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Abstract

Background: Dosimetry in radionuclide therapy has the potential to allow for a treatment tailored to the individual
patient. One therapeutic radiopharmaceutical where patient-specific dosimetry is feasible is 177Lu-DOTATATE, used for
the treatment of neuroendocrine tumours. The emission of gamma photons by 177Lu allows for imaging with SPECT
(single photon emission computed tomography). One important step for dosimetry using this imaging technique is
the SPECT image segmentation, which needs to be robust and accurate for the estimated quantities to be reliable.
This work investigates different methods for automatic tumour delineation in 177Lu-DOTATATE SPECT images.
Three segmentation methods are considered: a fixed 42% threshold (FT), the Otsu method (OM) and a method based
on Fourier surfaces (FS). Effects of including resolution compensation in the iterative SPECT image reconstruction are
also studied. Evaluation is performed based on Monte Carlo-simulated SPECT images from 24 h and 336 h post
injection (p.i.), for determination of the volume, activity concentration and dice similarity coefficient. In addition, patient
data are used to investigate the correspondence of tumour volumes when delineated in SPECT or morphological CT
or MR images. Patient data are also used to examine the sensitivity to the operator-dependent initialization.

Results: For simulated images from 24 h p.i. reconstructed without resolution compensation, a volume and
activity-concentration root-mean-square error below 15% is typically obtained for tumours above approximately
10 cm3 when using OM or FS, while FT performs considerably worse. When including resolution compensation, the
tumour volume becomes underestimated and the activity concentration overestimated. The FS method appears to
be robust to noise, as seen for the 336 h images. The differences between the tumour volumes estimated from the
SPECT images and the volumes estimated from morphological images are generally larger than the discrepancies
seen for the simulated data sets.

Conclusions: Segmentation results are encouraging for future dosimetry of tumours with volumes above
approximately 10 cm3. Using resolution compensation in the reconstruction may have a negative effect on volume
estimation.
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Background
Radionuclide therapy (RNT) with 177Lu-DOTATATE is
an increasingly used treatment for disseminated neuroen-
docrine tumours [1, 2]. Dosimetry, i.e., the determination
of the absorbed dose to risk organs or tumours, is a
potentially useful tool for optimization of RNT by main-
taining the absorbed dose to risk organs within safe limits,
while at the same time achieving as high an absorbed
dose as possible to tumour to increase the likelihood
of a durable anti-tumour effect [3–7]. One method for
absorbed-dose estimation is by means of SPECT (single
photon emission computed tomography), in which three-
dimensional images of the activity distribution in a patient
are obtained. In the case of 177Lu, SPECT-based dosime-
try is possible through the emission of gamma photons at
113 keV and at 208 keV. In principle, three-dimensional
images allow for estimation of absorbed dose on a voxel
level, and hence characterization of the spatial distribu-
tion of absorbed dose within a structure [8]. However,
SPECT suffers from a number from image degrading
effects, such as noise and a poor spatial resolution, which
impair the voxel-wise quantification [9], and in practice
the quantity reported for clinical dosimetry is typically the
mean absorbed dose to a target. The poor spatial resolu-
tion also affects the quantification of mean absorbed dose
due to the spill-out effect, which is resolution-induced
mispositioning of activity in the image and causes under-
estimation of the activity concentration in volumes with
high activity.
The management of spill-out is closely connected to the

strategy used for image segmentation, i.e., the definition
of volumes of interest (VOIs), and the problem needs to
be assessed in relation to this strategy. The magnitude of
the spill-out effect depends on the size and shape of the
object and the VOI placement within that object. A sys-
tematic preference to a small, centrally placed VOI will
result in a different estimation of the mean concentration
than if a VOI that follows the physical boundary of the
object is used. A prerequisite for reliable RNT dosime-
try is thus robust and reproducible SPECT segmentation
methods [10], accurate in terms of the ability of prop-
erly determining the object border and the object volume,
which in turn affects the accuracy of the estimated activity
concentration.
The most common method for medical-image seg-

mentation is manual delineation, a method that suffers
from being both time consuming and operator-dependent
[11, 12]. As an alternative, automatic or semi-automatic
methods can be used and several strategies have been
described [13]. For SPECT image segmentation, there are
several problems caused by the image characteristics [14],
and the use of automatized SPECT image segmentation
for RNT dosimetry has been relatively little investigated in
relation to its potential benefits and consequences for the

absorbed-dose estimation. Most proposed segmentation
methods for SPECT are based on thresholding, with large
differences in the level of complexity ranging from a fixed
threshold to adaptive or iterative methods [15–20]. Alter-
native techniques have also been investigated [21–23].
There is also an increasing interest for advanced segmen-
tation methods for PET (positron emission tomography)
images [24–26], which share many of the sources of image
degradation with SPECT images, even if the image charac-
teristics is typically more favourable in the PET case. One
example is to use a deformable contour that is attracted to
the boundary of an object in the image [27]. Deformable
contours can be extended to surfaces and used in three
dimensions, an example in SPECT being the adaptive sur-
faces described by Floreby et al. [22, 23] where Fourier
descriptors were used to construct a closed surface that
was adapted to an object in the image [28].
In this paper, we investigate different SPECT seg-

mentation methods with automatic delineation for use
in tumour dosimetry in 177Lu-DOTATATE therapy.
Absorbed-dose estimation is not addressed as such, but
rather the accuracy of volume and activity concentration
estimation from SPECT images. An accurate estimation
of these two quantities is considered essential for an
accurate absorbed-dose estimation. Three different seg-
mentation methods are considered: thresholding using
a fixed threshold relative to the maximum, a threshold
that is automatically determined from the image informa-
tion [20, 29], and deformable surfaces based on Fourier
descriptors [22, 23, 28, 30]. The segmentation is evaluated
with respect to volume, dice similarity coefficient (DSC)
[31] and the tumour activity concentration. As image data,
Monte Carlo-simulated SPECT images [32] of anthropo-
morphic computer XCAT phantoms [33, 34] coupled to
a pharmacokinetic model of 177Lu-DOTATATE [35] are
used, and also a set of patient images where the tumour
volumes obtained from SPECT image segmentation are
compared to volumes obtained by manual delineation in
diagnostic CT (computed tomography) or MR (magnetic
resonance) images.

Methods
Segmentation methods
All of the following segmentation methods were imple-
mented using in-house software written in the IDL pro-
gramming language (Exelis Visual Information Solutions,
Boulder, USA).

Initialization
All segmentation methods used in this study need to
be initialized by manual selection of the object of inter-
est. Practically, this was performed by manually drawing
a rough VOI, encompassing the object with a margin.
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This initial VOI will henceforth be referred to as the
initialization VOI.

Fixed threshold
As the technically least complicated segmentation
method, a fixed threshold was used. The threshold value
was set to 42% of the maximum voxel value in the initial-
ization VOI. This segmentation method will be referred
to as FT (fixed threshold). This method is included
because of its simplicity and wide-spread use, with 42%
being an often used value for the threshold [19].

Otsumethod
The Otsu method (OM) automatically chooses a thresh-
old for classifying a set of voxels as belonging to either
of a background class or an object class. This method
regards each voxel value as a possible threshold and tests
whether a given threshold will maximize the between-
class variance [20, 29]. As a segmentation method, OM is
simple to implement, while at the same time it provides
an automatic selection of the threshold that is adapted
to the histogram of the voxel values within the initial-
ization VOI. Hence, it constitutes a simple alternative to
the FT method. Originally, OM was formulated for the
grey-level histogram of an image, i.e., for an image with
an equidistant quantization. Since the SPECT images in
this study were coded as floating point single precision,
direct application of the method would require binning of
the histogram. To avoid the arbitrary division of the his-
togram into bins, the method was modified to an in-effect
non-equidistant binning, so that every unique voxel value
within the initialization VOI was regarded as a possible
threshold, noting that using any threshold between two
unique voxels values produced identical result in terms of
voxel classification.

Fourier surfacemethod
Fourier descriptors is a method for describing curves or
surfaces using Fourier series [23, 28]. The Cartesian coor-
dinates x, y and z along a closed surface can be described
according to

x (u, v) = ax,0,0 + 2ax,0,1 cos(v)

+ 2
K2−1∑

l=1
cx,0,l sin(lv)

+ 4
K1−1∑

m=1

K2−1∑

l=1

[
cx,m,l cos(mu) sin(lv)

+ dx,m,l sin(mu) sin(lv)
]

(1)

y (u, v) = ay,0,0 + 2ay,0,1 cos(v)

+ 2
K2−1∑

l=1
cy,0,l sin(lv)

+ 4
K1−1∑

m=1

K2−1∑

l=1

[
cy,m,l cos(mu) sin(lv)

+ dy,m,l sin(mu) sin(lv)
]

(2)

z (u, v) = az,0,0 + 2az,0,1 cos(v)

+ 2
K2−1∑

l=1
cz,0,l sin(lv)

+ 4
K1−1∑

m=1

K2−1∑

l=1

[
cz,m,l cos(mu) sin(lv)

+ dz,m,l sin(mu) sin(lv)
]

(3)

where u ∈ [0, 2π) and v ∈ [0,π ] are spatial variables along
the surface, with associated wave numbers denoted by m
and l, respectively. Parameters a, c, and d are Fourier coef-
ficients with subscripts that indicate if they are used for
describing x, y or z and the wave numbers m and l. The
number of terms included in the Fourier series, K1 and K2
in the u- and v-directions, respectively, affect the degree of
modulation that can be expressed by the surface (Fig. 1).
When including higher terms in the sum, gradually more
variation can be expressed. In principle, K1 and K2 can be
different, but in this study they are given the same value,
as there is no obvious reason to use more degrees-of-
freedom for one surface direction compared to the other.
A surface described using K1 = K2 = K will henceforth
be referred to as a surface with K Fourier orders.
As the basis for segmentation of SPECT images, Fourier

surfaces have the appealing property of being intrinsically
resistant to noise. For SPECT, high-frequency modulation
in the surface description is likely to reflect noise in the
image rather than a true feature of the object considered.
If only a few Fourier orders are used, only slowly varying
solutions are achievable.

Initial estimation and optimization Segmentation
using Fourier surfaces (FS segmentation) aims to deter-
mine appropriate values to the set of Fourier coefficients
a, c, and d, for a given number of Fourier orders such
that the resulting surface follows the object contour, as
reflected in the SPECT image. In order to fulfil this task,
an initial estimation of the coefficients of a two-order
surface in the form of an ellipsoid was first performed. An
optimization scheme was then applied where the number
of included Fourier orders were gradually increased,
starting from two and ending at four. Once convergence
was reached for a given order, it was increased by 1 using
an initial value of 0 for the appended coefficients.
The initial estimation of the surface consisted of deter-

mining an ellipsoid that approximated the object. The
ellipsoid, as described by a centre point, three rotations,
and length of three semi-axes, was estimated in a multi-
step process. The initialization VOI was first thresholded
using the Otsu method, following the implementation in
Mortelmans et al. [20], followed by a morphological clos-
ing operation, and the centre-of-mass for the resulting
binary object was used as estimate of the centre point.
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Fig. 1 Fourier surface optimization. The Fourier surface is gradually adapted to an image object starting from an ellipsoid as initialization. In the
initialization surface, the u- and v-directions are also indicated

The directions of the semi axes were estimated by apply-
ing the Hotelling transform [36] to the binary object. The
lengths of the semi axes were then determined in an opti-
mization process so that the ellipsoid included as many
of the initially-classified object-voxels as possible, while
excluding voxels not classified as object.
As a measure of the edge strength along the surface, an

objective function, B, similar to the one used by Floreby
et al. [22, 23] was used

B =
∑N1−1

i=0
∑N2−1

j=0
[∇I · n (

ui, vj
)]

δ
(
ui, vj,∇I

)
(∑N1−1

i=0
∑N2−1

j=0
∣∣n

(
ui, vj

)∣∣
)α , (4)

where N1 and N2 are the number of sampling points
distributed along u and v, respectively, ∇I is the image
gradient, i.e. the magnitude and direction of the change
of the voxel values calculated by convolution with three
3 × 3 × 3 kernels that calculate differences in the x-, y-,
and z-directions, respectively, and n is the surface nor-
mal. The function δ is used for discriminating against
gradients pointing in the opposite direction compared
to the contrast and current direction of the surface nor-
mal taking values of 0, 1, or -1 depending on the sign
of the scalar product and the relative directions of u and
v. The nominator is thus the component of the image
gradient directed out- or inwards from the surface, and
summed over the surface area, while the denominator is
the total surface area raised to a positive scalar value α.
The denominator, i.e. normalization to the total surface
area, served the purpose of preventing B from increasing
simply by increasing the total surface area. The reason for
introducing the parameter α is that it provides a means
to tune the penalizing effect of this normalization for the
comparably low-resolution images used herein, where the
image gradients are otherwise not strong enough to bal-
ance the surface from shrinking inwards. A normalization
exponent of unity corresponds to a direct normalization
to the total area, while a value of zero corresponds to
no normalization. Fourier surfaces were adapted to the
image gradient using up to four Fourier orders with sur-
faces realized with N1 = N2 = 36 and a value of α of 0.7.

For practical applications, these values may be changed by
a user on a case-by-case basis, but for consistency they
are kept fixed in this study. The values of N1 and N2 are
the basis for in how many points Eq. (4) is evaluated.
Hence, it is primarily of importance that these numbers
are not set too low. The value of α, on the other hand, will
have a more direct influence on the optimization. A value
in the order 0.5 to 0.7 has in our experience produced
good results when applying the segmentation method to
kidneys [30].
The value of B was maximized using the downhill sim-

plex method [37]. A two-stage optimization scheme was
applied where onemaximumwas found and the optimiza-
tion process was then re-initialized from the current opti-
mum until the objective-function value did not change
appreciably between consecutive re-initializations, or a
predefined number of re-initializations was reached.

Voxelization After optimization of the Fourier surface
to the object edge, a voxel mask was produced from the
interior of the surface. This was done by comparing the
relative directions of the surface normal and the vec-
tor pointing from a voxel coordinate to the closest point
on the surface as determined in a distance minimiza-
tion over the surface coordinates u and v. One poten-
tial problem in this voxelization strategy was the risk
that the surface formed “folds” thereby locally changing
the direction of the surface normal. This problem was
addressed by imposing a criterion of the resulting voxel
mask to be solid and connected by assuming that the point(
ax,0,0, ay,0,0, az,0,0

)
, which determined the global surface

position, was located inside the object and a voxel at
the edge of the image matrix was assumed to be out-
side the object. Holes in the connected volume containing(
ax,0,0, ay,0,0, az,0,0

)
as well as voxels classified as part of the

object but not being connected to the main volume, were
removed.

Monte Carlo-simulated SPECT images
Three phantoms from the XCAT family [33, 34] voxelized
with 2.5 mm cubic voxels coupled to a pharmacokinetic
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model of 177Lu-DOTATATE [35] were used. The phan-
toms included two or three tumours defined by voxel
masks originally obtained by delineation in patient SPECT
images as described in Brolin et al. [35]. The tumour
shapes and position within the phantoms are illustrated in
Fig. 2. In total 8 tumours were considered with volumes
ranging between 2.75 cm3 and 45.5 cm3. The imaging
time-points studied were 24 h post injection (p.i.) and
336 h p.i., for which essentially noise-free SPECT pro-
jections were simulated using the SIMIND Monte Carlo
program [32]. The investigation of a late imaging time-
point (336 h) was motivated by the long-term tumour
retention of 177Lu-DOTATATE which may motivate the
inclusion of late measurements for improved assessment
of effective half-life and thus the tumour absorbed dose
[38]. Hence, an investigation of the behaviours of the seg-
mentation methods at the count levels at a late time-point
was deemed informative.

The simulated camera was equipped with a medium
energy collimator, acquiring 60 projections in full rotation
mode in 128 × 128 matrices with 4.42 × 4.42mm2 pixels,
and using a 15% energy window centred at 208 keV. The
simulation used an analytical collimator which means that
penetration and scattering in the collimator were ignored
in this study.
The output of the SIMIND program is projections giv-

ing the expected number of counts per pixel per unit
of activity in the phantom and unit of time per projec-
tion. The projection pixel values images were rescaled
to an injected activity of 7400 MBq at time 0 and a
projection time of 45 s and using the pharmacokinetic
model to account for excretion of the radiopharmaceu-
tical from time 0 to the imaging time point. To get
the noise properties of real gamma-camera projections,
each pixel value was replaced by a pseudo-random num-
ber following a Poisson distribution specified by the

Fig. 2 Tumour shapes and positions in the phantoms. The parts of the body outlines and the liver are included as anatomical references. The bottom
row shows total intensity projections of the corresponding simulated SPECT images at 24 h p.i
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Monte-Carlo derived expectation value. Thirty noise real-
izations were made, thereby giving data sets correspond-
ing to 30 repetitions of the SPECT acquisition for each
time point.
All SPECT images were reconstructed using ordered

subsets expectation maximization (OS-EM) using an off-
line program. Two reconstructions were performed for
each SPECT study. The first employed compensation for
attenuation and scatter using the effective source scatter
estimation method [39] while the second used compen-
sation for attenuation, scatter and distance-dependent
resolution. The resulting image types will be referred to
as AS (attenuation, scatter) and ASR (attenuation, scatter,
resolution), respectively. At 24 h p.i. eight iterations and
six angles per subset (AS-8-6 and ASR-8-6) were used,
while at 336 h p.i. 16 iterations and 15 angles per subset
(AS-16-15 and ASR-16-15) were employed. The recon-
struction settings for the early time point follow what
we normally use for 177Lu-DOTATATE at our institution
[40]. For the late time point, the lower signal-to-noise
ratio made it beneficial to increase the number of angles
per subset.
The tumours were delineated in the SPECT images

using the three segmentation methods for all noise real-
izations. The initialisation VOIs were identical for all
noise realizations, imaging time-points, and segmentation
methods, i.e. only one initialisation VOI was created for
each tumour and then copied for use in all reconstructed
images.

Patient SPECT images
SPECT images from eight cycles of three different patients
treated with 177Lu-DOTATATE were considered. Patient
1 was considered for cycles 1 and 4, patient 2 was consid-
ered for cycles 1, 2, 3, and 4, and patient 3 was considered
for cycles 1 and 7. For each case a SPECT/CT image was
acquired 1 day p.i. (six cases) or 4 days p.i. (two cases,
patient 1 cycle 4 and patient 3 cycle 7), using 60 projec-
tions in full rotation mode with 45 s time per projection
in 128 × 128 matrices with a pixel size of 4.0 × 4.0mm2,
20% energy window at 208 keV and a medium energy col-
limator. The density map used for attenuation and scatter
correction was estimated from the CT study [41]. Image
reconstructions were performed using the two recon-
struction categories (AS and ASR) described above, with
settings as for 24 h p.i. Three tumours per SPECT image
(the same three tumours for every cycle) were delineated
using FT, OM and FS. The initialization VOIs were iden-
tical for all segmentation methods and were drawn in the
ASR images. For comparison, the same three tumours in
each patient were manually delineated by an oncologist
in CT or MR images originally acquired for treatment
follow-up so as to estimate a morphological volume of the
tumour.

Evaluation
Monte Carlo-simulated SPECT images
The results from the three SPECT image segmentation
methods were evaluated with respect to three aspects:
volume error, DSC, and activity concentration error.

Volume For the three voxel phantoms a reference vol-
ume, Vref,j, was determined for each tumour j as the
number of voxels defined as tumour in the Monte Carlo-
simulation source maps multiplied with the source-map
voxel-volume. The volumes estimated from N = 30
SPECT noise realizations were compared with Vref,j.
Denoting V̄j = 1

N
∑N−1

i=0 Vi,j as the mean estimated vol-
ume for tumour j, where Vi,j is the estimated volume for
tumour j in noise realization i, the relative mean error Ēj
for tumour j was defined as

Ēj = V̄j

Vref,j
− 1. (5)

The relative standard deviation (rSD) (the standard
deviation normalized to the reference volume) was calcu-
lated according to

rSDj =
√

1
N−1

∑N−1
i=0

(
Vi,j − V̄j

)2

Vref,j
. (6)

The relative root-mean-square error (rRMSE) (the root-
mean-square error normalized to the reference volume),
was calculated as

rRMSEj =
√

1
N

∑N−1
i=0

(
Vi,j − Vref,j

)2

Vref,j
. (7)

Of these three metrics, Ēj is a measure of the trueness
of the volume estimation, rSDj is a measure of the preci-
sion of the estimate with respect to noise, and rRMSEj is
a measure of the accuracy, where trueness, precision and
accuracy are used as defined in the VIM [42].

Dice similarity coefficients The DSC is a measure of
correspondence between two sets [31], and can in the con-
text of image segmentation be defined as two times the
volume of the overlap between two VOIs divided by the
sum of the volumes of the VOIs. For the combination
of phantoms and SPECT images utilized in the current
work the coordinate systems of the phantoms and SPECT
images differ. Hence, there is not a one-to-one correspon-
dence between voxels possibly classified as tumours in the
SPECT images and voxels defined as tumours in the phan-
toms. To overcome this problem, the DSC is obtained by
considering the voxels as rectangular cuboids with dimen-
sions defined by the voxel sizes and letting S1 being the
set of points enclosed by voxels classified as tumour in the
SPECT image and S2 being the set of points enclosed by
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voxels defined as tumour in the simulation source maps.
The DSC is then computed as

DSC = 2 · μ (S1 ∩ S2)
μ (S1) + μ (S2)

, (8)

where μ(·) denotes the volume of a set.
The DSC was calculated for each tumour in all 30 noise

realizations.

Activity concentration The tumour activity concentra-
tion was estimated from the SPECT images using the
VOIs obtained from the three segmentation methods.
Three combinations of VOIs and SPECT images were
investigated: one with the VOIs obtained from the ASR
image segmentations and applied to the ASR images
(ASR/ASR), one with the VOIs obtained from the AS
image segmentations and applied to the ASR images
(AS/ASR), and one with the VOIs obtained from the AS
images and applied to the AS images (AS/AS). The rea-
son for including the mixed methodology (AS/ASR) was
as an attempt to combine the better recovery properties of
ASR images with the, as it turned out, potential advantage
of improved volume estimation when using AS images for
segmentation.
In order to obtain quantitative SPECT images, the sys-

tem sensitivity, i.e., the count rate per unit of activity in
air, for the simulated gamma camera, was obtained by
simulating a projection of a thin circular disk of 177Lu
and summing the total signal in the projection. Partial

volume effects were compensated for by recovery coef-
ficients (RCs) obtained by Monte Carlo simulation and
subsequent reconstruction of SPECT images of voxelized
spheres with different volumes. The voxel spheres were
located centrally in a non-radioactive, water-filled back-
ground in a voxelized elliptical cylinder with semi-axes
of 20 cm and 10 cm. The voxel regions used to define
the spheres in the simulations were applied as VOIs to
the reconstructed SPECT images, and the ratios between
the estimated activity concentration and the true activ-
ity concentration in the spheres were determined. To
describe the RC as a function of voxelized-sphere volume,
a relationship on the form [3, 43]

R(V ) = 1

1 + ( a
V

)b (9)

was used, where R(V ) denotes the RC as a function of vol-
ume V and a and b are two parameters fitted to data. Plots
of the recovery coefficients as a function of volume are
shown in Fig. 3.
The activity concentration C in a tumour was estimated

following

C = n
R (Vtum) · ε · vvox , (10)

where n is the mean count-rate per voxel in the tumour
VOI for the uncalibrated SPECT image, Vtum is the esti-
mated tumour volume, vvox is the voxel volume and ε is
the system sensitivity. It should be noted that the VOI is
included in (10) both for n and for R.
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Fig. 3 Recovery coefficients for different reconstruction schemes. The reconstruction is with attenuation and scatter correction (AS) and with or
without resolution compensation (R), and different numbers of iterations and subsets. a ASR-8-6, b ASR-16-15, c AS-8-6, and d AS-16-15
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The estimated tumour activity concentrations were
compared to the reference values from the phantoms and
the differences quantified as the mean error, rSD and
rRMSE for each phantom as in the volume evaluation
(Eqs. (5) to (7)).

Patient SPECT images
Comparison of tumour delineation in SPECT and
morphological images The volumes estimated from
ASR and AS SPECT images using FT, OM, and FS were
compared with the VOI volume obtained from themanual
delineation in the CT or MR images.

Inter-operator variability The inter-operator variability
was evaluated for three of the patient SPECT images. Two
different operators initialized the same tumours in the
ASR SPECT images and the DSCs between the tumour
VOIs for the two operators were calculated after applica-
tion of the three segmentation methods in AS and ASR
images, respectively.

Results
Monte Carlo-simulated images
Examples of SPECT images and tumour VOIs for one
of the phantoms for the two time-points and three

segmentation techniques are given in Fig. 4. The dif-
ferent sizes and shapes of the tumours and the larger
voxel-to-voxel value variation in AS images compared to
ASR images can be noted. The volume error, DSC and
activity-concentration error for the different tumours in
the anthropomorphic phantoms at 24 h p.i. are given in
Table 1. The corresponding results at 336 h p.i. are given in
Table 2. Graphical representations of the results focusing
on the five largest tumours are shown in Fig. 5 (volume)
and Fig. 6 (activity concentration). For the 24 h time-
point, the results for all three segmentation methods are
given, while for the 336 h time-point the results for FT
are omitted since the quality of the VOIs was so poor that
evaluation in terms of volume or activity concentration
was not deemed meaningful. This can be seen in Fig. 4
where the segmentation results and VOI errors for FT at
336 h p.i. are included, and are seen to produce spurious,
non-connected, voxel islands.
Segmentation of SPECT images reconstructed using

ASR generally produces VOIs that are smaller than the
physical extension of the object. This is seen in Fig. 4
where the red contours, marking the contours of the VOIs
obtained from the segmentation of the SPECT images, are
typically more contracted than the green region, mark-
ing the tumours as defined in the phantom. In Tables 1

Fig. 4 Examples of SPECT images and tumour VOIs for one phantom. a 24 h p.i. for ASR, b 24 h p.i. for AS, c 336 h p.i. for ASR, and d 336 h p.i. for AS.
The green area is the VOI obtained directly from the phantom and the red contours are from the SPECT image segmentations. The SPECT images
are shown in the background. The tumour volumes for each column in each sub-figure are 2.75 cm3 (left) 8.89 cm3 (middle), and 40.0 cm3 (right)
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Table 1 Results for Monte Carlo-simulated SPECT images at 24 h p.i. in terms of volume error, DSC, and activity-concentration error

Method Volume/cm3 Volume error (%) DSC Activity concentration error (%)

ASR AS ASR AS ASR/ASR AS/ASR AS/AS

FT 2.75 −57 ± 9 (57) −3 ± 22 (22) 0.58 (0.46, 0.65) 0.69 (0.62, 0.73) 53 ± 16 (55) −3 ± 12 (12) 50 ± 26 (56)

3.39 −62 ± 4 (62) −4 ± 17 (17) 0.54 (0.49, 0.58) 0.70 (0.65, 0.75) 61 ± 9 (62) −3 ± 11 (11) 39 ± 18 (43)

5.30 −50 ± 5 (50) −1 ± 18 (17) 0.64 (0.58, 0.70) 0.71 (0.66, 0.74) 37 ± 7 (38) −8 ± 9 (12) 18 ± 18 (25)

8.89 −61 ± 4 (61) −37 ± 13 (39) 0.56 (0.51, 0.59) 0.67 (0.56, 0.70) 48 ± 7 (49) 8 ± 12 (14) 47 ± 25 (53)

19.2 −45 ± 3 (45) −33 ± 9 (34) 0.71 (0.67, 0.74) 0.75 (0.68, 0.80) 34 ± 3 (34) 16 ± 6 (17) 39 ± 11 (41)

40.0 −35 ± 3 (35) −44 ± 8 (44) 0.79 (0.75, 0.81) 0.70 (0.63, 0.77) 23 ± 2 (23) 20 ± 4 (20) 39 ± 12 (40)

43.1 −23 ± 2 (23) −28 ± 7 (29) 0.86 (0.84, 0.87) 0.81 (0.72, 0.84) 13 ± 1 (13) 13 ± 4 (13) 26 ± 7 (27)

45.5 −41 ± 2 (41) −36 ± 7 (36) 0.74 (0.72, 0.75) 0.75 (0.68, 0.78) 28 ± 2 (28) 15 ± 4 (16) 21 ± 6 (22)

OM 2.75 −13 ± 9 (16) 107 ± 29 (110) 0.77 (0.73, 0.78) 0.62 (0.56, 0.67) 9 ± 7 (11) −39 ± 6 (39) −13 ± 8 (15)

3.39 −33 ± 3 (33) 64 ± 19 (67) 0.72 (0.70, 0.74) 0.67 (0.63, 0.71) 23 ± 5 (23) −30 ± 6 (31) −4 ± 9 (9)

5.30 −30 ± 5 (30) 69 ± 13 (70) 0.75 (0.73, 0.77) 0.68 (0.65, 0.69) 17 ± 5 (18) −33 ± 3 (33) −17 ± 5 (18)

8.89 −33 ± 4 (33) 31 ± 11 (32) 0.76 (0.73, 0.78) 0.71 (0.69, 0.73) 16 ± 5 (17) −27 ± 4 (27) −8 ± 6 (9)

19.2 −22 ± 2 (22) 11 ± 5 (12) 0.84 (0.83, 0.85) 0.83 (0.82, 0.84) 14 ± 2 (14) −9 ± 3 (9) 4 ± 3 (5)

40.0 −20 ± 1 (20) −5 ± 2 (5) 0.86 (0.86, 0.87) 0.86 (0.85, 0.88) 12 ± 1 (12) −2 ± 1 (2) 5 ± 2 (5)

43.1 −17 ± 1 (17) −7 ± 2 (7) 0.88 (0.88, 0.89) 0.88 (0.87, 0.88) 10 ± 1 (10) 1 ± 1 (2) 10 ± 1 (10)

45.5 −25 ± 2 (25) 7 ± 2 (7) 0.84 (0.83, 0.85) 0.85 (0.85, 0.86) 14 ± 1 (15) −10 ± 1 (10) −7 ± 1 (7)

FS 2.75 −17 ± 7 (18) 25 ± 14 (29) 0.75 (0.73, 0.77) 0.77 (0.74, 0.78) 10 ± 6 (12) −12 ± 7 (14) 19 ± 10 (21)

3.39 −32 ± 5 (32) 42 ± 10 (43) 0.69 (0.67, 0.72) 0.74 (0.71, 0.75) 20 ± 6 (21) −21 ± 4 (22) 2 ± 5 (6)

5.30 −22 ± 5 (23) 45 ± 9 (46) 0.75 (0.74, 0.77) 0.75 (0.73, 0.76) 9 ± 5 (11) −24 ± 3 (24) −12 ± 4 (12)

8.89 −46 ± 4 (47) 6 ± 9 (11) 0.67 (0.63, 0.71) 0.80 (0.78, 0.82) 27 ± 6 (28) −12 ± 4 (13) −1 ± 5 (5)

19.2 −37 ± 3 (37) −8 ± 5 (9) 0.77 (0.73, 0.79) 0.86 (0.85, 0.87) 26 ± 3 (26) 3 ± 4 (5) 13 ± 4 (14)

40.0 −22 ± 1 (22) −5 ± 3 (6) 0.85 (0.84, 0.86) 0.90 (0.89, 0.91) 13 ± 1 (13) 1 ± 2 (2) 3 ± 2 (3)

43.1 −22 ± 1 (22) −7 ± 2 (7) 0.86 (0.86, 0.87) 0.90 (0.90, 0.91) 12 ± 1 (12) 3 ± 2 (3) 9 ± 2 (9)

45.5 −35 ± 1 (35) −5 ± 4 (6) 0.78 (0.77, 0.79) 0.88 (0.87, 0.89) 22 ± 1 (22) −1 ± 2 (3) −3 ± 2 (4)

Results for volume and activity concentration are given as Ēj ± rSDj
(
rRMSEj

)
. For the DSC the 50th (10th, 90th) percentiles are given. Results are given for segmentation of

SPECT images reconstructed with AS and ASR. For activity concentration, results are presented for combinations of ASR and AS, for example AS/ASR where the first (AS)
specifies the SPECT image used for tumour delineation while the second (ASR) refers to the SPECT images on which the resulting VOIs were applied

and 2, the tumour volume is thus systematically underes-
timated for ASR images, irrespective of the segmentation
method used. Even if the relative standard deviation is
low for the volume estimation from these images, this sys-
tematic deviation yields a relatively high volume-rRMSE.
The volume underestimation when using ASR images for
segmentation consequently produces an overestimation
of the activity concentration, since a contracted VOI in
general gives a different (higher) recovery than a VOI
that follows the object boundary. Furthermore, a volume
underestimation results in a lower RC being used, which
also add to the overestimation of the activity concentra-
tion. For SPECT images at 24 h p.i. when instead using FS
or OM for delineation in AS images, the estimated vol-
ume for tumours above approximately 10 cm3 is relatively
accurate, with volume-rRMSEs of approximately 10%.
For AS/AS the activity-concentration rRMSE for FT is

22% to 56%, for OM 5% to 18%, and for FS it is 3% to

21%. The corresponding results for AS/ASR are 11% to
20%, 2% to 39%, and 2% to 24%, for FT, OM, and FS,
respectively. There are tendencies for direction of the
activity-concentration error (i.e., underestimation versus
overestimation) to depend on volume, with the activity
concentration in small volumes being underestimated. For
FT the best result are obtained for AS/ASR, with activity
concentration rRMSEs within 20%. For FS and OM, the
activity concentration rRMSEs are typically within 10%
for the larger tumours using AS images for delineation
and are for AS/AS within 21% for all volumes. On the
whole, the DSC is highest for the FS method applied to AS
images, although the differences between OM and FS are
relatively modest. For FT the DSC is generally lower. At
the later time-point (336 h p.i. Table 2), the main differ-
ence compared to the 24 h results, apart from the failure of
FT to produce meaningful VOIs, is a poorer performance
for OM, especially in terms of DSC. Also in terms of
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Table 2 Results for Monte Carlo-simulated SPECT images at 336 h p.i. in terms of volume error, DSC and activity-concentration error

Method Volume/cm3 Volume error (%) DSC Activity concentration error (%)

ASR AS ASR AS ASR/ASR AS/ASR AS/AS

OM 2.75 −23 ± 15 (27) 119 ± 43 (126) 0.73 (0.65, 0.76) 0.44 (0.40, 0.50) 24 ± 21 (31) −52 ± 10 (53) −5 ± 22 (22)

3.39 −38 ± 11 (39) 54 ± 23 (59) 0.69 (0.59, 0.74) 0.56 (0.49, 0.60) 36 ± 19 (41) −36 ± 8 (36) 9 ± 14 (16)

5.30 −33 ± 7 (34) 37 ± 17 (40) 0.72 (0.70, 0.76) 0.57 (0.53, 0.61) 25 ± 10 (27) −35 ± 5 (35) 4 ± 11 (11)

8.89 −38 ± 10 (39) −6 ± 9 (10) 0.73 (0.64, 0.77) 0.52 (0.48, 0.57) 27 ± 15 (31) −29 ± 6 (30) 39 ± 10 (40)

19.2 −27 ± 5 (27) −12 ± 5 (13) 0.81 (0.78, 0.84) 0.67 (0.65, 0.70) 21 ± 7 (22) −10 ± 5 (11) 30 ± 6 (31)

40.0 −20 ± 2 (20) −29 ± 6 (30) 0.86 (0.84, 0.87) 0.68 (0.66, 0.72) 15 ± 2 (15) −1 ± 3 (3) 38 ± 7 (39)

43.1 −20 ± 2 (20) −24 ± 4 (24) 0.87 (0.86, 0.88) 0.74 (0.72, 0.77) 13 ± 2 (13) 1 ± 2 (3) 32 ± 4 (32)

45.5 −26 ± 2 (26) −17 ± 3 (17) 0.83 (0.81, 0.84) 0.71 (0.69, 0.73) 18 ± 2 (18) −8 ± 2 (8) 16 ± 4 (17)

FS 2.75 −20 ± 6 (21) 35 ± 25 (43) 0.74 (0.71, 0.76) 0.73 (0.68, 0.76) 16 ± 10 (19) −16 ± 13 (21) 8 ± 19 (20)

3.39 −31 ± 7 (32) 25 ± 26 (36) 0.69 (0.65, 0.74) 0.72 (0.67, 0.75) 24 ± 10 (26) −14 ± 13 (19) 8 ± 16 (18)

5.30 −25 ± 6 (25) 33 ± 17 (37) 0.74 (0.72, 0.76) 0.73 (0.70, 0.75) 14 ± 6 (15) −21 ± 7 (22) −10 ± 8 (13)

8.89 −50 ± 9 (50) 2 ± 14 (14) 0.65 (0.57, 0.73) 0.77 (0.71, 0.81) 39 ± 16 (42) −10 ± 9 (13) 1 ± 11 (11)

19.2 −39 ± 6 (40) −13 ± 9 (16) 0.74 (0.68, 0.80) 0.84 (0.80, 0.86) 31 ± 8 (32) 7 ± 7 (10) 15 ± 8 (17)

40.0 −21 ± 2 (21) −8 ± 7 (11) 0.86 (0.84, 0.87) 0.88 (0.82, 0.89) 14 ± 2 (14) 4 ± 5 (6) 3 ± 5 (6)

43.1 −23 ± 2 (23) −9 ± 4 (10) 0.86 (0.84, 0.87) 0.89 (0.88, 0.90) 14 ± 2 (14) 4 ± 3 (5) 9 ± 3 (9)

45.5 −34 ± 2 (34) −9 ± 7 (11) 0.78 (0.76, 0.81) 0.86 (0.84, 0.87) 24 ± 3 (24) 2 ± 5 (5) −3 ± 4 (5)

Results for volume and activity concentration are given as Ēj ± rSDj
(
rRMSEj

)
. For the DSC the 50th (10th, 90th) percentiles are given. Results are given for image

segmentation on SPECT images reconstructed with AS and ASR. For activity concentration, results are presented for combinations of ASR and AS, for example AS/ASR where
the first (AS) specifies the SPECT image used for tumour delineation while the second (ASR) refers to the SPECT images on which the resulting VOIs were applied. Results of FT
have been omitted due to its poor performance causing the results not being deemed meaningful

volume and activity concentration, the FSmethod tends to
yield better results than OM. For the four largest tumours,
the volume rRMSE is between 10% and 16% when apply-
ing FS to AS images and the activity concentration rRMSE
is within 10% except for one case. Irrespective of tumour
volume, the activity-concentration rRMSE is between 5%
and 22% for these cases.

Clinical images
Comparison of tumour delineation in SPECT and
morphological images
Comparison of the tumour volumes estimated using
SPECT and manual delineation in CT or MR images are
shown in Fig. 7, and is presented in terms of the ratio
of the volume difference and the volume estimated in
morphological images. The average ratio for each method
is given to indicate trends for over- or underestimation.
In total, 24 tumours were considered, with two tumours
excluded from the analysis since they were not completely
within the field-of-view of the morphological images. For
AS, on average the volumes obtained using FS and OM
are approximately the same as the volume from man-
ual delineation in the morphological images, while for
ASR the SPECT volumes are generally smaller than their
manually delineated MR or CT counterparts. For AS the
average ratios are 6%,−2%, and−47% for FS, OM, and FT,
respectively. For ASR the corresponding values are −29%,

−16%, and −37%. However, there is a considerable spread
around these averages with typically larger differences (in
a relative meaning) for smaller volumes.

Inter-operator variability
The DSC between the resulting tumour VOIs for the two
operators are presented in Table 3. When using ASR the
DSCs are on average 0.93, 0.86, and 0.91 for FS, OM and
FT, respectively, while when using AS the corresponding
results are 0.93, 0.84, and 0.92. The poor agreement for
some tumours can be noted, which can partly be explained
by considerable geometric differences in the identification
of the tumour by the two operators, for example in tumour
2, causing the DSC to be low for the threshold-based
methods.

Discussion
In this study, three semi-automatic segmentation meth-
ods for tumour delineation have been investigated in
the context of 177Lu-DOTATATE therapy SPECT images,
using both Monte Carlo-simulated images of anthropo-
morphic phantoms and patient images as test material.
The methods investigated are a 42% threshold, the Otsu
method, and a deformable surface method based on
Fourier descriptors. Investigated aspects are the volume
accuracy, the agreement between regions using DSC and
the activity-concentration accuracy.
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Fig. 5 Illustration of the volume results in Tables 1 and 2. Only the five largest tumours are shown. The mean relative errors are indicated as the red
filled symbols. The volumes along the horizontal axis are categorical only. The points have been randomly displaced in the horizontal direction to
increase visibility, but this should not be interpreted as a variation in reference volume. Results are presented for ASR and AS images using a) FS 24 h
p.i., b) OM 24 h p.i., c) FT 24 h p.i., d) FS 336 h p.i. and e) OM 336 h p.i

When comparing the three segmentation methods, FS
and OM tend to produce approximately equivalent results
for SPECT images acquired at 24 h p.i., while Fourier sur-
faces perform better for images acquired at 336 h p.i. This
difference is particularly pronounced for the DSC results,
where some of the VOIs produced by OM would hardly

be considered acceptable due to their excessive jagged-
ness, as illustrated in Fig. 4. The FT method performs
worse than the other two methods for most cases in the
simulated data sets. Generally, the performance of seg-
mentation methods heavily relies on the particular image
characteristics, for instance the degree of detail exhibited
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Fig. 6 Illustration of the activity-concentration results in Tables 1 and 2. Only the five largest tumours are shown. The mean relative errors are
indicated as the red filled symbols. The volumes along the horizontal axis are categorical only. The points have been randomly displaced in the
horizontal direction to increase visibility, but this should not be interpreted as a variation in volume. Results are presented for ASR/ASR, AS/ASR and
AS/AS using a) FS 24 h p.i., b) OM 24 h p.i., c) FT 24 h p.i., d) FS 336 h p.i. and e) OM 336 h p.i

by the object under consideration, the noise properties
of the image, and the spatial resolution. Extrapolation of
the detailed results from this evaluation to other situ-
ations in terms of for example reconstruction methods
and quantification methodology can thus not be made
unreservedly. Rather, the present study should be seen

as a demonstration of the importance of image segmen-
tation for an accurate activity quantification. Sometimes
a simple methodology like FT is not sufficient in order
for the results to be reliable, while there are other meth-
ods that are capable of produce an accurate estimate
of the volume and activity quantification for a wider
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Fig. 7 Volume differences between manual delineation in
morphological images and SPECT image segmentation. The three
methods FT, OM, and FS are used. SPECT images were reconstructed
with a ASR and b AS. Differences are expressed as the volume
differences divided by the volume derived from morphological
images and are shown as function of the average volumes derived
from SPECT and morphological images

range of situations, for example with respect to the image
noise characteristics. Optimization of the settings in the
tomographic reconstruction, possible post-filtration of
the reconstructed image and tuning of the parameters
associated with the different segmentation methods is
possible, and such optimization is often desirable for a

given application. However, the less dependent a method
is on such tuning, the more robust and less subjective
the result. The ability of the FS method to give relatively
accurate delineations also for the SPECT images corre-
sponding to 336 h p.i. , would be considered a considerable
advantage compared to FT and OM. Hence, if the inten-
tion is to follow the tumour activity-concentration over
long period of times, or if the reconstructed image for
some other reason have unusually high noise levels, such
a method may be worth pursuing. One advantage of the
Otsu method is its relative simplicity and it can also
be noted that in the FS method, OM is involved in the
creation of the initial ellipsoid.
In general, the tumour volumes estimated in ASR

images have a negative bias. We have no complete under-
standing of this phenomenon, but one hypothesis is that
it is linked to the high values often observed close to
the object edge when including resolution modelling in
the reconstruction. For the threshold-based segmentation
methods, if these artefacts increase the maximum value
in the VOI the absolute threshold value will also increase,
implying a lower estimated volume. As a segmentation
method, FS is more complicated and as a consequence
it is also harder to explain the behaviour with respect to
ASR images. However, since the reconstruction artefacts
previously mentioned cause an accumulation of signal in
the object at its borders, they may also have an impact
on the behaviour of a segmentation algorithm based on
a surface being attracted to that edge. When reconstruct-
ing the SPECT images without resolution compensation,
any potential bias in the volume estimation is less evident,
and on the whole the rRMSE is lower compared to the
ASR images, provided that the tumours are large enough.
The size limit below which the volume estimation cannot
be trusted (approximately 10 cm3 in this study) is likely
dependent on several factors linked to the image char-
acteristics, but the major reason is probably the image
spatial resolution. Hence, in case of an improvement

Table 3 DSC between VOIs resulting from initialization by two different operators in patient SPECT images

Tumour number Volumea/cm3 ASR AS

FS OM FT FS OM FT

1 63 0.96 0.85 0.96 0.95 0.79 0.97

2 14 0.96 0.55 0.38 0.93 0.59 0.53

3 43 0.99 0.99 1.0 0.98 0.97 1.0

4 42 0.98 0.98 1.0 0.96 0.96 0.98

5 29 0.67 0.85 0.87 0.65 0.85 0.88

6 10 0.97 0.72 0.99 0.97 0.61 0.94

7 30 0.99 0.93 1.0 0.98 0.88 1.0

8 49 0.92 0.94 0.96 0.97 0.93 0.96

9 81 0.97 0.98 0.99 0.97 0.97 0.99

aCalculated as the average for FS and OM in AS images for the two operators
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in this property, this size limit would decrease. It can
be noted that since the volume will roughly scale as
the cube of the length of the considered object, even
a relatively small improvement in resolution may have
an impact on what tumour volumes may be accurately
estimated.
The accuracy of the quantification of activity concen-

tration depends on a number of factors in addition to
the segmentation of the image. The foundation for image-
based activity quantification in nuclear medicine is the
tomographic reconstruction and the correction methods
included in that algorithm. If proper compensation for the
major physical effects, in particular attenuation and scat-
ter in the patient, is not performed, there is less hope of
a reliable quantification. Accordingly, in terms of activ-
ity concentration, the numeric results achieved in this
study are not necessarily generalizable between recon-
struction programs. On the other hand, in terms of the
segmentation itself and the resulting estimated volumes,
the method used for, e.g., scatter compensation may be of
less importance.
Concerning the realism of the simulated images, an

image-degrading effect that has not been considered is
patient movement, which would add further blurring to
the already poor spatial resolution. However, if motion
blurring were the main reason for poor volume agreement
in patient images, we believe this would be manifested
as a volume overestimation rather than an underestima-
tion. So, while motion could be a relevant explanation for
poor correspondence when the SPECT-derived volume is
considerably larger than the morphological volume, we
believe it is less likely a cause for underestimation.
Another limitation is that the tumours introduced in

the phantoms, even if not simple spheres, are of rela-
tively round shapes. This could be relevant for the seg-
mentation evaluation, as investigated by Berthon et al.
[44] for PET image segmentation. Furthermore, the phan-
tom tumour burden is relatively low compared to most
patients. This aspect could be of importance since one
difficulty is to separate nearby high-activity objects from
each other. Thus, particularly difficult tumour shapes and
background distributions, also including the potential for
non-homogeneous activity in the tumours themselves, are
not fully mimicked by the simulated data.
Despite the aforementioned limitations of the simulated

images, they also have a number of advantages. In par-
ticular, the anatomy and activity distribution, through the
use of a pharmacokinetic model coupled to the phantoms
[35], are designed to be realistic substitutes for patient
SPECT images, while at the same time establishing a
ground truth with respect to volume and activity con-
centration. The simulations allow for calculation of the
DSC for the tumours. It can here be noted that the com-
parisons are not performed between volumes with the

same voxel sizes, and rather than counting the number of
voxels contained in both sets the overlapping volume is
considered. Hence, part of the mismatch between the vol-
ume defined as tumour in the phantoms and the volume
classified as tumour in the SPECT images is due to the
relation between the phantom-image grid and the SPECT-
image grid, and the voxel volume becomes a factor that
affects the calculated DSCs.
When considering results in Fig. 7 of patient tumour

volumes, where VOIs delineated manually in morpholog-
ical images and VOIs obtained from 177Lu-DOTATATE
therapy SPECT images are compared, the deviations for
individual tumours are larger than deviations typically
obtained for the simulated data sets, where SPECT-
derived volumes are compared to true volumes. Compari-
son with morphological images have previously been used
to evaluate the performance of automatic segmentation
methods in for example FDG and 124I PET images [45].
A natural question to ask is whether the different results
between simulated and patient SPECT images reflect lim-
itations in the realism of the simulated images, i.e. if the
simulated images are relevant as test material, whether
differences are result of inaccuracy in the manual delin-
eation in morphological images, or if discrepancies in
patients reflect a true difference between the morpho-
logical tumour extension and the volume accumulating
177Lu-DOTATATE. It can also be noted that the acquisi-
tion parameters were slightly different for the simulated
and patients cases. These different acquisition parame-
ters reflect a change of gamma camera at our institution,
where the simulated settings are for the new system while
the patient material used in this study was acquired using
the old system. These differences are likely too small to
cause any substantial difference in the performance of the
segmentation methods.
If considering the limitations of the clinical images it can

be noted that manual segmentation in itself is not error-
free. Hence, the differences seen in Fig. 7 are to some
degree a combination of inaccuracies of both methods.
As a consequence, it is not obvious that the morpholog-
ical volume should be in the denominator in Fig. 7, and
normalizing to the SPECT volume would in principle be
an equally valid choice. For this reason, the individual
points and average ratios indicated in the figure should
be interpreted as an indication only of systematic differ-
ences and dispersion in estimated volumes. There is also
the possibility of the tumour growing or shrinking (as an
effect of treatment) in the time that lapses between the
radiological evaluation (CT/MR) and the SPECT-imaging
time-point. Neuroendocrine tumours are, however, slow-
growing in nature, thereby reducing this risk. In these par-
ticular patients we also have the RECIST-measurements
confirming the stable nature of the tumours all through
the treatment period with the possible exception of the
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first imaging time-point for patient 2, whose tumour pro-
gressed moderately between the baseline CT and the first
SPECT, although in RECIST-terms the disease was still
stable (less than 20% increase in tumour diameter).
A perhaps more interesting possible cause for the vol-

ume disagreement in patient images, rather than potential
methodological limitations, is if themorphological images
and SPECT images do not reflect the same underlying
volume. Such a discrepancy could be relevant in terms
of understanding the therapeutic effect. A volume def-
inition solely based on activity uptake as depicted in
the SPECT images will not consider tumour tissue that
is either necrotic or de-differentiated and thus without
expression of the sst2 receptor necessary for uptake of
the radiopharmaceutical. An illustration of the differences
between the VOIs obtained from delineation in morpho-
logical images and SPECT images for one of the patients
is shown in Fig. 8. In Fig. 8c, where the manually delin-
eated morphological volume is shown on co-registered
MR and SPECT images, there appears to be a difference
in the tumour volume visualized between the two modali-
ties, with a smaller volume for SPECT. The co-registration
has not been used in the evaluation and is only given here
for illustrative purposes. The possible volume differences
between morphological images and SPECT images and
their clinical implications would be of interest for further
studies. A prerequisite in such investigations is a good
understanding of the segmentation method used and the
uncertainties of the estimated volumes.
The small investigation on initialization dependence

highlights some strengths and shortcomings of the three
segmentations methods in clinical images. In particular
there are some results in Table 3 which indicate a large
difference between VOIs resulting from different initial-
izations. Tumour 5 was in close proximity to another
tumour (tumour 6) leading to poor local contrast, thus
making it possible for the optimization to find an opti-
mum when both tumours were included in the VOI as
well as when only one of them was included. For tumour
2 there was disagreement between the two operators

whether a high-activity region represented one single or
two separate tumours, leading to markedly different ini-
tialization VOIs. Hence, the threshold-based methods
resulted in markedly different VOIs, while the FS method
encompassed approximately the same region in both cases
since the result of the optimization process is not con-
strained by the initialization VOI. Tumour 6 was in close
proximity with tumour 5 and was also located at the edge
of the liver, leading to a non-uniform background that
could explain the disagreement for OM.
When constructing the simulated RC curves, the

simulation-defined volumes and VOIs have been used.
This is an obvious idealization to a real measurement pro-
cedure where the sphere positions and volumes can never
be known exactly and has to estimated using, e.g., the
CT. Another possible solution would be to use the SPECT
image as the basis also for this segmentation, using the
same method as will later be used for the patient images.
Such a strategy may have the advantage to partially can-
cel errors in the activity-concentration estimation, if it is
assumed that the behaviour of the method is the same
for spheres in a phantom as in for tumours in patients,
and could thus be interesting as a way to reduce the
uncertainty of the activity concentration estimation. Such
a strategy might have the potential to improve an exist-
ing method, but we would at the same time argue that
a method that follows the outline of an object as closely
as possible is to be preferred rather than a method that
relies on such potential cancellation. The use of recovery
coefficients as a method to compensate for spill-out relies
on the assumption that the conditions under which the
coefficients are derived are similar to the patient situation.
The situation in patients may be more diverse than what
has been covered in the XCAT phantoms. In principle,
any deviation in terms of contrast and tumour shape may
affect recovery, which in such cases would call for more
aspects than volume to be investigated [46, 47]. However,
when applied to the simulated SPECT images used in this
work the result is relatively successful even for such a
simple correction model.

Fig. 8 Difference for a tumour between a morphological image and SPECT. aMR image with bmanually delineated morphological tumour volume.
c Fusion of MR and co-registered SPECT images with morphological volume delineated. d SPECT/CT image with delineated SPECT volume using
Fourier surfaces
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The typical quantity considered in RNT dosimetry is
not the mean activity concentration in a volume at a sin-
gle time-point but rather the mean absorbed dose to that
volume. The current study is believed to be of importance
for RNT tumour dosimetry where one of the critical steps
is to accurately determine the activity concentration at
different time-points p.i. as this is the basis for a correct
absorbed-dose estimation. For the radionuclide 177Lu, the
absorbed-dose rate is essentially proportional to the activ-
ity concentration. The resulting error in the absorbed dose
will also depend on factors such as the choice of fitting
function, the fitting method, and the error correlation
between time points.

Conclusions
The accuracy of semi-automatic segmentation is affected
by a number of factors coupled to the characteristics
of SPECT images. In Monte Carlo-simulated images a
good tumour volume and activity concentration accu-
racy is obtained for two segmentation methods (Otsu
method and Fourier surface method) when images are
reconstructed with attenuation and scatter compensation,
while if including resolution compensation underesti-
mated volumes and overestimated activity concentrations
are obtained. Using an adaptive surface based on Fourier
descriptors has advantages if the image noise levels are
high, for example if the tumour activity retention is to be
followed for a long period of time. For images with less
noise, for example early imaging time-points in the course
of radionuclide therapy dosimetry, an adaptive thresh-
olding algorithm like the Otsu method yields approxi-
mately equivalent results as the Fourier surface method.
The results are encouraging for application in tumour
dosimetry, although challenges can be foreseen due to the
diversity of patient images. Further studies of the differ-
ences in tumour extension when visualized in functional
SPECT and in morphological CT or MR images are of
interest.
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