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Abstract

Background: We explore the benefits of applying a new proportional hazard model to analyze survival of breast
cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data
than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as
additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene
expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival
analysis.

Methods: The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients.
This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric
Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for
hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions.

Results: The hypertabastic model provided the best fit among all the models considered. Use of multiple gene
expression variables also provided a considerable improvement in the goodness of fit of the model, as compared
to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to
determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in
survival, as well as the times when these occurred. We explore the influence of each gene expression variable on
these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of
correlation, we were able to investigate the dynamics with respect to changes in gene expression.

Conclusions: We observed that use of three different gene signatures in the model provided a greater combined
effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These
results point to the potential to combine gene signatures to a greater effect in cases where each gene signature
represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival
models can be an effective survival analysis tool for breast cancer patients.
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Background
A number of important papers have appeared in recent
years using gene expression as a predictor of outcome
in cancer patients, and it has become clear this genomic
information will greatly improve prognostic capabilities.
In the statistical survival analysis, these papers have utilized
the semi-parametric Cox proportional hazard model and
the Kaplan-Meiers estimator for the survival and hazard
curves. One purpose of this paper is to show the advantages
that can be gained by utilizing a parametric model, which
allows use of explicitly defined, continuous hazard and
survival functions for tools in analysis. Parametric models
in general have a higher accuracy, and the recently intro-
duced hypertabastic model [1] is shown to provide the best
fit for the data set under consideration, among the other
competing parametric models of Weibull and log-logistic.
Although there may sometimes be a concern in using a
parametric model rather than the semi-parametric Cox
model in cases where the distribution of the data is
unknown, these models have greater accuracy and provide
more detailed information when they are applicable. The
hypertabastic model has been shown to be robust with
respect to departure of the data from the distribution [1,2],
making it an appropriate model to use in describing a wide
variety of survival data. This model has also been shown to
provide a good fit to breast cancer survival data in a recent
paper [3]. Using the explicit hazard and survival functions
provided by this model we demonstrate some of the poten-
tial for analysis of temporal dynamics of the progression of
hazard and decrease in survival. We are able to use the sur-
vival function to explicitly compute probability of survival
to a given time, and this prediction takes into account an
individual patient’s profile with respect to any significant
variables included in the model.
Breast cancer patients with similar clinical profiles

may experience widely differing outcomes and different
responses to therapy, and means for more accuracy in
prognosis will fill an important need. The development
of variables with more prognostic power was a primary
goal in the development of gene expression signatures
for breast cancer outcome. Early papers utilizing gene
expression to predict the progression of breast cancer
determined several distinct categories [4], which have be-
come linked to molecular subtype. The different molecular
subtypes had different prognoses, with basal-like and
ErbB2+ tumors experiencing more invasive tumors and
increased risk of recurrence, while the luminal subtype are
characterized by less invasiveness and a better response to
treatment. Luminal tumors were later subdivided [4] into
Lumina A and Lumina B, with distinct prognosis. The
authors [5] used microarrays and statistical methods to
determine a list of genes whose expression correlated
strongly to a positive outcome for the patients, based on
short term distant metastasis. This research established a
70 gene signature which could be used for prognosis of
tumors as poor or good outcome. Many other teams of
researchers, such as [6,7], have also used similar methods
to establish a gene expression signature highly correlated
to patient outcome. Based on the older idea [8] that
tumors and wounds produce a similar microenvironment
which facilitates proliferation and migration of cells and
stimulates angiogenesis, the papers of Chang and colla-
borators [9,10] determined prognostic capabilities of gene
expression signatures associated to wound healing.
More recently researchers [11,12] have addressed issues

of developing these methods for use together with standard
variables for prognosis in clinical cases. In particular, [12]
used model selection with Cox regression to determine the
best set of predictors from among the standard clinical
variables a collection of hundreds of gene signatures.
These researchers came to the conclusion that gene
expression variables are the most powerful predictors, and
most of these gene signatures are comparable to the
others in prognostic power. However, addition of clinical
variables to the model displayed a small increase in the
power of the model. Other researchers [13-15] have also
noted that different gene expression signatures carry
much of the same information. These researchers do not
expect use of several different signatures to yield much
improvement in prognosis. However, we note that Chang
et al. [10] proposed use of both the seventy gene signature
and the wound expression gene signature to a combined
effect in prediction of patient risk. Furthermore the work
of [16] develops a computational approach for prognosis
which uses both gene expression and a means of classifica-
tion into molecular subtype. The current study investigates
the interaction between clinical variables and several gene
signatures as predictors for outcome in breast cancer
patients. We have found that combining several gene
expression variables provides a model that best fits the
survival data. Consistent with the results of Chang et al.
[10] the model uses the seventy gene signature of [5]
together with core serum response, a wound healing
signature developed in [9]. In addition one of the gene
expression signatures from [4] for classification into
molecular subtype is shown to be statistically significant.
This particular gene signature for ErbB2+ overexpression
also relates to important aspects of the underlying breast
cancer tumor biology explored by numerous researchers.
The issue of what happens in the interactions of several
significant gene expression variables also arises inherently
in these considerations.
Clinical trials have begun for gene expression signatures

in breast cancer [17,18], and these biomarkers can be
expected to soon become available for use in the clinical
setting. Furthermore researchers have begun development
of a second generation of gene expression signatures,
including analysis of signatures from nearby stromal cells
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[19], immune response [20], and mutations in cancer
related pathways [21]. Gene expression profiles have add-
itionally been developed for other aspects of breast cancer
therapy response [22], including response to radiotherapy
and response to chemotherapy [23-26].
The combined model we form in this paper illustrates

how a quantitative prediction of hazard and survival can
be formed that incorporates the predictive capabilities of
these three gene expression variables. Note that each of
these variables has medical significance in breast cancer
progression. In our discussion of this model in the Results
and discussion section, we explore the role of these
variables, how they affect one another in the context of
the xmodel, and what information can be gained from vari-
ation in the levels of CSR correlation, ErbB2+ correlation,
and good or poor seventy gene signature. This analysis and
investigation addresses the important issue of how multiple
gene expression signatures representing different aspects of
the underlying biology can be combined and how they may
interact. We have found a partial answer in the context of
the given model; however it is far from complete in
answering this important question. We claim this is an
important issue that should receive further attention and
possibly alternative approaches in modeling.

Methods
Here we present the proportional hazard form of the
Hypertabastic model, which will be applied in the survival
analysis of the breast cancer patients. One important
feature of the hypertabastic survival model is the ability of
the hazard function to assume many different shapes, in
contrast to the Weibull, lognormal, and log logistic
distributions. The hypertabastic distribution function is
defined as

F tð Þ ¼ 1� sech α 1� tβcoth tβ
� �� �

=β
� �

0
t > 0
t≤0:

�

The hypertabastic proportional hazard model has a
hazard function of the form

h t x; θj Þ ¼ h0 tð Þg x θj Þðð
ð1Þ

where h0(t) is the baseline hazard function, given by

h0 tð Þ ¼ α t2β�1csch2 tβ
� �� tβ�1coth tβ

� �� �
tanh W tð Þ½ �

and where W(t) = α[1 − tβcoth(tβ)]/β, and α, β > 0. These
parameters α and β provide the flexibility of the hazard
function to conform to the given data set. See [1] for
examples of different distribution shapes associated to
different values of these parameters. The function g(x|θ)
is given by g(x|θ) = Exp[

P
k = 1
p θkxk], where the xk are

covariates and the θk are the associated parameters.
Similarly the hypertabastic survival function S(t|x, θ) for
the proportional hazards model has the form

S t x; θj Þ ¼ S0 tð Þ½ �g x θj Þð
�

ð2Þ
where S0(t) is the baseline survival function, given by

S0 tð Þ ¼ sech α 1� tβcoth tβ
� �� �

=β
� 	

:

For further detail, see [1,2]. Simulation studies with this
model [2] have demonstrated some degree of robustness
with respect to variations in the distribution of the data.
This model is applied to the 295 patient study from the

Netherlands Cancer Institute which is presented in [27] as
a validation set for the seventy gene signature. All of these
patients had stage I or II breast cancer but had no previous
history of cancer. The study combined both lymph-node
positive and lymph-node negative patients. All of these
patients had been treated by modified radical mastectomy
or breast-conserving surgery. Of the patients with lymph-
node positive disease, 120 were treated with adjuvant
chemotherapy and/or hormonal-therapy. For more infor-
mation regarding this study, see [27].
Here we further discuss the different variables that were

included as potential covariates in the model. The first class
of variables was the clinical variables, including the follow-
ing: estrogen receptor status (ERS), tumor grade (TG1 and
TG2), age (AGE), diameter (DIAM), and lymph node status
(LN1 and LN2). The primary gene expression variable we
tested was the seventy gene signature (70G) of [5] which
selected genes for prediction of early distant metastasis.
From the study of the wound healing microenvironment by
Chang et al. [9,10], the wound response signature (WRS)
and the core serum response correlation (CSR) were
included as potential gene expression variables. The core
serum response is developed in [9] to represent a canonical
expression of fibroblasts activated by serum, and it is a
cell-cycle independent set of genes in areas including
vascularization, cell motility, and matrix remodeling,
common to both the wound healing and tumor micro-
environments. Finally, in the area of gene expression for
classification of molecular subtype, we considered cor-
relation used for validation in [27] (CVal), and with cen-
troids for normal (CNorm), ErbB2+ (CERBB), Lumina A
(CLumA), Lumina B (CLumB), and basal (CBas) from [6].
In implementation of the hypertabastic survival model to

this set of data, we considered the clinical, gene expression,
and classification variables described above. We applied a
standard stepwise forward selection of variables procedure.
In addition since some of the variables are highly corre-
lated, we used a procedure that would ensure no two of the
variables considered would have a pairwise correlation of
0.5 or higher. The parameters were estimated using a SAS
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program, and these parameter estimates were double
checked using Mathematica. A SAS program for hyperta-
bastic proportional hazard model using log-time is provided
in the Additional file 1: Documents.
Once the parameters had been estimated, these values

were used in the survival function (2) and hazard function
(1). Then Mathematica was utilized to sketch graphs of the
hazard and survival functions for the desired cases. Further
dynamic analysis of these curves and their derivatives was
also made using Mathematica.

Results and discussion
Model based on gene expression and clinical variables
In this section we apply the model selection procedure to
determine an effective model to represent the survival of
the breast cancer patients in the Netherlands study of
[27], described briefly above. In selecting from among the
hypertabastic, log-logistic, and Weibull proportional hazard
models, we compare these models using the −2 log-
likelihood score and the Akaike Information Criterion
(AIC) [28]. The Akaike Information Criterion is com-
monly used when selecting among several competing
models, with the `smallest value corresponding to the
best fit model. See Table 1 where we make a comparison
of the three parametric distributions mentioned above.
For purposes of comparison, we also include Cox
regression. The covariates included in the model include
AGE, 70G, CSR, and CERBB.
In Table 2 we give the estimates a, b for the parameters α

and β of the hypertabastic distribution and each of the
model variables Age, Seventy gene signature, CSR correl-
ation, and ErbB2+ correlation, together with the standard
error, Wald test value and p-value. Among the three gene
expression variables included in the model, CSR correlation
(CSR) is clearly the most significant with the highest hazard
ratio and smallest p-value.
Inclusion of the clinical variables improved the goodness

of fit of the model for each of the gene signatures
considered, consistent with the results of [12]. Although
the seventy gene signature gives the best fitting model
of all gene expression variables when considered alone,
there is a considerable improvement from inclusion of
multiple gene expression variables. The combined model
features the gene expression variables 70G, representing
distant early metastasis, CSR, representing relation to a
Table 1 Comparison of models

−2 Log
likelihood

AIC −2 Log likelihood
without covariates

Hypertabastic 387.755 399.755 467.952

Weibull 399.000 411.000 474.089

Log Logistic 502.126 514.126 544.930

Cox Regression 764.001 772.001 836.598
wound healing microenvironment which promotes cell
migration and vascularization, and CERBB, representing
ErbB2+/Her2 over-expression and relating to molecular
subtype. The individual gene signatures of 70G, CSR, and
CERBB yield models with values of AIC of 423.142,
436.056, and 448.248, respectively. However the combined
model has a dramatic improvement, to 399.755. Since
these signatures represent different aspects of the under-
lying cancer biology, it is perhaps not surprising the com-
bination of the variables produces a model with a better
fit to the data.
In the absence of a combined model, researchers and

doctors are already aware of the possibility for several
important variables to point toward different conclusions.
Our combined model addresses this question of how much
weight to assign to each of several significant variables. This
model offers a scientific approach to this issue, based on
statistical techniques and quantitative analysis. The added
advantage of use of a good-fitting parametric model, such
as the hypertabastic survival model, is the ability to analyze
the temporal dynamics of the hazard and survival func-
tions, as we illustrate in the remainder of this section. Since
two of the gene expression variables are continuous, as
given by levels of correlation to an established gene expres-
sion, we are also able to investigate the dynamics of hazard
and survival with respect to changes in level of gene
expression.

Dynamics of survival and hazard
The temporal dynamics of hazard and survival curves for
the combined model follow from the above determination
of parameter values. In the following we work out the
details of this time course, as well as the influence of the
covariates, with particular attention to the gene expression
variables and their interactions. In order to isolate the
effects of one or two of the variables within the combined
model we will hold all other variables at a fixed level,
usually the median. We begin with the seventy gene
signature 70G, both in relation to the other gene expres-
sion variables CSR and CERBB, and also in comparison to
70G as a single variable model.
We now analyze the interaction between the seventy

gene signature and CSR correlation within our multivari-
able model, while holding our other variable of ErbB2+
correlation fixed at its median value. The graphs in Figure 1
show the interrelation between the seventy gene signature
and the CSR correlation for survival functions and their
derivatives. The axes on the left contain the curves for a
seventy gene signature with a good prognosis, while the
curves on the axes on the right have a seventy gene
signature for a poor prognosis. The graphs on each set
of axes represent a passage from the minimum CSR
correlation at the top to the maximum CSR correlation
at the bottom, while the curve in the middle represents



Table 2 Parameter estimates and statistical significance for combined model

Parameter Estimate Standard Dev. Wald test P-value Hazard ratio

a (model) 0.7247 0.2888 6.298 0.01209 NA

b (model) 0.6205 0.1244 24.873 6.125 10^-7 NA

c (AGE) −0.07350 0.01480 24.645 6.891 10^-7 0.9291

d (70G) 1.199 0.3872 9.585 0.001962 3.316

e (CSR) 2.661 0.7025 14.343 0.0001524 14.305

f (CERBB) 1.561 0.7285 4.594 0.03208 4.766
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the survival curve when only the seventy gene signature is
considered. These are followed by the graphs of the rate of
change of survival.
Notice that when the seventy gene signature has a poor

prognosis, the effect of CSR correlation on survival is also
magnified. We can determine the maximum rate of
decrease in survival probability for each of the cases, and
these are given in Table 3.
We note that in the case of a poor prognosis for the sev-

enty gene signature, the maximum rate of decrease in the
survival function occurs sooner in all of the cases. Further-
more, this rate of change has a larger magnitude, indicating
a larger rate of decrease in the survival function, when there
is a poor prognosis. These graphs also compare the curve
Good Prognosis

solid: low CSR corr.

dotted: baseline 70 gene sig.

dashed: high CSR corr.

0 5 10 15 20
Years

0.2
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Survival, S x

Good Prognosis

solid: low CSR corr.

dotted: baseline 70 gene sig.

dashed: high CSR corr.
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0.02

0.01

Rate, S' x

Figure 1 Survival function for varying CSR correlation and seventy ge
in the middle, where 70G is the only covariate with the
curves on the outside. For these curves all four variables
are included in the model, while the focus is on the vari-
ation in CSR correlation from the minimum value to the
maximum value, with other variables at median level. Here
the differences in shape also come about due to the vari-
ation in the values of α and β between these cases, a feature
of the hypertabastic distribution allowing greater variability
in the location and magnitude of the maximum rate of
decrease for the survival functions.
Figure 2 contains the hazard curves, together with their

derivatives, for the same set of covariates. The significant
difference appears again between graphs on the left, where
the seventy gene signature shows a good prognosis and the
solid: low CSR corr.

dotted: baseline 70 gene sig.

dashed: high CSR corr.
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ne signature.



Table 3 Maximum rates of decrease in survival and
increase in hazard with varying CSR

Time of min Veloc. at min

Survival

Good prognosis
(70G = 0)

CSR min 4.003 −0.004703

CSR max 3.446 −0.04187

Only 70 gene sig. 8.332 −0.007713

Poor prognosis
(70G = 1)

CSR min 3.814 −0.01516

CSR max 2.682 −0.1198

Only 70 gene sig. 3.743 −0.05187

Hazard

Good prognosis
(70G = 0)

CSR min 2.187 0.006365

CSR max 2.187 0.05976

Only 70 gene sig. 5.107 0.009010

Poor prognosis
(70G = 1)

CSR min 2.187 0.02111

CSR max 2.187 0.1982

Only 70 gene sig. 5.107 0.07695

Good Prognosis

solid: low CSR corr.

dotted: baseline 70 gene sig.

dashed: high CSR corr.

0 5 10 15 20
Years

0.5

1.0

1.5

Hazard,H x H

Good Prognosis

solid: low CSR corr.

dotted: baseline 70 gene sig.

dotted: high CSR corr.

5 10 15 20
Years

0.01

0.02

0.03

0.04

0.05

0.06

Rate,H' x

0

0

0

0

R

Figure 2 Hazard function for varying CSR correlation and seventy gen
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graphs on the right, where it shows a poor prognosis. Again
this shows the much larger effect of CSR correlation in the
case of the poor prognosis. For instance at 20 years the
difference in hazard values for minimum and maximum
CSR is 0.5014 for a good prognosis, while this difference
increases significantly to 1.663 for a poor prognosis in
seventy gene signature. Table 3 shows the time and
magnitude for the maximum rate of change of the hazard
value.
For the two correlation variables (CSR and CERBB),

an increased level of correlation is associated with a
poor outcome, and both cases exhibit the same general
profile of more invasiveness, more resistance to treat-
ment, and shorter times until recurrence. In the following
we compare the effect of the ErbB2+ correlation (CERBB)
to the CSR correlation (CSR) treated above. We note that
although there are some similarities, these biological pro-
cesses measured by the two gene expression variables play
different roles in tumor progression. The CSR correlation
treated above deals with the role of fibroblasts in both
wound healing and tumor progression in cancer and
relates to the proposed wound-like phenotype that has
been observed in a number of human cancers [10]. The
solid: low CSR corr.

dotted: baseline 70 gene sig.

dashed: high CSR corr.

Poor prognosis

5 10 15 20
Years

0.5

1.0

1.5

azard, H x

solid: low CSR corr.

dotted: baseline 70 gene sig.

dashed: high CSR corr.

Poor prognosis

5 10 15 20
Years

.05

.10

.15

.20

ate,H' x

e signature.
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CSR gene signature includes genes for cell motility, matrix
remodeling, and angiogenesis, which correspond to
increased risk of metastasis and the potential for a more
invasive cancer. This signature gives a strong prediction of
outcome in several cancer types. The role of ErbB2 in de-
termining outcome has been established in numerous
studies [29] and is independent of other prognostic
factors. These protein tyrosine kinases in the HER (ErbB)
signaling network play critical roles in cell signaling that
regulate proliferation, migration, and survival [30]. Dis-
ruption of the signaling network of tyrosine kinases figures
prominently in many known oncogenic mutations leading
to neoplasms, including cases of breast carcinomas.
HER2/neu has also been shown to disrupt the p53 tumor
suppression pathway [31]. The action of this signaling
network and its role in cancer progression continues to be
studied in order to discover new therapies.
The different means of action between ErbB2 and CSR

allows for overlap of both these variables in determination
of probability of survival. The effect of ErbB2+ correlation
(CERB) in the survival model follows approximately the
same pattern as the CSR correlation (CSR) described
above, although the magnitude is somewhat smaller, as
Good Prognosis

solid: low ErbB2+ corr.

dotted: baseline 70 gene sig.

dashed: high ErbB2+ corr.

0 5 10 15 20
Years
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Figure 3 Survival function with varying ErbB2+ correlation.
described below. The hazards ratio and p-values for these
two variables are comparable when considered individually,
with hazard ratios of (45.489) and (30.036) for CSR correl-
ation and ErbB2+ correlation, respectively, and p-values of
(1.462 10^-9) and (2.990 10^-7), respectively. However,
when considered with all the other variables in the model,
these become hazard ratios of (14.305) and (4.766) for
CSR correlation and ErbB2+ correlation, respectively, and
p-values of 0.0001524 and 0.03208, respectively. The effect
of the seventy gene signature on the ErbB2+ correlation
will be comparable to the effect on the CSR correlation, as
demonstrated above. Thus the ErbB2+ correlation will
display the same pattern as the CSR correlation, with a
somewhat smaller magnitude due to the difference in
hazard ratios. In the following we will also investigate each
of these correlations, CSR and ErbB2+, as continuous
variables within our overall model. We will also consider
the relation between these variables below, where an
increase in correlation of one variable can be expected to
amplify the effects of the other, as observed above for the
seventy gene signature.
The graphs in Figure 3 show the survival curves,

together with the derivatives, with the case where only the
Poor Prognosis

solid: low ErbB2+ corr.

dotted: baseline 70 gene sig.

dashed: high ErbB2+ corr.
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Table 4 Maximum rate of decrease of survival function
with varying ErbB2+ correlation

Time Velocity

Good prognosis Min ErbB2+ 3.929 −0.008628

Max ErbB2+ 3.627 −0.02704

O7 only 8.332 −0.007713

Poor prognosis Min ErbB2+ 3.624 −0.02722

Max ErbB2+ 3.024 −0.07859

O7 only 3.743 −0.05187
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seventy gene signature (solid curve in center) is considered
compared with the four variable model for varying levels
of ErbB2+ correlation. The curves on the outside repre-
sent the minimum level of ErbB2+ (dotted curve at top)
and the maximum level of ErbB2+ correlation (dashed
curve at bottom), with the good seventy gene signature in
the axes on the left and the poor seventy gene signature in
the axes on the right. The location and velocities of the
minima for the rate of change of the survival curve are
given in Table 4.
The effect of the ErbB2+ correlation is comparable to

that for CSR correlation observed above, although the mag-
nitude is smaller. The difference in 20 year survival rates
solid: 5 years

dotted: 10 years

dashed: 20 years

0.4 0.2 0.0 0.2 0.4
Correlation

0.2

0.4

0.6

0.8

1.0

Survival, S x

solid: 5 years

dotted: 10 years

dashed: 20 years

0.4 0.2 0.2 0.4
Correlation

0.5

1.0

1.5

Hazard, H x

Figure 4 Survival and hazard at 5, 10, and years, as functions of CSR
between the minimum and maximum ErbB2+ correlations
are 0.2316 in the case of good seventy gene signature and
0.4097 in the case of poor seventy gene signature. These
are just over half of the effect observed for the difference
between minimum CSR correlation and maximum CSR
correlation, which is 0.4235 for the good seventy gene
signature and 0.7021 for the poor seventy gene signature.
In the remainder of the study we further describe

interactions between our three gene expression variables,
70G, CSR, and CERBB, in determining the survival func-
tion. As the variables for CSR correlation and ErbB2+
correlation are continuous variables, we study the effect of
variation of the level of correlation on the survival function.
We first investigate separately the effects of each of these
correlations, CSR and ErbB2+, in determining the proba-
bility of survival beyond ten years. Then, as a function of
two variables we are able to investigate the combined effect
of these two correlations on the probability of survival
beyond ten years. We also use two variables to consider the
effect of each of these individual variables in combination
with time. In each case we analyze the survival function to
explore quantitatively how change in the level of correlation
will affect the prognosis and the probability of survival
beyond a given time. It is also possible to determine at what
solid: 5 years

dotted: 10 years

tashed:  20 years
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Table 5 Maximum rate of decrease for survival function
with CSR correlation vs. EbB2+ correlation

Time Correlation Velocity Correlation Velocity

Effect of
variation of
CSR
correlation

5 years 0.6855 −0.9788 Max −0.8387

10 years 0.3855 −0.9788 0.3855 −0.9788

20 years 0.1498 −0.9788 0.1498 −0.9788

Effect of
variation of
ErbB2+
correlation

5 years 1.000 −0.5652 Max −0.3868

10 years 0.6063 −0.5744 Max −0.5590

20 years 0.2063 −0.5744 0.2063 −0.5744

Note: Max[CSR] = 0.455306 and Max[CERBB] = 0.451045 for this data set.
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time a given correlation will display its largest impact on
survival. This analysis will further allow us to compare the
influence of these two variables, CSR correlation and
ErbB2+ correlation, and how they affect the survival and
hazard curves, over time.
We first investigate the role of CSR correlation (CSR)

while holding the other variables at median level and
assuming a poor prognosis in seventy gene signature
(70G). We consider three fixed times, probability of sur-
vival past 5 years, past 10 years, and past 20 years. These
survival curves, followed by their rates of change, are
given in Figure 4. The horizontal axis for CSR correl-
ation varies from the minimum CSR correlation to the
maximum CSR correlation for the data set, and our inter-
est is primarily in this range of values for CSR correlation.
As expected, survival drops off with increasing CSR cor-

relation. The effect from the CSR correlation increases
with time, as may also be expected. For survival beyond 5
years, the decrease in survival with increasing CSR correl-
ation occurs at an increasing rate throughout the experi-
mental range of CSR correlations, reaching a maximum
rate of decrease of (−0.8387) at the maximum correlation.
However at 10 and 20 years, the effect of CSR correlation
in decreasing survival is even larger, with a maximum rate
of decrease occurring at correlations within the experimen-
tal range. The specific values are given in Table 5. Clearly,
solid: 5 years

dotted: 10 years

dashed: 20 years

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Correlation

0.2

0.4

0.6

0.8

1.0
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Figure 5 Survival at 5, 10, and 20 years, as functions of ErbB2+ corre
as time increases the CSR correlation has a larger effect,
with significant effects noticeable at much lower levels of
correlation. Similarly, at the minimum values of correlation
the effect of time is much less significant, and the survival
rates are much higher.
The hazard function continues increasing for both

increasing time and increasing correlation, as we observe
in the hazard graphs found in Figure 4.
We now investigate how ErbB2+ correlation affects the

probability of survival beyond times of 5, 10, and 20 years.
The graphs representing these survival curves appear in
Figure 5. The general effect is the same as that just
observed with CSR correlation, but of a smaller magni-
tude. Along with a smaller overall magnitude of effect, the
correlation must also reach higher levels in order to
achieve its level of maximal effect. Table 5 also describes
the maximum rate of decrease in these survival functions
and the corresponding ErbB2+ correlations. In compari-
son with the CSR correlation, the rates of decrease of sur-
vival with respect to ErbB2+ correlation are considerably
lower, with the maximum rate of decrease for the CERBB
variable being approximately half that of the CSR variable,
and requiring a higher level of correlation.
To further illustrate the quantitative difference for these

two variables, we give Table 6 below, representing prob-
ability of survival beyond 10 years at several levels of CSR
correlation and ErbB2+ correlation. For the CSR columns,
the ErbB2+ correlation is held at its median, and likewise
CSR correlation is fixed at its median level for the CSR
column. The stronger influence of the CSR correlation on
survival can be seen in the wider variation in the range of
survival probabilities with CSR correlation.
We consider how the survival function depends on both

of these continuous variables. Note that since Table 6 al-
ways fixes one of these variables at the median level, it will
not show either the highest or lowest extremes. In order
to study the dependence of survival on both CSR correl-
ation and ErbB2+ correlation, it is necessary to consider
solid: 5 years

dotted: 10 years

dashed: 20 years

0.3 0.2 0.1 0.1 0.2 0.3 0.4
Correlation

0.5

0.4

0.3

0.2

Rate, S' x

lation.



Table 6 Probabilities of 5 year and 10 year survival with
varying CSR and ErbB2+ correlations

5 year survival:

Correlation CSR ErbB2+ Correlation CSR ErbB2+

−0.3 0.9299 0.8967 0.1 0.8101 0.8157

−0.2 0.9095 0.8803 0.2 0.7597 0.7881

−0.1 0.8836 0.8615 0.3 0.6987 0.7570

0 0.8509 0.8401 0.4 0.6263 0.7223

10 year survival:

Correlation CSR ErbB2+ Correlation CSR ErbB2+

−0.3 0.8506 0.7844 0.1 0.625607 0.6354

−0.2 0.8097 0.7528 0.2 0.542263 0.5885

−0.1 0.7592 0.7177 0.3 0.44998 0.5380

0 0.6981 0.6784 0.4 0.352761 0.4845
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the survival function S[x,y,t] as a function of the variables
x(CSR), y (ErbB2), and time t. We can represent S[x,y,t0]
as a three dimensional graph for any fixed value of t0.
In Figure 6 we consider survival beyond 10 years, letting
t0 = 10. The other variables are fixed at median age and a
seventy gene signature representing a poor prognosis.
The dotted and dashed curves along the surface of this

graph correspond to the 10 year (dotted) survival curves in
Figures 4 and 5, respectively. These are the cases of varying
CSR correlation (CSR) at the median level of ErbB2 correl-
ation (CERBB) and of varying ErbB2 correlation (CERBB)
at median CSR correlation (CSR), respectively. The
values in Table 6 above correspond to the appropriate
points along these curves. Inspection of the surface of
the graph in Figure 6 shows clearly that a much wider
range of interaction of these variables CSR and CERBB
is possible beyond the points on the two curves.
The graph in Figure 6 and the above computations

describe the interaction of the two correlation variables
for the fixed time of 10 years. In Figure 7 we explore
how each of the variables CSR and CERBB interacts
Figure 6 Survival beyond 10 years for CSR and ErbB2+ correlation.
with time in predicting survival. In each of these three-
dimensional graphs a poor prognosis is assumed from
the seventy gene signature, while the other variables are
held at the median level.
The comparative effects of CSR correlation and

ErbB2+ correlation are obvious from these graphs. At
each time change of CSR correlation has a much larger
impact as compared to ErbB2+ correlation. Similarly,
for each given level of correlation, the decrease of survival
percentage with respect to time is much larger for CSR
correlation.
Since the function (2) with the parameter values

estimated by the model contains all of this information, it is
possible to compute probabilities of survival to any time for
any given combination of the variables. As a representative
examples of the types of computations that can be made, in
Table 7 we give probability of survival beyond 10 years,
probability of survival beyond 20 years, and the conditional
probability of survival beyond 20 years given survival to 10
years. The variables are at median level unless otherwise
mentioned. Low levels of CSR or ErbB2+ correlation
correspond to the tenth percentile, while high levels corres-
pond to the ninetieth percentile.
In this four-variable model we observed how each of the

three gene expression variables influenced the survival and
hazard functions for breast cancer patients. For the two
continuous gene expression variables, CSR correlation and
ErbB2+ correlation, we analyze the effect of changes in
levels of gene expression. We were able to assess the com-
bined effect of these variables, or we could look at them
separately and compare their effects, such as the above
comparison of effects of change in CSR correlation and
ErbB2+ correlation. The feature of the hypertabastic sur-
vival model of producing explicit hazard and survival func-
tions allowed us to analyze these dynamics. Additionally we
are able to compute explicit survival probabilities for any
given patient profile. In concluding this survival analysis



Figure 7 Survival as a function of time and correlation.
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using several clinical and gene expression variables, we
mention our recent work [3], in which we investigate the
role of metastasis in survival analysis and its interactions
with the other covariates.

Conclusions
The new model presented in this article combines several
features not included in previous models in survival
analysis of breast cancer patients. Through use of the
hypertabastic survival model, a parametric model we at-
tain a better fitting model. It furthermore offers explicitly
Table 7 Explicit computation of survival probabilities for repr

10 y

Good prognosis 0.898

Poor prognosis 0.702

Good prognosis Low CSR 0.942

High CSR 0.811

Low ErbB2+ 0.921

High ErbB2+ 0.842

Poor prognosis Low CSR 0.822

High CSR 0.500

Low ErbB2+ 0.762

High ErbB2+ 0.565
defined hazard and survival functions for use as tools in
analysis. As demonstrated in this article, these functions
can be used for computation of probabilities, such as those
given in the tables above. Furthermore, analysis of the time
course of these functions allows scientists to study the time
course of the progression of hazard and the decline in
survival for these patients. The influence of the variables,
collectively or individually, can also be investigated in their
role in determining this time course. This analysis illus-
trates the value of parametric models in survival analysis in
cases where a suitable distribution can be found to be close
esentative cases

ears 20 years 20 years | 10 years

8 0.8193 0.9116

0 0.5164 0.7357

8 0.8958 0.9502

4 0.6769 0.8342

4 0.8583 0.9315

0 0.7253 0.8614

5 0.6942 0.8440

1 0.2742 0.5482

4 0.6024 0.7903

4 0.3447 0.6097
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enough to the underlying distribution of the data. We
recommend consideration of the hypertabastic distribution
as it is shown in [3] and in the current paper to have a good
fit to breast cancer survival data. Furthermore simulations
[2] have shown it to be robust with respect to departure
from distribution. The feature of the hypertabastic
distribution in adjusting its shape for a more accurate
representation of the time course of the hazard and
survival functions. In the context of the current work of
scientists in developing gene expression variables for
clinical use, these novel features of this model become
even more significant.
The novel feature of the current model of investigating

collective behavior of distinct gene expression variables
offers an important new direction of research. The three
gene expression variables included in this model originate
from three distinct types of gene expression signatures:
one signature representing early distant metastasis, one
representing the relation of the wound healing micro-
environment to that of tumor progression, and the third
representing classification of breast cancer tumors into
molecular subtype. Furthermore the model gives a means
to determine the relative contribution of each variable,
quantitatively, in determining survival and hazard. For the
two continuous gene expression variables we were also
able to investigate the rate of change of hazard and
survival with respect to change in the level of gene
expression.
By consideration of a wider range of gene expression

variables together with clinical variables, this model has
moved beyond previous models toward a quantitative
assessment of hazard and survival involving all relevant
information. These results show the potential to use
multiple gene expression signatures to a combined greater
effect when the signatures represent different aspects of
the cancer biology. We note however that the current
model has limitations in its representation of potential
interactions between the various gene expression signa-
tures. We feel this issue of interactions among gene ex-
pression variables, as well as other variables, is a critical
issue for current research. We propose further investi-
gations in this direction, as well as development of new
and more refined models designed for this purpose.
Certainly the new generation of gene signatures being
developed for clinical use [17,18] should also be
explored for their potential interactions and combined
effects. As an extension of this work, we have explored
the effect of an additional variable representing metastasis
in a recent paper [3], particularly in relation to the other
variables in the model. We also propose to make a similar
analysis after dividing the breast cancer cases into several
different classes, such as estrogen receptor positive versus
estrogen receptor negative cancers, or for the molecular
subtypes based on the correlation variables CNorm,
CERBB, CLumA, CLumB, and CBas. Another important
direction for future research will be identification and ana-
lysis of variables that either cause the metastasis of tumors
or that accelerate this process.
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