regulation of MATIIB

A

B

Fig. 4 Co-expression modules differentially expressed between the low and high RFI group. a Distribution of eigengenes of modules highly
associated with RFI groups. b Venn diagram showing overlapping between module genes and DEGs
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expression causes a 6 to10-fold increase in intracellular
SAM levels [68]. Taken together, the expression difference
of genes involved in small molecule biosynthesis and ster-
oid biosynthesis might have significant effects on overall
metabolism, immunity and beyond.
Seven of the 20 genes associated with GO term

GO:0002474 (antigen processing and presentation of
peptide antigen via MHC class I) had higher expression
in the low RFI group. These included SLA-3 and TAP1.
It has been shown that in post-weaning pigs resistant to
Escherichia coli F18, SLA-3 has higher expression level
than in susceptible pigs [69]. TAP1 transports antigens
from the cytoplasm to the endoplasmic reticulum for
loading antigen peptide onto MHC class I molecules
[70]. In addition, we found 14 of the 15 DEGs associated
with GO term GO:0000502 (proteasome complex) to
have higher expression in the low versus high RFI group.
The only exception was PSMD5, which had lower ex-
pression in the low versus high RFI group. It has been
shown that overexpression of PSMD5 inhibits assembly
and activity of 26S proteasome [71], which is an import-
ant component in processing and presenting intracellu-
lar peptide antigen via MHC class I to CD8+ T cells.
Antigen presenting cells (APC) have both constitutive
proteasomes and immunoproteasomes, both of which
are important for antigen peptide processing [72]. Not-
ably, an immunoproteasome subunit PSMB8 (also
known as β5i) had the largest difference in expression
level among the 15 DEGs that function in the prote-
asome complex. Given the increased expression levels of
non-inhibitory proteasomal components in blood of the
low RFI group, it is likely that proteasomal activity is
higher in blood from the low versus high RFI group.
Taken together, the expression differences of genes in-
volved in antigen processing and peptide antigen presen-
tation suggest that low RFI animals might have a more
active system of antigen peptide processing and presenta-
tion, which might improve the robustness of their im-
mune system of the low RFI animals. Consistent with this
speculation, Dunkelberger et al. [73] recently showed that
the low RFI line was less affected by experimental infec-
tion with porcine reproductive and respiratory syndrome
virus (PRRSv), which mainly infects mature macrophages,
derivatives of monocytes. In view of the lower concentra-
tion of monocytes in the low RFI line, the putative higher
activity of antigen processing and peptide antigen presen-
tation might lead to an increased efficiency of innate im-
munity in the low RFI pigs. It would be interesting to test
the activity of the blood proteasome in more detail in
these lines for a role in feed efficiency.
Another interesting finding was that genes functioning

in the mitochondrion were significantly overrepresented
among DEGs with higher expression in the low versus
high RFI group. Of the 955 blood genes associated with

GO-CC term mitochondrion (GO:0005739), 116 were
DEGs with higher expression in the low versus high RFI
group. Mitochondria play important roles in many bio-
logical processes, including fatty acid metabolism, amino
acid metabolism, and steroidogenesis [74]. Importantly,
mitochondrial function has been associated with feed ef-
ficiency in poultry, cattle and lambs [75, 76]. As well, it
has been shown that the mitochondrial proteome pro-
files are different between these low and high RFI lines
of pigs and the mitochondria from the liver and LD
muscle of the low RFI pigs produced less ROS [14–16].
Interestingly, we found that four genes involved in de-
toxification of ROS, GPX3, SOD1 and CAT, had higher
expression in the low versus high RFI group. Another in-
teresting gene that functions in mitochondria is G0S2,
which is a noncompetitive inhibitor of adipose lipase, a
rate-limiting lipase of triglyceride hydrolysis [77]. G0S2
had higher expression in the low versus high RFI group.
It has been shown that G0S2 can inhibit ROS production
in endothelial cells [78]. In addition, we found higher ex-
pression in blood from the low RFI group for genes that en-
code 14 mitochondrial ribosomal proteins (MRPL3, 9, 10,
11, 18, 20, 24, 38, 40, 46; MRPS10, 11,15, 27), nine compo-
nents of mitochondrial complex I (NDUFA4, 8; NDUFB3,
7, 9; NDUFS2, 7; NDUFAB1, NDUFAF3), one component
of complex II (SDHA), cytochrome c (CYCS) and four
components of complex IV (COA3, COA6, COX5B,
COX7C), two components of the complex V (ATP5D,
ATP5G3), four key enzymes of the TCA cycle (ACO1,
IDH2, IDH3A, SDHA, SUCLG1), four enzymes involved in
mitochondrial DNA repair (APEX2, FEN1, OGG1, UNG),
and two enzymes involved in nucleotide metabolism (DUT,
MTHFD1), and three translocases of the inner/outer mem-
branes (TIMM50, TOMM7, TOMM40). Taken together, it
is reasonable to speculate that the low RFI group has more
efficient mitochondria and can more efficiently handle oxi-
dative stress.
Among the 1972 DEGs (q ≤ 0.15), 288 genes were as-

sociated with GO:0007165 (signal transduction), and
genes involved in signal transduction were significantly
enriched among DEGs with lower expression in the low
versus high RFI group. DEGs associated with signal
transduction were mainly cytokines, receptors and ki-
nases. Signal transduction-related genes with much
lower expression in the low versus high RFI group in-
cluded LRP6, WNT10B, and FZD6. LRP6 belongs to the
low-density lipoprotein receptor family and plays a key
role in lipoprotein endocytosis and as a co-receptor in
Wnt/β–catenin signaling. LRP6 is also involved in regu-
lating lipid homeostasis and body fat mass [79], while
LRP6, WNT10B and FZD6 can function together in the
Wnt/β-catenin signaling pathway. Besides playing im-
portant roles in bone metabolism, the Wnt/β-catenin
signaling pathway also takes part in glycolysis and
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regulates mitochondrial physiology and insulin sensitiv-
ity and is thus linked to metabolic diseases [80, 81]. On
the other hand, we found a few genes involved in signal
transduction but with much higher expression in the
low versus high RFI group, such as IL15 and IRS1. IL15
plays important roles as a pleiotropic cytokine in innate
and adaptive immunity [82]. IRS1 is an important player
in both the insulin signaling and the IGF-1 signaling
pathways and IGF-1 is an important anabolic hormone,
playing a key role in growth. Note that juveniles from
the low RFI line have been shown to have lower serum
concentration of IGF-1 and the low RFI line grows only
slightly slower than the high RFI line. The higher ex-
pression of IRS1 might partially compensate for the
lower level of IGF-1 in the low RFI line. It is interesting to
investigate the expression and activity of IRS1 in other tis-
sues of the two lines, such as the muscle. The differential
expression of many genes associated with signal transduc-
tion might be related to differences in metabolism and im-
mune response between the RFI lines. Lastly, we found
four co-expression modules to be differentially expressed
between the RFI groups, and these modules shared a sig-
nificant portion of their genes with the list of DEGs. The
eigengene expression of module C1-lightcyan was lower
in the low RFI group than in the high RFI group. The top
highly connected genes in this module were MAT2B,
CPT1A, and LRP6. These genes were also differentially
expressed between the low and high RFI groups. Since we
have already discussed MAT2B and LRP6, we focus on
CPT1A herein. CPT1A had lower expression in the low
versus high RFI group and plays an important role in
importing long chain fatty acids into mitochondria, by
catalyzing the primary step of mitochondrial fatty acid oxi-
dation [83]. Inhibition of hypothalamic CPT1A has been
shown to decrease feed intake and glucose production in
rats [84]. Thus it will be interesting to investigate its ex-
pression in other tissues including the hypothalamus. In
addition, GO-BP term analysis showed that genes involved
in lipid metabolism-related processes were enriched in
module C1-lightcyan. Because low RFI pigs have less body
fat and are leaner [12] and that deposition of energy as fat
costs more energy than as protein [85], genes in this mod-
ule might be relevant to differences in RFI.

Potential predictive biomarkers for RFI
DEGs whose expression levels are associated with the
phenotype of interest, as well as genes whose expression
profiles are similar to the eigengenes of co-expression mod-
ules associated with the phenotype are often considered as
good candidate biomarkers for the phenotype. Based on
our association tests, the best candidate biomarkers in-
cluded LRP6, ENSSSCG00000024900, ENSSSCG000000
08771, PDL1 and ENSSSCG00000024905. LRP6 and ENS
SSCG00000024900 were ones of the DEGs between the

two RFI groups and ones of the highly connected,
eigengene-like genes in modules C1-lightcyan and C2-
darkturqoise, respectively (Additional file 11: Table S9).
Notably, we only found a very few genes whose expression
levels were significantly associated with RFI phenotype,
which might be because the estimated RFI values were re-
siduals which represented both random errors and true
feed efficiency and thus were not accurate, or because there
were not many genes whose post-weaning expression levels
in blood were well associated with the RFI values measured
during the grow-finish phase in blood, or because there
may be little or no relationship of blood gene expression in
blood and RFI phenotype regardless of age.

Conclusions
As far as we know, this is the first study to explore tran-
scriptomic differences in blood between pig lines with
divergent RFI by RNA-seq. We found that the blood
transcriptome was clearly different between the low and
high RFI groups, although only a small number of genes
showed large fold changes of expression between the
two groups. The two RFI groups may be different in
mitochondrial and proteasomal activities, small molecule
biosynthetic process, and signal transduction. These
blood transcriptomic differences may be related to the
difference in feed efficiency between these two groups,
although the observed relationships of post-weaning
blood gene expression with RFI phenotype measured
during the grow-finish phase were not strong. The top
candidate biomarkers for predicting RFI included LRP6,
ENSSSCG00000024900, ENSSSCG00000008771, PDL1
and ENSSSCG00000024905.
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