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ABSTRACT: We recently proposed a spontanecous A4 flavor symmetry breaking scheme
implemented in a warped extra dimensional setup to explain the observed pattern of quark
and lepton masses and mixings. The quark mixing is absent at leading order in the VEV
expansion and it is induced at next-to-leading order by bulk A4 flavons mediating “cross-
brane” interactions and a “cross-talk” between the quark and neutrino sectors. At this
order, the possibility of producing hierarchical CKM entries, with all parameters of order
one, stems from the presence of built-in cancellations induced by the hierarchical masses
and the A, flavor pattern. In this work we explore the phenomenology of RS-A4 and
systematically obtain bounds on the Kaluza-Klein mass scale implied by flavor changing
neutral current (FCNC) processes. In particular, we study the constraints arising from
Re(€é' /ek), b — sv, the neutron EDM and Higgs mediated FCNCs, while the tree level
contribution to ex through a KK gluon exchange vanishes. We find an overall lower bound
on the Kaluza-Klein mass scale Mgk 2 1.3 TeV from FCNCs, induced by b — s+ differently
from flavor anarchic models. This bound is still weaker than the bound Mgk 2 4.6 TeV
induced by Zbrbr, in RS-A4. The little CP problem, related to the largely enhanced
new physics contributions to the neutron EDM in flavor anarchic models, is absent. The
subtleties of having the Higgs and flavons in the bulk are taken into account and final
predictions are derived in the complete three-generation case.
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1 Introduction

In a recent paper [1] we have proposed a model based on a bulk A4 flavor symmetry [2—
5] in warped geometry [6, 7], in an attempt to describe masses and mixing patterns of
Standard Model (SM) quarks and leptons. As in previous models based on Ay [8], the
three generations of left-handed quarks transform as triplets of A4; this assignment forbids



tree level gauge mediated FCNCs and allows to obtain realistic masses and almost realistic
mixing angles in the quark sector. The scalar sector of the RS-A4 model contains two bulk
flavon fields, in addition to a bulk Higgs field. The bulk flavons transform as triplets of
A4, and allow for a complete “cross-talk” [9] between the Ay — Z5 spontaneous symmetry
breaking (SSB) pattern associated with the heavy neutrino sector — with scalar mediator
peaked towards the UV brane — and the Ay — Z3 SSB pattern associated with the quark
and charged lepton sectors — with scalar mediator peaked towards the IR brane. A bulk
custodial symmetry, broken differently at the two branes [10], guarantees the suppression of
large contributions to electroweak precision observables [11], such as the Peskin-Takeuchi S,
T parameters. However, the mixing between zero modes of the 5D theory and their Kaluza-
Klein (KK) excitations — after 4D reduction — may still cause significant new physics (NP)
contributions to SM suppressed flavor changing neutral current (FCNC) processes.

In the most general case, without imposing any additional flavor symmetry and assum-
ing anarchical 5D Yukawa couplings, new physics contributions can already be generated
at tree level through a KK gauge boson exchange. Even if a RS-GIM suppression mech-
anism [12, 13] is at work, stringent constraints on the KK scale come from the K9 — K0
oscillation parameter e€x and the radiative decays b — s(d)y [14, 21], the direct CP viola-
tion parameter € /ex [22], and especially the neutron electric dipole moment [14], where a
KK mass of O(3TeV) gives rise to a NP contribution which is roughly forty times larger
than the current experimental bound — a CP problem in itself, referred to as little CP
problem. The bounds become increasingly stringent by IR localizing the Higgs field.

Conclusions may differ if a flavor pattern of the Yukawa couplings is assumed to hold in
the 5D theory due to bulk flavor symmetries. They typically imply an increased alignment
between the 4D fermion mass matrix and the Yukawa and gauge couplings, thus suppressing
the amount of flavor violation induced by the interactions with KK states. One example
that removes or suppresses all tree level contributions is the generalization to 5D of minimal
flavor violation in the quark sector [15-17] and in the lepton sector [18, 19]. In these
settings, the bulk mass matrices are aligned with the 5D Yukawa matrices as a result of
a bulk [U(3)]® flavor symmetry that is broken in a controlled manner. In [20] a shining
mechanism is proposed, where the suppression of flavor violation in the effective 4D theory
on the IR brane is obtained by confining the sources of flavor violation to the UV brane,
and communicating its effects through gauge bosons of the gauged bulk flavor symmetry.

In our case, the main advantages of embedding an A4 flavor symmetry in a warped
scenario are the explanation of fermion mass hierarchies by wave function overlaps, the
emergence of tribimaximal neutrino mixing and zero quark mixing at the leading order
in the VEV expansion and the absence of tree-level gauge mediated flavor violations. We
have shown [1] that an almost realistic hierachical CKM matrix can be obtained at the
next-to-leading order with all parameters of order one, stemming from the presence of
built-in cancellations induced by the hierarchical masses and the A4 flavor pattern. While
this description might not be considered a fully satisfactory explanation of the flavor hier-
archy problem, it offers a good term of comparison with alternative implementations such
as flavor anarchy or larger realizations of the flavor symmetry, like 7" [23-27], the latter
usually associated with a rather richer flavon sector. The most relevant consequence of im-



posing an A4 flavor symmetry for the processes considered in this work is the degeneracy
of the left-handed fermion bulk profiles fq, i.e. diag(fg, 0,,0;) = fo x 1. In addition, the
distribution of phases, CKM and Majorana-like, in the mixing matrices might induce zeros
in the imaginary components of the Wilson coefficients contributing to CP violating quan-
tities. In [1] we already observed a few consequences of the A4 flavor symmetry. First, the
new physics contribution to €5 coming from a KK gluon exchange at tree level vanishes [1],
thus relaxing the most stringent bound on the KK scale induced by €ex in flavor anarchic
models [22]. This leaves b — s(d)v, € /ek, the neutron EDM and Higgs mediated FCNCs
as possible candidates to produce the most stringent lower bounds on the KK scale. In
addition, a milder lower bound from the EDM and € /ex should be expected in our model
due to the vanishing of down-type dipole contributions in the naive spurion analysis and
mass insertion approximation. the latter

In this paper we analyze the above processes, b — s(d)~, € /ek, the neutron EDM and
Higgs mediated FCNC (HMFCNC) processes [28, 29], in the context of RS-Ay4. Differently
from flavor anarchy, it is particularly relevant in this case to properly describe the flavor
pattern of Yukawa interactions and the mixing among generations. For this reason, we
predict all quantities at various levels of approximation, starting with the generalization
of the spurion analysis in the mass insertion approximation to include bulk effects param-
eterized by overlap factors. The latter quantities measure the deviation from the case of
a IR localized Higgs. We then proceed beyond the mass insertion approximation, for each
generation separately: this means that KK mass eigenstates for each separate generation
are obtained by disregarding generational mixing, while the latter is approximately de-
scribed by the flavor structure of the spurion analysis. Finally, we compare with the ezact
three-generation case, where all contributions are obtained in terms of the KK mass eigen-
states, after the complete mass matrix for the zero modes and KK modes is diagonalized
numerically, or by means of an approximate analytical procedure.

The paper is organized as follows. In section 2 we recall the important components of
the RS-A4 model proposed in [1], focusing on the Yukawa sector of the theory. In section 3
we derive new physics contributions to the Wilson coefficients of magnetic and chromo-
magnetic dipole operators, relevant for the estimate of the neutron EDM, b — sv and
Re(€'/ek). In particular, we describe the various degrees of approximation, in which the KK
mixing within each generation and the mixing among generations can be incorporated. The
analysis is then performed separately for each observable in section 5 and predictions are
studied by varying the model input parameters. Section 6 describes Higgs mediated FCNC
processes. We conclude in section 7. A few appendices are included. The overlap factors are
defined and computed in appendix A. Appendix B contains details of the diagonalization
of the KK mass matrices in the one-generation approximation and for three-generations.

2 Quark sector of the A, warped model

We start by reviewing some useful results and definitions for the quark sector in RS-Aj.
In this model [1] we adopt a custodial RS setup without an additional Prr symmetry [31].



The RS-A4 lagrangian is invariant under the symmetry group
G = chbt X A4 X Z2 = SU(?))C X SU(Q)L X SU(2)R X U(l)B_L X A4 X ZQ, (2.1)

where the bulk custodial symmetry is broken down to the SM group SU(2) x U(1)y on
the UV brane, and down to SU(2)p x U(1)p_r, on the IR brane. We then assign the three
generations of left-handed fermion weak doublets to triplets of the discrete non-abelian
flavor symmetry, A4. The right-handed charged fermions are instead assigned to the 3
distinct one-dimensional representations of Ay. The complete assignement of quarks and
leptons under G35t x Ay is as follows [1]

QLN (3 2,1,%) (3) ZLN(laQa]-a_l) (;)
up ®ufp ®up ~ (3,1,2,3) 1ol &1") vr ~ (1,1,2,0) (3)
drp@dy®dp~(3,1,2,5) Aol ®l") epdepdep~(1,1,2,-1)101a1").

(2.2)
The scalar sector contains two bulk flavons ® and x and a bulk Higgs field transforming
under GC“St x Ay as

d~(1,1,1,0)(3), x~(1,1,1,0)(3), H(1,2,2,0)(1) . (2.3)

The SSB pattern Ay — nothing is driven by the VEVs of the two flavons ¢ and x, which
are assigned to be triplets of A4 peaked towards the IR and UV branes, respectively, and it
is responsible for the generation of fermion masses and mixings in good agreement with the
experimental results [30]. In particular, the VEV pattern of ®, (®¢, ®g, ®¢), induces the
breaking Ay — Z3, while the VEV pattern of x, (0, xo,0), induces the breaking Ay — Z5.
The lagrangian of RS-A4 respects an additional Zo symmetry, under which Qp, /1, vr
and ® are odd, while all other fields are even. This non-flavor symmetry ensures that the
GEEY x Ay invariant term £, ®Huvp is absent from the Lagrangian [1].

2.1 The 4D Yukawa Lagrangian

Since the Higgs field and the A4 flavons ® and x live in the bulk, it will be instructive to
generalize [22] and write the 4D Yukawa lagrangian in terms of overlap correction factors
r’s, which quantify the deviation from the IR localized case. All overlap factors, defined
as the ratio between the bulk wave function overlaps and the approximate coupling on the

IR brane, are derived in appendix A.

The leading order (LO) 4D Yukawa lagrangian, generated by the LO 5D and Ay-
invariant Yukawa lagrangian in [1], and including all the effective interactions in the KK
tower, carries similar structure in the up- and down-quark sector. In particular, the leading
order interactions with the neutral Higgs can be written as follows

u,d — n
£ 5 Y, [w M0 4 o R (Cqun Cuy s B) + 0, WY Fo 0 4 (cqus Cuy i, )
+Z 1/) fQ1 1/’17](1 on— +(CQZ,Cd 1L37ﬂ)+2 1/} ngd.f;dT{;IO (CQ“CU,J',djaB)
+ Zn ,m w 1/133 d; nm (CQ CU] djs ) + Zn,m th (1/’32_: )T fém (CQH Cujqdj ) ﬁ)

+ Zn m 1/’2)? ZZ J nm +(Cchdj,ujaﬂ) + anq, /lzZ)Ql (7/’172 ])T fq)er (CQ” Cdj,uj ’ ﬂ)] 9
(2.4)
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0(4D)

Cgigts @04 fQ, uid; = V2Kk/X0g, ., 4, With Xog. .. ., the canonically normalized zero mode

where h couples to the down (up) sector, corresponding to the first (second) label in

profile of the corresponding fermion at the IR brane — see appendix A. With the same
convention, all KK wave functions on the IR brane are approximately equal to v/2k. The 9’s
denote the 4D wave functions of the fermion fields in the KK tower. The boundary condition
(BC) for each KK mode is also specified. Unless stated otherwise, the BC are of the type
(++) on the UV and IR brane, respectively. A single (—) in the overlap subscript stands
for (——), and all other BC are fully specified. In the custodial case, each fermion zero
mode, with (4++) boundary conditions, is accompanied by three first level KK modes, with
(++), (——) and (+—) (or (—+)) boundary conditions. The quantities 77® are the overlap
correction factors for the states n and m calculated in appendix A. They are functions of
the left-handed (LH) fermion bulk mass parameters cg,, the right-handed (RH) ones cg;, 4,
and the scalar bulk mass parameter 3 (see appendix A). The Higgs field transforms as a
bidoublet under SU(2); x SU(2)g, but contains only two degrees of freedom, hy and h

n=(H 1) = <_h;§1 f;) hofa,s) = (B ) + L @) (25)

The profile of the Higgs VEV along the fifth dimension (see also [32, 33]) is

vi = Hoe@Bmk(yl—nR) (2.6)

with g = /4 + ,ufg, and ppg the bulk mass of the 5D Higgs field in units of the AdSs

curvature scale k ~ Mp;. As in [1], we assume (g ~ 2, which yields Hy ~ 0.39M%2, for

kmR ~ 34.8 and matching with the measured W boson mass. In addition, the profile of
the physical higgs hél)(y) is almost identical to the VEV profile for m; < Mkgk. The VEV
profile for the A4 flavon ®, peaked towards the IR brane, is of similar structure to the one of
the Higgs, with 34 ~ 2 and ®¢ ~ 0.577M%2. The VEV profile of the UV peaked A4 flavon,
X, will only enter through the subdominant Yukawa interactions and is approximately

vy = yoe 2Bkl (1 — OIk(yl=mR)) (2.7)
with 8, ~ 2 and xo ~ 0.155M%2. The leading order 5D and Ay-invariant Yukawa la-
grangian in [1], consisting of operators of the form (yy, 4, ¢;/M%,)Qr(LL)®Hug,(dR,,er;),
was shown to induce the same pattern of masses and mixings in the up, down and charged
lepton sectors. After spontaneous symmetry breaking of Ay, by the VEVs of the & triplet,
the leading order 4D Yukawa matrices in these sectors take the form

d t,b
QUéDeker Yu,de  Yes,p ?; T B QUéDeler ude )
L Yu,de WYc,s,u W Yt b1 = A (yz‘j )L07 ( . )
Yu,de w2yc,s,u WYt.b,r

O, d
(Y )ro =

where y, 4. are the dimensionless 5D Yukawa couplings and w = e2™/3 The param-

eter véD denotes the 4D VEV of ® in the IR localized case, and it is given by ®¢ ~
V2k (1 + Bo)viPek™ up to exponentially suppressed contributions — see appendix A for



its exact expression. Notice that, differently from the flavor anarchic case, the overlap
factors in eq. (2.4) are now functions of the VEV profiles of all scalar fields, H and ® at
leading order, with 8 = B + Bs. The other crucial ingredient of the RS-A4 model is the
degeneracy of the LH fermion bulk mass parameters, since the corresponding fermions are
unified in triplets of A4; consequently fo, = fo and Xo,, = Xo, in eq. (2.4).

The Yukawa texture in eq. (2.8) was shown [1] to induce the same left-diagonalization

matrix
1 11 1
Vi"d’e =Uw)=—7=]1w ? (2.9)
V3 >
1w w

for all charged fermions and in particular for the zero modes, identified with the SM fermion
content. At leading order, the right diagonalization matrix for all charged fermions is sim-
ply the identity. This pattern of the diagonalization matrices, independent of the leading
order 5D Yukawa couplings, will be shown not to induce any of the flavor violating inter-
actions we wish to inspect.

The deviation from unity of the CKM matrix, and thus quark mixing, is induced by
cross-talk effects [9] in RS-A4 [1]. They mediate between the IR and UV branes and between
the SSB patterns of the neutrino and quark sectors, in the form of higher dimensional
operators (1/M173§2) QrPxH (ug, Uy, uf, dr, dp, d%) and breaking completely the A4 flavor
symmetry. Each of these operators turned out to yield two independent contributions to
the up- and down-quark mass matrices, for which we label the dimensionless 5D coeflicients
as i“?’d and gjly’d. Since the leading order diagonalization matrices are independent of the
corresponding Yukawa couplings, the perturbed diagonalization matrices are governed by
) d, ;" only. Although we need a specific assignment of these parameters to match the
CKM matrix while maintaining the magnitude of all parameters naturally of order one,
we will explore the full parameter space of the model to account for the largest possible
contributions of new physics to FCNC processes. They will provide the most stringent
constraints on the KK mass scale in the RS-Ay4 setup. The 4D Yukawa matrix induced by
the above higher order effects can thus be parameterized as follows

d ~ud ~ud
ud 2v4D ;L(D 2knR wlf 33; wé‘ 21%1) )4(D 2knR o
(Yij’ )NLO = T 0O 0 0 = T(yzj’ )NLO - (2.10)

i g g
This time the VEV profile of the UV peaked flavon field x will also enter all the correspond-
ing overlap correction factors, leading to the NLO 4D lagrangian analogous to eq. (2.4),
with overlaps rH®X a5 defined in appendix A. The modified left- and right-diagonalization
matrices for the up and down mass matrix have a simple structure, up to and including
linear terms in ic?’d, g]i“’d and working in the zero mode approximation (ZMA) [1]. The
left-handed matrix is given by

1 (@5 + J3) (@5 +93)
Vi =Uw) | =215 + (53)"] 1 (@ +wys) | (2.11)
CUE* + (75)] —FE(ED)* +w?(53)"] 1



with ¢ = u,d and f{' =40, /(12 — ¢k — ¢;,), with C) = xo0/k*? ~ 0.155 and w = €27/3,
In [1], we assigned the degenerate left-handed bulk parameter ch = 0.4, and the right-
handed parameters ¢, = 0.78, ¢q = 0.76, ¢ = 0.683, c. = 0.606, ¢, = 0.557 and ¢; = —0.17,
to yield the physical running quark masses at the KK scale of 1.8 TeV and satisfy the
stringent constraints coming from Zbrb;. The CKM matrix elements to first order in

i (;i;"d, yj?’d) are easily obtained from Voxm = (VL“)TVLd, leading to

Vis = Vo = (@ + 38)f; — (35 + ) f5) (212)
Vo = —Vit = (8 + wi) fo — (@ + wi) f1 ) (2.13)
Var = Vi = (@ + 312 — (@5 + 3 fL) (2.14)

An almost realistic CKM matrix can be obtained with minimal deviations from the uni-
versality assumption that all magnitudes of :i;?“d, g]?’d are of O(1); in particular

=gy =34 = —gd =€, ¥ ~067—0.19, §¢~0.59—0.23i. (2.15)

Considering the global fit of the parameters of the Wolfenstein parametrization [30], we can
obtain real V,,s and consequently real V.4 with the choices 05 = 0, 7. All other :ig’d, g;‘ d
parameters are simply set to unity, as explained in [1]. The CKM matrix obtained by this
choice has |Vys| = |Vea| = 0.2257, |Vip| = |Vis| = 0.0415, |Vip| = |Via| = 0.00359 and V;; = 1.
The phase of V,,; is matched by the same assignments to its experimental value, é ~ 1.2,
while the other off-diagonal elements are real. This provides an almost realistic CKM
matrix. The main deviation from the global fit [30] amounts to the difference in magnitude
of Vip and V4. In addition, one still has to account for the (’)(A%KM) deviations from unity
of the diagonal elements and match the phases of the CKM elements to the 9 constraints
implied by the Jarlskog invariant. All deviations have to come from higher order corrections
in the RS-A4 model, rendering the corresponding parameter assignments less appealing.
The right diagonalization matrices do not enter the CKM matrix, however, they are
crucial in the evaluation of the Wilson coeflicients contributing to the FCNC processes we

are interested in. To first order in f% (2%, §%) one obtains

1 A AY
vi=| @) 1 A%, (2.16)

where ¢ = u,d and the A are given by:

A7 = T g (@) + w2 G)) + £ G+ ) (217)
q2

Af = T (@) + W) + I @+ )] (2.18)
q3

A = D[R +w)) + £ @+ wif)] (2:19)

The suppression by quark mass ratios of the off-diagonal elements in V]g 4 will turn out to
play an important role in relaxing the flavor violation bounds on the KK mass scale, as
compared to flavor anarchic frameworks.



2.2 Parameter counting and physical phases

In order to estimate the new physics contributions associated with the imaginary parts of
amplitudes, we need to know how many real and imaginary physical parameters are in our
model. We start with the 6 leading order Yukawa couplings y,, and the 12 Z! and g cou-
plings of the cross-talk operators, Q. ®xH (ur, u, '}, dr, dy, d},). Besides the Yukawas,
we have 6 real and 3 imaginary parameters in the spurions F, 4 = diag( f;l dj), and 1 real
parameter Fy = fé 1. Hence, in total, we have 31 real and 24 imaginary parameters in
the most general case.

We now consider the flavor symmetry breaking pattern before the SSB of A4, U(3)q x
U(3)y x U(3)q — Ay, induced by the leading order Yukawa lagrangian and the cross-talk
operators in charge of quark mixing. We realize that we can eliminate 17 phases — the
baryon number should still be conserved — and 6 real parameters. This leaves us with 25
physical real parameters, that is the 12 mixing angles in VL“7 ’g, 6 quark masses and the 7
eigenvalues of I, 4. In the imaginary sector, we are left with 7 phases, 4 of which are
CKM-like phases, one in each of the V; ’g matrices, while the other 3 are Majorana-like
phases which can be rotated between the left and right diagonalization matrices of both
the up and down sectors. We should take these phases into account when evaluating the
imaginary parts of amplitudes and we will do so by parametrizing the phase of each element
of V! ’}dz in terms of phases of the parameters i‘?’d and gl%d7 which govern the structure of
the diagonalization matrices.

3 Dipole operators and helicity flipping FCNCs

FCNC processes are known to provide among the stringest constraints for physics beyond
the standard model. This is also the case for flavor anarchic models in warped extra
dimensions [14, 21, 22]. In the quark sector, significant bounds on the KK mass scale
may typically come from the neutron electric dipole moment (EDM), the CP violation
parameters ex and Re(€' /e ), and radiative B decays such as b — sv. All these processes
are mediated by effective dipole operators. It is also well known [34] that SM interactions
only induce, to leading order, the dipole operators O7, and Ogg

Ory(sg) = Ao dp Fuw (G, (3.1)

where F,, and G, are the field strength of the electromagnetic and chromomagnetic
interactions and %,j are flavor indices. For i > j, as l_)RJ’“’FWs, the SM contribution
to the Wilson coefficients of the opposite chirality operators 0’7%89 is suppressed by the
corresponding quark mass ratio, and thus negligible. This might turn out to be a unique
feature of the SM not shared by NP contributions. It is therefore instructive to study
new physics contributions of any flavor model to the operators Oz, g, and to the opposite
chirality operators, 0’7%8g, and compare with experimental results. In the following we show
that, differently from flavor anarchic models, the RS-A4 model shares the SM features, with
no enhancement of the opposite chirality operators.



b, sy sp,dp

Figure 1. One-loop down-type (neutral Higgs) contribution to b — sv, € /ex and the neutron EDM
(for external d quarks). The analogous one-loop up-type contribution (charged Higgs) contains
internal up-type KK modes.

dp,sp, by (), @™),  dr.br,sp

Figure 2. Charged Higgs one-loop contribution to b — s and the neutron EDM. The latter has
external d quarks.

3.1 Flavor structure of dipole operators

The new physics contributions to the FCNC processes we are interested in are generated
at one-loop by the Yukawa interactions between SM fermions and their KK excitations,
leading to the diagrams shown in figure 1 and figure 2.

To obtain the flavor structure for the Wilson coefficients of the corresponding dipole
operators we first recall the spurion analysis in the mass insertion approximation of [14],
corresponding to the IR localized Higgs case. The contributions associated with internal
KK down quarks in the special interaction basis' can be written as

d—typey _ 41L Y YR VARY
(s = A 3 (FoYa¥¥aFu) . (3.2)

)

where v = U%{D = 174 GeV denotes the Higgs VEV, Y, the 5D Yukawa matrices and the
fermion profile matrices are Fg , 4 = diag( fé;uw dj) — see also appendix A. Finally, the
factor A = 1/(6472Mxx) comes from the one-loop integral for the diagram in figure 12
and the factor v/Mggk comes from the mass insertion approximation. The contributions as-
sociated with internal up-type KK quarks (and a charged Higgs) in figure 1 will analogously

!The basis in which Fg .4 are real and diagonal is referred to as the special interaction basis in [14] and
the rest of this paper.

2Notice that we assumed degenerate KK masses with common mass Mk and the result is valid in the
limit mg < Mkx. We also disregard subdominant W/Z mediated diagrams.



be given by:

u—typey _ 41L_ Y S Ot
(Crso) Vi = A 3 (FQ V.Y, Ya Fd)ij ) (3.3)

written again in the special interaction basis. The neutron EDM and b — s7v receive an
additional up-type contribution from the diagram in figure 2, which carries the same flavor
(and overlap) structure of the up-type diagram in figure 1 and a one-loop amplitude that
differs by a sign to a very good approximation.® Hence, the total up-type contribution is
obtained by replacing A% with

~ 2 5 1
1L\ _ A1L 1L _AlL[ = _ 2
(AL = AYQ, + A} Q) =A <3 + 1) TPy (3.4)

where @), and Qy_ are the electric charges of an up-type quark and the negatively charged
Higgs, respectively.

Thus far we have not considered the modifications of the above spurion structures due
to the overlap of internal KK quarks, external fermion zero modes, and bulk scalar fields
®, x and Higgs field, encoded in the various 7, factors in eq. (2.4). Since the bulk nature
of all 5D fields is an essential feature of our model, the effect of all overlaps should be
taken into account. In the following section we derive the analogous of egs. (3.2) and (3.3),
corrected by the overlap factors in our model. Subsequently, we show that conservatively
reducing the overlap corrections to an overall multiplicative factor will suffice for a conser-
vative estimate of most of the flavor violation bounds on the KK scale in our model, and it
will be instructive for the comparison with other flavor scenarios and in particular warped
flavor anarchic models.

3.2 The spurion-overlap approximation

Observing the Yukawa Lagrangian of eq. (2.4), we realize that the spurion analysis in the
mass insertion approximation can only directly account for the interactions (and related
overlaps) associated with (++) KK modes or a combination of (—+) and (++) KK modes
as internal states in the Feynman diagrams of figures 1 and 2. However, since the first KK
masses of each fermion are nearly degenerate (see appendix B), they almost maximally
mix. Therefore, we expect that the contributions of the three distinct KK modes of each
given fermion, can be estimated to a good approximation by only considering the modes
directly entering the spurion analysis. The corresponding overlap correction factors now
enter in the spurion structures of egs. (3.2) and (3.3) to yield in the special interaction basis

. . . .

(CT") (44) X FQYaur01(cqQ,s Cdy, us, » ) Y;u T11(Cdg, e, s €Quy» B) Ya,am10(CQq, > Cdy oy ) Fa s (3.5)
" . . R

(C7") () X FQYuaro1-+(cq;» Cuy, dy, ) Yj,d T1-+1(Cug, e, > €Qey s B) Ya,aT10(CQu, » Cd; dy s ) Fa s

where 0 = B+ 06 and ¢;, i and j are flavor indices. Notice that we have omitted the flavor
independent prefactor vA'Y /My to ease the notation. From eq. (2.4) and figure 1, it is
clear that the 4D Yukawa matrices Y carry the same flavor indices as the adjacent overlap
correction factors. Notice also that the ¢, 4, dependence of the (—+) overlaps is opposite
to the one of the (4++) ones. This is not surprising since they arise from the Yukawa inter-
actions with @; and d;, the first (and higher) level KK excitations of the SU(2) g partners
of dg, and ug,, respectively.

3Neglected contributions are suppressed by mass ratios ma, /Mxx, see [21] for a derivation of those terms.
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In this context it is important to mention the work of [22], based on the method
developed in [21], which involves the direct diagonalization of the zero modes and first
KK modes mass matrix; the latter is a 4 X 4 matrix for a single generation in our case,
and it reduces to a 3 x 3 matrix when no custodial symmetry is imposed. The interesting
result in flavor anarchic models for the one generation case, and to a good approximation
for the three generation case, is that the most dominant contributions, in terms of the
perturbative parameter © = vY/Mkg with generic Yukawa Y, solely arise from the (— —)
modes. Namely, the dominant contribution turns out to be proportional to the overlap
structure rg171-1-710, and it is not accounted for in the naive spurion analysis. This shows
the limits of the spurion analysis in the mass insertion approximation and the need to a
priori account for the mixing between all KK modes of the same generation, in addition
to their intergenerational mixing. This is especially important in the RS-A4 setup, where
custodial symmetry also induces an extra degree of freedom for each “RH” 5D fermion.

Nevertheless, because of the relative smallness of r;-1- compared to r1; and 71—+ in
our setup (see appendix A.1), the accuracy of the spurion-overlap approximation is still
satisfactory for the purpose of imposing constraints on the KK mass scale and the physical
Higgs mass, as long as the corresponding contribution turns out to be non vanishing in this
approximation. If vanishing — as it is true for the down type contribution to the neutron
EDM [1] — one has to fully account for the flavor structure and mixing of all zero modes
and first KK modes in order to provide an estimate of the dominant contributions. This
is done in section 4.

3.3 Explicit structure of dipole contributions in the spurion-overlap approxi-
mation

In this section we analyze in more detail the most general flavor structure of up- and
down-type contributions to dipole operators and study the simplifications induced by the
RS-A4 setup. We limit the analysis to the first level n = 1 KK states, since n = 2
states will give rise to O(25%) effects and for n = 3 and higher the theory is strongly
coupled and cannot be treated perturbatively [14]. Inverting the relation (1, q)i; =
v féilf/‘i‘?vd fu_j}djmo(ﬁch’c"j’dﬂ and rotating the mass matrix (see also appendix A), we
express the Yukawa couplings in terms of the diagonal physical mass matrices

L 1

Su(d — u(d
ro = L (a)

— u(d) 4. _
(cQusuytay> B) (F VD diag(mcr(a sV *Fu(}z))ij . (36)

Promoting the overlap corrections to matrices 7 in flavor space, the down-type contributions
to the dipole amplitude rotated to the ZMA mass basis can be written as

—type A L N N _ . .
(ng(g;]; )ij = UQ‘]\;KK {(Vg)je(rgn)éfl (Tgo)eei (VdeWQ(md,s,b)(VJ%)leag(fis,b)>

ey

~d ad \— d . df - ad
X (Prm )21 (7“00)&1 (VRdzag(md,s,b)VLleag(f(?gLQQ,QB))flb (Pm0)e2ts

(o, (Vidiag(ma. ) OVA)), | (V] 3.7

203
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) -
rnm(ch,cuj,dj, ). In the above equation flavor indices are written explicitly, in order

with an implicit sum over all allowed first level KK modes, and where (fﬁ,ﬁ)

to clarify the exact flavor structure of the overlap matrices. Analogously, we obtain the
up-type contributions to dipole operators

A
u—type _ 1L d\t (au Ay \—1 U u\T 33 2
(Ch(s&g)7 )ij = 02 Mk |:(VL>iZ(r0n)€@1(r00)Ml (VL dmg(mu,c,t)(VR)leag(fu,c,t)>Ml

” A \—1 . . ~d
X (Frm)eaty (F30) 10, (Vﬁdwg(mu,c,t)Vg‘szag(ffgLQz,Qs)> iy (Pm0)est5

<o), (Vidiagtma) V) V] (35)

2
Notice that the IR localized Higgs case can be obtained by simply setting all overlap
matrices in egs. (3.7) and (3.8) to be proportional to the identity matrix. The above
equations are valid for generic textures of the Yukawa couplings and patterns of the bulk

profiles cq, v, 4;, rendering the spurion-overlap formulae in egs. (3.7) and (3.8) directly

applicable to generic flavor scenarios.
In the RS-A, framework, a simplification comes from the degeneracy of left-handed
bulk mass parameters, thus Fo = diag( féll) = fé 1. 1. For the same reason the overlap

correction matrices of egs. (3.7) and (3.8) simplify

cand 4 u,d .
010,01 = diag(roo1001(c i, B))  Fii = diag(rii(cu, a,, ck, B))

A, d . ~u,d .

rgier = dzag<7ﬂ017Jr (657 Cdj,u]' ) ﬁ)) 7,,7117+1 = dZG/g(’f'l—qtl(Cdi’ui, céa /6)) (39)

The resulting structure of the down-type contributions in the mass basis follows straight-
forwardly
1L £2
d—t ma A TG 1 at 2 sd \—1xd ~d (ad \—11/d 1; 2
(077(83{56%9' = 7U2MKK [VRleag(fd,s,b)(TOO) To1 711(700) " VR de(md,s,b)
df (ad \—1ad 1/d
XVRJr (750) 7o Vi Lj , (3.10)

~u,d ~u,d ~u,d Au,d u,d  au,d . . ..
where 70;"75" = 7o P + rgi, +7‘11L’, +, and all overlap matrices are diagonal. Similarly, we

obtain the up-type contributions to dipole operators in the mass basis

141Lf(22

—t . . ~ —1 ~u ~ ~ _
(O )is = o | Vo diag(mu.c ) Vi diag (£ o) () 7t (7o)

x Vit diag(mau,cq)Vexu diag(ma,sp) Vi (7o) 7 Vit . (3.11)
Since all overlap corrections are real and enter through diagonal matrices, the resulting
modifications to the IR localized Higgs case are limited, in particular their effect on the
imaginary parts relevant for CP violating processes. Qualitatively, this result can be un-
derstood from the fact that the new (real valued) overlap correction matrices appear al-
ways together with the diagonal f’s, with patterns VLU’ ’1‘?7“1 fire f2r3VLu, ’g. Given the struc-
ture of Vﬁ}% (see egs. (2.11) and (2.16)), it can be shown that the presence of the 7’s
will have no effect on the cancellation of imaginary parts of diagonal dipole operators to
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O(fridignd puidigud) At the following order, O((f*)2), the cancellation pattern of
imaginary parts of the diagonal elements of C7 “4 iy the IR localized Higgs case will be
modified by terms that are suppressed by linear or quadratic quark mass ratios, com-
ing from V}g’d and proportional to differences between overlap correction factors. We will
provide an explicit example in the case of the neutron EDM.

As shown in appendix A.1, the generational flavor dependence of the overlap factors
is anyway very small and the largest difference of O(5%) is associated with tp and its
SU(2)r partner b. In addition, as will be shown explicitly below, most of the dominant
contributions will be proportional to the first generation “inverted” zero mode profiles
fi g X ()A(g’d)_2, due to the large hierarchy of quark masses. In general, the modifications
induced by the slight generational dependence of overlap effects are thus expected to
be less significant (numerically) than the ones arising from second order corrections,
O(( f;é“ )2), to the NLO Yukawa matrices, with f, ~ 0.05. For this reason, and barring
zeros of the amplitudes, one should expect to obtain a fairly conservative estimate of
the contributions to the neutron EDM, € /e and b — sv, by parametrizing the effect
of the overlap corrections by an overall multiplicative factor for the up- and down-type
contributions to the dipole operators. Defining the overall factor B}é’d as the maximum
for each element of the overlap correction matrices

d ~U,d\ —3 7 au,d au,d Au,d  aud ~u,d
B}g = mazx ((r&’)) 3(7*6‘1 11‘1 +rgl +T7f +1)r%>, (3.12)

the down-type contributions reduce to

ALy m, B4
d—typey d;'"d; D p dt 1. 2 d; dt 5. 2 d
(Crosgy i =~ g2aree |:VR diag (i dz,a,)Viediag(masp)VL diag(fg,,0:.0:)VE |
AlLme ‘m2 Bd 3
. Q""" q; P p dyx (1/d 2
= ;WR)m-(VR)njfdn : (3.13)

while the contributions associated with internal up-type KK quarks have a slightly more
complicated structure

Aled.Bu
u—type P .
(O = o [ Vicadiag(mac) Vi diag (12, Viidiag(m, . Vi diag £,V ]
AL f2m, B , . .
= ?}2(012\47“ [VCTKMdZag(mu,c,t)VRTdzag(fi,;)Vﬁdzag(mu,c,t)VCKM} e (3.14)

It is evident from eqgs. (3.13) and (3.14) that, if we restrict ourselves to the LO Yukawa
interactions in eq. (2.8), we have VL“’d = U(w) and V}g’d = 1. Hence, both up- and down-
type NP contributions to C7;; reduce to real diagonal matrices and generate no corrections
to the processes we are interested in, as already anticipated in [1]. This situation typically
changes when we also consider the NLO Yukawa interactions in eq. (2.10) and the corre-
sponding diagonalization matrices in eqgs. (2.11) and (2.16). As we said, small additional
corrections can also be induced at leading order by the slight generational non degeneracy
of overlap factors. In principle, both sources have to be taken into account when estimating
deviations from zero of the NP contributions. In practice, the latter source is typically
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suppressed by roughly an order of magnitude in comparison with the corrections generatd
by NLO Yukawa interactions. This can also be inferred from egs. (3.10) and (3.11), where
the terms generated by LO Yukawa interactions in RS-A4 carry through a systematic
cancellation pattern of the form 1+ w + w? between nearly degenerate quadratic functions
of the overlap correction factors, which originates from U(w).

In the flavor anarchic case, a direct diagonalization of the one generation KK mass
matrix, augmented with generational mixing factors derived in the mass insertion approxi-
mation, yields reliable predictions due to the lack of structure of the Yukawa couplings and
the bulk mass parameters, as shown in [21]. On the other hand, when considering flavor
symmetries we particularly care for the three-generation structure. To go beyond the mass
insertion approximation and the one-generation case requires diagonalizing a 9 x 9 mass
matrix in the non custodial setup and a 12 x 12 mass matrix in the custodial one, leaving
limited space for a fully analytical description. For this reason the spurion-overlap analysis
remains an appealing tool for understanding the cancellation mechanisms induced by a par-
ticular flavor pattern, as is the case when a discrete flavor symmetry such as A4 is imposed.

4 Beyond the mass insertion approximation

To go beyond the mass insertion approximation and account for the complete generational
mixing requires the direct diagonalization of the full 12 x 12 KK mass matrix in the
custodial case. The mass matrix can be perturbatively diagonalized to first order in the
parameter x = vY/Mgkxk, which measures the relative strength of Yukawa interactions
with the Higgs compared to the masses of the first level KK modes. A lower level of
approximation is obtained by disregarding the mixing among generations and work with
one-generation mass matrices. This was done in [21] and [22] for the flavor anarchic
non-custodial case. Already at this level, the diagonalization of the one-generation
mass matrix enables one to account for the contribution of the (— —) KK modes to the
dipole operators, not realized in the spurion-overlap analysis within the mass insertion
approximation. In addition, it was numerically verified [21] that within the flavor anarchic
non-custodial framework of [14] the difference between the results in the one-generation
and the three-generation case is rather mild. This is expected, and stems from the fact
that all Yukawa couplings are O(1) and no pattern is present in the phases of these
couplings. Consequently, the structure of each diagonal and off-diagonal block in the full
9 x 9 mass matrix is identical up to the profiles f,,q’s and the slight variation of the
overlap corrections over the three generations. The texture of Yukawa couplings and bulk
profiles in RS-A4 induces different patterns of the results and gives more significance to
the comparison between the one-generation and three-generation analysis.

4.1 Direct diagonalization of the one-generation mass matrix

The study described in this section is also instructive for flavor anarchic models with
custodial symmetry, which contain a separate SU(2)r doublet for each 5D fermion with
a RH zero mode. This case was not considered in [14, 21, 22]. The LO mass matrix for
the first generation in the down-type sector, including the zero modes and first level KK
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modes, is of the form

A0\ T L1 C o1 o1 40
) QL Yafg fq rooxr 0 Fafgy roir Yufg riorx R
MEK ] i) 0 Jirgr 1 0 Q)
(Mkx) Q‘é(l) Jafy ‘oz 1 Yarn  YuTine dg) ’
CZ(L1+7) 0 Uy T222% 0 1 g§%7+)

(4.1)
where we factorized a common KK mass scale Mk, §uq = (?ﬁ‘(’)d)u = 2yu7dv$D ek”R/ k
and the perturbative expansion parameter is defined as x = v/Mxkxk. In the above equation
T111 = T11-+, 101 = Tol—+, T22 = T'1-1-, T222 = r1-1+- and the notation for the rest of
the overlaps is the same as in eq. (2.4). The ¢ dependence of the overlap corrections
was suppressed to ease the notation and can be inferred from the labelling of the rows
and columns. Since the overlaps vary little among generations, the structure of the mass
matrix will be almost identical for all three generations of the up and down sectors, up to
the zero mode profiles denoted by the f;, 4 and the Yukawa couplings, ¥, 4. Notice that
the NLO Yukawa interactions are suppressed by f;j“di compared to the LO contributions,
rendering them to be approximately O(z?) numerically and thus in principle safe to
neglect when working to O(z). In order to include NLO Yukawa interactions in the above
matrix one should simply replace vy, g4 — Yu.d + f;j’d(i:?f’d + yff’d) in gy, 4, following eqgs. (2.8)
and (2.10), and analogously for the other matrices. Despite their relative smallness, it
is still important to study the generational modifications associated with NLO Yukawa
interactions, which are essential for matching the quark mixing data in the ZMA.

Notice that the anarchic case is simply obtained from eq. (4.1) by setting g, 4 =Y for
all generations, where Y is a O(1) Yukawa coupling which can be absorbed in . In RS-Ay,
when considering the mass matrices for the second and third generation, we encounter
additional w factors coming from the LO Yukawa matrix of eq. (2.8). In addition, the
approximation of degenerate KK masses will turn out to be fair only for two out of the
three KK masses in eq. (4.1), given the bulk mass assignments of the RS-A4 setup. In
appendix B.1 we perform the diagonalization of each of the one-generation mass matrices
for the up and down sectors to first order in x, before proceeding to the approximate
analytical diagonalization of the full 12 x 12 up and down mass matrices in appendix B.3.

The 4 x 4 one-generation diagonalization matrices, O(L“’c’t’d’s’b)KK and Og’c’t’d’s’b)KK,
are defined as follows

(O(Lui,di)KK)T Mil’(dl (Ogﬁ,di)KK) _ Mizciiag . (4.2)
Once the above diagonalization matrices are obtained, the ground is set for the estimation
of physical couplings between light and heavy modes in the flavor anarchic custodial case.
This is done by simply transforming the charged and neutral Higgs Yukawa interaction
matrices to the mass basis using O(Lq“fjéd"')KK, while the generational mixing factors can be
estimated in the mass insertion approximation, as also done in [21, 22].

In the RS-A4 setup we can extract the overlap dependence of the coupling between the
zero mode and the three first level KK modes of each generation in the same way. Then, to
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account for generational mixing and the underlying flavor pattern, this information is com-
bined with the spurion-overlap analysis in the mass insertion approximation of egs. (3.13)
and (3.14), where it provides a redefinition of the overall overlap factors B}é’d. As already
noticed, the latter approximation of reducing the overlap structure to a common overall
factor, is justified since the almost degenerate KK modes mix almost maximally and are
hence well approximated by one representative for each type of BC. The new down-type
leg factors for the dipole operators, corresponding to the process in figure 1 with a neutral
Higgs, will thus be extracted from

(o yoserian — Ea(OF VG O )1 (O ) ¥ O ) (43)
ij) D = o ; :
(MIiK( )/MKK>

overlap

where |overlap denotes taking the overlap part of the corresponding expression by assigning
all Yukawas to one. The indices ,j denote the flavor of the external SM physical zero
modes, while n runs over the three KK states for the given generation. The components
(In), (nl) of the Yukawa matrices rotated to the mass basis indicate the coupling between
a zero mode and the n-th KK mode of the same generation. The new B} factors,
corresponding to the amplitudes in figure 1 and figure 2 with a charged Higgs, will
analogously be extracted from

d; > (h—)d; u; w; ~ (ha)d: d;
o e _ ZallOF OGO (O M) G O )
Y U B u; (N
(MKK( )/MKK)

overlap

(4.4)
Notice that the one-loop factor A in eqs. (3.13) and (3.14) is calculated at the reference
KK mass Mgk =~ 2.55 (R’)~!, while the non-degeneracy of KK states is taken into account
by the rescaling (M%Kul () /Mxkxk). Tt is useful to mention the explicit structure of the
down-type Yukawa couplings with a neutral Higgs in the interaction basis

A0 N T o 1 P v | 40
L Yafg fq roo 0 Fafg ror Jufg 101 R
J(l__) 0 0 0 0 d(1=7)
yd L Yar22 Qr 45
KK = | =d(1) oop1 0 v . (1) (4.5)
Qr Yafy T10 Yarir  YuTi1l dy
a) 0 Jaraz O 0 g
Similarly, the Yukawa interactions with the charged Higgs h™ are
A0 \NT 1 oo - (0)
L —Gufg filroo O =Gufg ror —Yafy ' rion Ui
yr(h)d _ a 0 Yara2 0 0 o
KK Q7 ~iufy 10 0 —Jurn  —Ydrin ug) ’
Jslﬁ_) 0 Ua 7222 0 0 gg_ﬂ
(4.6)
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and for AT they are given by the replacement §, g — —Jau and fud — fau

_(12((1)) Jafg 1 oo u(z Jalg ror Jufy ' rion j(%]_)_)
Yé};r)d: u—Lu(l) o 91 Y22 o 0 o 0 QR(l) . (47)

Qr Yafy T10 0 Yari1  YuTinl dy

alt 0 g O 0 g

The physical Yukawa couplings between zero modes and KK modes are then obtained by
the Oz:‘é rotations. Once inserted in eqs. (4.3) and (4.4), they provide the new overlap
factors B}i’d to be inserted in the spurion-overlap formulae egs. (3.13) and (3.14), for each
dipole operator. The results of this analysis — diagonalization of the one-generation mass
matrices combined with the spurion-overlap procedure — will be considered separately
for each process, while the details of the derivation and the B}ﬁ’d factors can be found in
appendices B.1 and B.2.

It is however important to recall that the complete A4 flavor structure in the full 12x 12
up and down mass matrices may still induce deviations from the approximations considered
till now. Differences may arise from inter- and intra-generational mixing, non-degeneracy
of KK states and overlaps. All these effects are numerically more significant when involving
the third generation. On the other hand, the drawback of a fully numerical treatment of
the 12x12 mass matrix is that it does not allow to easily discriminate among different
orders in the z-parameter expansion, and it fails to provide insightful information on the
flavor patterns and cancellation mechanisms of the numerical results. Eventually, such
a numerical treatment will turn out to induce more sizable contributions to the neutron
EDM and less significantly so for other processes. This situation illustrates the importance
of a full three-generation diagonalization and its comparison with approximate analytical
estimates when a flavor texture is present in the Yukawa matrices.

4.2 Approximate analytical diagonalization of the 12 x 12 mass matrix

It is clear that a complete description of the contributions to physical processes in the
three-generation RS-A,4 can only be achieved by a direct diagonalization of the full 12 x 12
up and down mass matrices, including first level, n = 1, KK modes. Using the 12 x 12 rota-
tion matrices we can obtain all the couplings between each zero mode and KK modes of all
generations, thus establishing an a priori more reliable way to describe the flavor patterns of
A,. However, the size of the matrices, the large number of parameters even in the minimal
case and the near degeneracy of most of the KK masses, render the diagonalization hard to
perform analytically. For this reason the three-generation case was considered only numer-
ically in [21], for flavor anarchic models. A fully numerical diagonalization of the 12 x 12
mass matrices in RS-A4 may provide an estimate of contributions possibly missed by other
approximations, but fails to give us insight on the flavor pattern of the three-generation Ay
case. In addition, since the one-generation 4D mass matrices have been themselves derived
and diagonalized linearly in the A4 parameters :i:f’d, g]?’d, the most appropriate diagonal-
ization should always be performed to the same order. Instead, a numerical treatment will
inevitably include higher order contributions in an a priori uncontrolled way.
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Given all the above reasons, one should still attempt an approximate analytical diag-
onalization, as described below. We first decompose the 12 x 12 mass matrix of the RS-A4
down sector in terms of the one-generation matrices in eq. (4.1)

. MgK/MKK ey (915, f;) xijf&K(y%?,fb)
Mg = Mkk xYKK(@m s fa) MKK/MKK 373?{)1{(923 SORE (4.8)
CCYKK(?Jsr s fa) ‘TYKK(3/32  fs) M?K/MKK

where the expression in brackets of each off-diagonal element denotes the replacements to be
made in eq. (4.5). The s and b one-generation mass matrices MEIE{ are obtained by obvious
replacements in eq. (4.1). To account for NLO Yukawa interactions, the replacement g}leO —
~NLO
yz] + y
degenerate left-handed bulk mass parameter, ch,
while keeping non-degenerate KK modes. The only significant deviations from degeneracy

applies. In the above equation, Mgk is the KK mass corresponding to the
and we normalize all matrices accordingly

lie in the third generation mass matrix due to b, the SU(2)g partner of tp .
Using the 4 x 4 diagonalization matrices for each generation, we construct the

matrices Og‘g‘ = diag(OiKE,OiKE,ObKK) to first diagonalize the diagonal entries of
l\A/IguH. The main difficulty in achieving the diagonalization of the full mass matrix

in eq. (4.8) is the near degeneracy of 6 out of 9 KK masses which also survives the
((\)QKK)TMPQUHOQKK rotation, rendering non degenerate perturbation theory useless in the
corresponding subspace. Therefore, the nearly degenerate subspace is first diagonalized
non perturbatively to find a new basis, in which non-degenerate perturbation theory
can be used. Off-diagonal elements in the non-degenerate subspaces can obviously be
treated in the conventional way. Since this task is hard to perform analytically when all
parameters are unassigned, we look for some symmetry property of the A4 structure in
Mg’un that might supplement us with a shortcut.

Given the structure of eq. (4.8), we then construct new rotation matrices using Vﬁ ’g
from eq. (2.16). The new A4 rotation matrices are thus defined as the direct product

O(U D)A4

Vg”g ® Lyxa, (4.9)
where 144 = diag(1,1()*,1,1()*) and ()* denotes complex conjugation of the coefficient
that multiplies the corresponding element, namely (VLU ’Iflz)ij. In appendix B.3 we show that

(7 )A4

using O and OZL)%K to rotate Mgulh one obtains an approximately diagonalized

degenerate subspace, which in turn enables to generate the remnant rotation by acting with
. D

non-degenerate perturbation theory on (O 1) (ODKK)TMPQ 11ODKKO A

procedure is followed in the up sector. More details are collected in appendix B.3. Once

. The analogous

the diagonalization matrices are obtained, the contribution to the Wilson coefficient
of a given dipole operator will be a generalization of the one-generation case and can
generically be written as follows

S, (0N YL 0Dy o ((09) VS 0 s
(MI(QQ/MKK)

, (4.10)

d—type 1L
<C7w(8g) ) i = A7 (Mkk)
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for down-type contributions, and

di Y n di di ~d s di
>, (0N VE 0Dy oo (O 1VE 06 s
(MI(QQ/MKK)

, (4.11)

u—type _AlL
<C7’Y(89) >ij - Au (MKK)

for up-type contributions. The matrices O(Lu}édi) diagonalize the 12 x 12 mass matrices.

The index n runs over the KK modes of the three generations, thus n # 1,5,9, and
the indices (4i — 3)n and n (45 — 3) select the couplings of the external zero mode to
the internal KK states. The one-loop factors are calculated at the reference KK mass
Mgy ~ 2.55(R')~!, while the non-degeneracy of KK states is taken into account by the
rescaling (MI(&){ /Mkk). However, as expected, the resulting expressions for the physical
couplings between zero modes and KK modes are long functions of all overlap correction
factors and are therefore not stated explicitly. Instead, we explore the couplings and the
resulting predictions for assigned values of the parameters, and compare them with the
results of a fully numerical diagonalization for varying values of the KK scale, Mkk. This
will be done separately for each process in section 5.

5 Numerical results and experimental bounds for dipole operators

In this section we analyze FCNC processes in the RS-A4 model, using the approximations
described in sections 3 and 4, and compare them with a fully numerical analysis based on
the diagonalization of the 12 x 12 mass matrices for the zero modes and first level KK
modes. We focus on those processes mediated by dipole operators and known to provide
the most stringent constraints on new physics contributions, and thus the KK scale, in the
context of flavor models in warped geometry: these are the neutron EDM in section 5.1,
€' /e in section 5.2 and the radiative decay b — sv in section 5.3. Finally, tree level Higgs
mediated FCNC contributions are considered in section 6.

5.1 New physics contributions to the neutron EDM

The new physics contributions to the neutron EDM are mediated by the dipole operator
ecZLa“"FWdR. In particular, we need to compute the imaginary part of the ¢ = j =
1 component of the Wilson coefficients defined in eqgs. (3.13) and (3.14). They are of
dimension [mass]~! and can thus be directly compared to the experimental bound |d,| <
3 x 107%%¢ - em [35]. We have already anticipated in [1] that the down-type contribution
to the EDM is vanishing in RS-Ay4, due to the fact that VLd disappears from the down-type
contributions. This conclusion can also be reached by inspecting eq. (3.10). This leaves us
with the up-type contributions encoded in Im[(C% ~1P)11]. In order to isolate the dominant
terms in eq. (3.14), where we approximate the overlap factors with an overall constant, we
recall that the hierarchy of quark masses is translated into the inverse hierarchy of the
right-handed profiles f,,, since there is only one left-handed bulk mass parameter. More
specifically, f, ~ 4.48 x 10%, fg ~ 2.25 x 10, f, ~ 1.36 x 103, f. ~ 1.22 x 102, f, ~ 28.8,
ft =~ 1.22 and fg ~ 3.14. In addition, we recall that the off-diagonal elements of Vj in
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egs. (2.17)—(2.19) are suppressed by up-type quark mass ratios. Hence, the most dominant

contribution to the neutron EDM from eq. (3.14) turns out to be

5Bp A ma fE Fpy
3v2 Mgk

m[(Cy ") ] ~ Im , (5.1)

where the factor 5/3 comes from the electric charge of an up-type quark and a charged
Higgs from eq. (3.4). The factor Fji) is obtained from eq. (3.14) and given by

Fgpum = [V(TjKMdiag(mu7c7t)V szag(f )V dzag(mwc’t)VCKMLl

3
= > (V) w(Rure (Vo) = Tm(Fpyg) =0, (5.2)
k=1

with

(Ru)z] = (diag(mu,c,t)v szag(f2 )VRdzag(muct ) Zmzm] VR)m(VR)anQ . ( )

n=1

Given that the matrix R, is hermitian and that in RS-A4 to O(z“% 7“%) one has

(Vexkm)ii = 1, and (Vokm)ij = —(Vokwm)j; for @ # j (see egs. (2.11)—(2.14)), we conclude
that Fgpy has no imaginary part if we disregard the tiny non-degeneracy of overlap factors
by replacing them with the overall coefficient Bf. For later convenience we anyway look
at what terms are dominant in the cancellation pattern; they are proportional to f2 or f2

Fepu = fi [mi = MM Vs (AY)* — mymcV AT
- (ff/ff)mEVUSVJS - mumtVJbAg — My Vi (A%) ] (5.4)

The first and fourth terms are real, while the second and third terms and the fifth and
sixth terms cancel each other’s imaginary parts. All other contributions to Fgp,, are
suppressed by at least two orders of magnitude, and exhibit the same cancellation pattern
of imaginary parts. Thus, in order to obtain a conservative estimate of the contribution to
the neutron EDM in our setup, we must fully account for non degeneracies and possibly
go beyond the mass insertion approximation.

It is also important to recall that Vﬁ ’g have been determined [1] to linear order in
the Yukawa parameters Z;" -4 v d g df and that the neglected O((mqf o d) (yl“ v d) )
corrections can also a priori modlfy the cancellation pattern of imaginary parts for up-
and down-type contributions to the neutron EDM. However, a realistic estimate of these
corrections would require to perform a new matching with the experimentally determined
CKM matrix. We can still provide a conservative order of magnitude estimate of these
effects by evaluating the size of a generic term in eq. (5.4). In particular, labelling the second
(or third) term, proportional to the largest CKM element Vs, as AFfp,; one obtains

5Bp A ma fEAFgpy
3v2 Mkk

AFgpy = fgmumCVus(A@* =d, ~Im

T 2
~ 4.1 x 1077 (iwe‘/) YZe-cm, (5.5)
KK
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for Bf, ~ 1.5 and assuming |A}| = |Vys|my,/m., with maximal phase for AF{y,;.
The symbol Y denotes the overall scale of the 5D Yukawa couplings, defined as
Yudesitb — Y Yudesty With reference values yy, q.sp = 1 and y; = 2.8. The predicted
contribution is suppressed by one order of magnitude compared to the experimental
bound, however, an enhancement induced by a coherent sum of many higher order
terms in ;i;"d,yj?’d cannot be excluded at this level. Translating the above result into a
conservative constraint on the KK mass scale yields

(MERMYSPUT > 1.1Y TeV . (5.6)

cons. ~v

When taking into account the non-degeneracy of the overlap factors in the spurion-overlap
approximation of egs. (3.10) and (3.11), the contributions to the EDM are still vanishing
to O(Cyfy) — corresponding to O(A) of the Wolfenstein parametrization of the CKM
matrix. Negligible non vanishing contributions appear in the up sector at O(A?). The most
dominant non vanishing contribution in the up sector, together with its exact generational
dependence of the overlap correction factors is as follows

Fipn = ((rho) b = (o) i) (rbo) 2 (rbyrly + rloirin) f2mi Vin (A%)* . (5.7)

It provides the estimate

A T 2
() 7" 2 2 x 1072 (3M6V> Y2e-cm,
KK

and a lower bound on the KK mass scale Mgk 2 0.07Y TeV, when comparing with the
experimental result.

We can improve upon the previous estimate by directly diagonalizing the mass matrices
and work with KK mass eigenstates. In the estimates below, the effects of generational
mixing, non-degeneracy of overlaps and KK states are described to various degrees of
approximation. We first state the results obtained by the procedure of section 4.1, where
we use the diagonalization of the one-generation mass matrices combined with the spurion-

overlap analysis to account for generational mixing. The contribution from AFgy,, in
KK(1gen)

eq. (5.5) to the neutron EDM will be obtained by the replacement Bf — (Bp)gpy - S€€
appendix B.2). Using (B}é)ggﬁgen) ~ 5.2, we obtain:
_ 3TeV
(dn)gsgfzﬂf"”s‘) ~1.42 %1072 <e ) YZe-cm, (5.8)
Mxkx

which implies the bound Mgk =2 2.1Y TeV. The modification of the contribution in

~

eq. (5.7) will be obtained by the same replacement and leads to

_ 3TeV 2
d)bdm ~8x 1072 220 y2e. 5.9
( n)RS—A4 X Mk €-cm, (5.9)

implying a weak lower bound on the KK mass scale Mgk = 0.15Y TeV, when comparing
with the experimental result.
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Secondly, we consider the three-generation case, where the 12 x 12 mass matrices
can be approximately diagonalized analytically as described in section 4.2, or they can be
diagonalized numerically. In both cases we assign the bulk masses and Yukawa couplings
according to eq. (2.15) and the assignments in appendix A and use the corresponding
values of the overlap correction factors obtained in appendix A.l. In the numerical case,
we perform a scan in the KK mass scale Mgk in the range 1 — 10 TeV and Y in the
range [0.3,5]. We have also verified the stability of the results against modifications
of the phases of the NLO Yukawa couplings and in particular for the assignments of
egs. (5.31), (5.19) and (5.36). Notice that differences with the previous estimates can be
attributed to the presence of higher order corrections in the perturbative parameter z
(beyond the mass insertion approximation) and to the partial, and a priori uncontrolled,

d, 3];‘ 4 The first source can be estimated by

contamination of higher order terms in ;"
performing a scan over the values of x and match the dominant linear behavior in the
vicinity of x = 0.037. We recall [1] that the latter value corresponds to (R')~! ~ 1.8 TeV
and Myk ~ 2.55 (R')~! ~ 4.6 TeV, the value for which RS-A, predicts a NP correction to
the Zbpby, coupling within 67% CL for the bulk parameters in eq. (A.7).

To obtain the explicit contributions for each of the processes of interest, we use the
12 x 12 analogues of egs. (4.3) and (4.4). The fully numerical diagonalization procedure,
and without truncation in the z-parameter expansion, leads to the prediction for the

neutron EDM

Im [(C?)gﬁnﬁ} ~31x10%e-cm  Im[(C¥)Eph] ~ —1.66 x 107%%¢ - cm,  (5.10)

(dn)%% ~1.65 x 107 ®e-cm,

while a scan in z and matching to the linear behavior leads to

Im [(C‘%)gﬁnﬁ}[} ~3.3x107%¢-cm Im [(C¥)Ebh] ~ —1.75 x 107 %e-em,  (5.11)

(dn)%gTM ~1.7x10"%¢-em,

where the up- and down-type contributions were summed in quadrature. Both results
saturate the experimental bound for Mkx =~ 0.3 TeV. For Mgk =~ 4.6 TeV the neutron
EDM is smaller than the experimental bound by two orders of magnitude. What is also
relevant is that the resultant constraint on Mgy deviates by a O(1) factor from the
constraint implied by eq. (5.7). The characteristic strength of the numerical results is
rather stable against modifications of gji“’d, i?’d, fQ,ui,a; and yy, 4, that still yield physical
quark masses and CKM elements. In addition, when varying the parameters up to O(3)
in magnitude away from their CKM values, the variation of the predicted neutron EDM
and all other observables stays within a factor two.

The contributions predicted by the approximate analytical diagonalization procedure
described in section 4.2 consist of extremely long expressions, which we do not state explic-
itly. Instead, we study them as a function of x = v/Mgkxk only, with all other parameters
assigned to yield the physical quark masses and CKM matrix elements. Finally, we can
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compare the resulting predictions with the results of the fully numerical analysis. The
approximate analytical diagonalization for the neutron EDM provides

Inzkcﬁ)§§¢%hﬂ ~ 2.5 x 10794, Inzﬁcw)ggﬁ%hﬂ ~ 2% 107%4Y,  (5.12)

and

2

(dn) e 3 ~ 1.6 x 107%® (4]:\)}}{?/) YZe-cm,
in good agreement with the estimate of eq. (5.7) and the numerical results in eqs. (5.10)
and (5.11). The discrepancy between the numerical and the semianalytical approach for
the three-generation case will turn out to be larger for other observables. This is due
to the fact that the semianalytical diagonalization described in section 4.2 works better
within the first generation, while more significant off-diagonal terms still appear in the
second and third generation. In the case of the EDM, a cancellation mechanism at leading
order is indeed in place.

5.2 New physics and (€' /e)

In this section we derive the new physics contributions to Re(¢'/e) in RS-Ay, gen-
eralizing the flavor anarchic analysis of [22] to our setup. We show that the bound
induced on the KK mass scale by this quantity is relaxed even below the bounds
obtained from EWPM, differently from what happens in the flavor anarchic case. The
current experimental average, measured by KTeV and the NA48 collaborations, is
Re(€'/€)exp = (1.6540.26) x 1073 [30]. Given the uncertainties still affecting the standard
model prediction Re(€'/€)sm [36-40], we adopt the most conservative approach as also
done in [22] and assume 0 < Re(¢'/€)sm < 3.3 x 1073,

The potentially large new physics contributions to Re(¢’/€) in the RS setup are induced
by the two effective chromomagnetic operators with opposite chirality

O = gsH'5po" TGS, dy, Oy = gsHS,0o" TGS dR , (5.13)

generated by the one-loop amplitude in figure 1.* The imaginary part of the corresponding
Wilson coefficients Cy and Cj, contributes to Re(€'/e) oc Im(Cy — Cf).

In the spurion-overlap analysis and neglecting the generational dependence of the
overlap functions, we need to compute the (12) and (21) elements in egs. (3.13) and (3.14),
respectively. Again, given the dominance of terms proportional to fi 4 and the suppressions
by mass ratios in V}g’d, there are only a few dominant contributions for each of the above
elements in the up and down sectors, while all other contributions are suppressed by at

least an order of magnitude. However, since the dominant contributions to (Cgf —tup 6)12(21)

are proportional to V,s(V.,) and they are real if ig’d and 7, 4 are assigned according to

“The presence of H in the definition of the 4D effective operators in eq. (5.13), tells us that the Wilson
coefficients Cy and Cy for these operators should be obtained by dividing the spurion analysis result by the
Higgs VEV v | thus obtaining Wilson coefficients of mass dimension -2.
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eq. (2.15), we also consider the leading sub-dominant contributions in the up and down
sectors. We obtain

Im(Cy — C!) = Tm [(c“ tpe | ogturey ) (Cpte g o), 1} (5.14)
1L g)
~ T | Bl (maFl, —malt,) + Bhmems ((FS, — F4)) |
1 d d
~ 13t " [(msFm’ maFe,) + mams (F iz~ F 621)]

where in the last line we used Ay = 1/(64m2Mxgk), fgg ~ 9.9 and B}ﬁ,’d ~ 1.5. The

. I . d
dominant contributions to the functions Ft;,, are

Fo, =ms(fq — f2A1  Fo, =ma(fi - f)(A]) (5.15)

€12 €21

in the down sector and

F o (f2m2 = 2m2) Vs + (f2 = 2 mame AL + f2m2 Vs (35 +wis) fL+((35) +w(§5)*) £5) (5.16)
FY o~ (fami— [2m2)Vi+ (f2— [ mume(AY) + fEm2 Vi, ((35) +w? (35)") f1+ (35 +w?55) f5)
(5.17)

in the up sector. It is evident from eqgs. (5.14)—(5.17) that the contributions associated
with F! are suppressed by mg/ms compared to those arising from F! , and the

contributions from Fg , are similarly suppressed compared to those from Fed12 This is
analogous to the standard model pattern and opposite to what happens in flavor anarchic
models. Therefore, to a good approximation, we only need to estimate the imaginary parts
of Féﬁgd as functions of the input parameters, in order to obtain bounds on the KK mass
scale in RS-Ay4. Since f2m?2 ~ f2m2, and more precisely f2m2/(f2m2) —1 ~ O(107%),
the first term of % in eq. (5.16) approximately vanishes, and the third term is roughly
suppressed by |V,s| = 0.2257 compared to the second term. Consequently, the imaginary
part of Fg’;l is largest for A¢ and A} pure imaginary. We first find the maximal possible
contributions by spanning the (ﬂ’d, g]?’d) parameter space, and only later we impose the
constramts arising from matching the CKM matrix. Denoting the magnitude of all acUd

and g, parameters collectively by 9y, p we obtain
d mq , .4 5\ ~ u My ey N\~
maz [Im(AD]] =22 (fd+ f)gp maa [Im(A)]] = 22 (f + fOio . (5.18)
S C

with the assignment

,dN % ~u,dy % .~ ~u,d ~u,d e
@0 =W (51" = +igup Ty =0y = Tigu.p - (5.19)
From eq (2.15), in order to get |[Vius| = |V = 0.2257, we must require
i = g4 = —7% = —g¥% and yu,p = 1. The resulting maximal imaginary parts in

eq. (5.18) will then be reduced by a factor 2 for realistic CKM assignments, due to
the exact cancellation of terms proportional to izg’d and gy 4 For yu,p # 1, we should
correspondingly rescale the y VEV to maintain |V,s| = 0.2257. However, this will

— 24 —



have significant implications on the neutrino mass spectrum even for O(1) rescaling, as
was shown in [1]. The two (dominant) terms in eq. (5.18) will add up maximally for
7 = g4 = ¥4 = §¥, which corresponds to a vanishing V,,s according to eq. (2.12).
Focusing now on the third term in eq. (5.16), and considering the assignment of
eq. (5.19), we realize that for V,,s pure imaginary we should maximize the real part of the ex-

(7

pression adjacent to it. The only parameters left to be assigned are ig’d and §3’d leading to

maz|[Re (7§ +wg§) fy + ((38)" +w(@)) )] = @f - (V3/2) )i, (5.20)

for the parameter choice % = wyy = yy. Notice that this contribution, proportional to
Vus, will vanish for the choice V,,s = 0 that maximizes the sum of the terms in eq. (5.18).
Instead, for the assignments that lead to a realistic CKM matrix such as the one in
eq. (2.15), the contribution of the above terms will be suppressed by roughly an order of
magnitude compared to the (Azf’d) terms, and can be safely neglected.

From eq. (5.16), using f. < f, and B;’d ~ 1.5, we obtain the following upper bound
on the up-type contribution to €'/e

Y2 2,..2 s
Im(C, — C')* ~ Jumim

~ ——2 T 2(fY YU 5.21
g 11-571_2’U3M12<K (fx +fx)yU ( )

It scales with Y2, where Y generically denotes the overall scale of the 5D LO Yukawa
couplings associated with the H® interactions. Using again the assignment in eq. (5.19)
the down type contribution is given by

22,2
d Y= famgms

Im(Cy — C) ~e —Td7d s
MO = Co) = sz,

d -
p 2(fy + )b - (5.22)
The NP contributions to Re(€'/e) are directly constrained by the experiment. In
order to extract such a constraint we construct the difference §. = (Re(€'/e)np —
Re(€'/€)sm)/Re(€'/€)exp, as done in [22]. Assuming Re(€’/e)sy = 0 one can write

,_ wd(2m)—o MO, |K)) {Im@g - C;q  (58TeV ) Bq [Im@f - Cé)] (5.23)
© V2ReAoRe(€ /€)expl€|exp As As ’
where Bg, the hadronic bag parameter [41], is given by
311 m2m?
((27) 1=0|A\sO4| K°) = \[24 = K Ba, (5.24)

and we set Bg = 1 as in [22]. The parameter Ay is the SM Yukawa coupling of the s quark,
namely \g X 174 GeV = my; ~ 50 MeV. The quantities Ay and As denote the amplitudes
for the (27)7—¢ and (27);—o decay channels of the K° meson, respectively. We take F, =
131 MeV, Re(4g) = 3.3 x 107*MeV, w, = |Az/Ag| = 0.045 and |eexp| = 2.23 x 1073.
Imposing |0!| < 1 and using egs. (5.21) and (5.22) directly leads to a bound for the KK scale

(MKK)i;z;zeu“ion—overlap Z 1.4Y TeV. (525)
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Using the results for the overlap dependence of the up- and down-type contributions to €' /e
from the one-generation KK diagonalization scheme in eq. (B.22), the up- and down-type
contributions get enhanced and suppressed respectively and the resulting bound on Mk is

(Mkk)s s 19 21.25Y TeV. (5.26)
This bound is the most stringent in the (:Z';L’d,g]?’d) parameter space and corresponds to
an highly unnatural set of parameter assignments, for which Vs = 0, and maximize the
sum of up and down imaginary parts. Nevertheless, this bound is still less stringent than
the one in the flavor anarchic case considered in [22], and it allows for O(1TeV) KK
masses for O(1) Yukawa couplings ¥ ~ 1, gy p ~ 1. The latter values correspond to
X0 = 0.155M%2, a value allowed by the neutrino oscillation data [1]. Notice also that in
the flavor anarchic case [22] the most stringent bound on the KK scale arises from the
combined Yukawa coupling dependence of the new physics contributions to € /ex and
ex. The latter contribution comes from the tree level KK gluon exchange, it is inversely
proportional to the Yukawa coupling, and provides the most stringent bound on the
KK scale for O(1) Yukawas. The combined bound on Mkgk in [22] has been obtained
for Yukawa couplings of O(6), implied by the constraint from the tree level KK gluon
exchange contribution to €x. This contribution vanishes identically in RS-A4 [1], thus
relaxing one of the most stringent constraints of flavor anarchic models.

A more natural bound on the KK mass scale is obtained for the parameters assignment
of eq. (2.15) that provides an almost realistic CKM matrix, while still choosing ;%T’d and
g}"d to maximize the imaginary parts of up- and down-type contributions according to
eq. (5.19). The resulting bound on Mkgk will be further suppressed by at most a factor
of /2 compared to the one in eq. (5.26). This bound (for Y = 1) is again significantly
lower than the one implied by constraints arising from EWPM [1], in particular the Zbz by,
coupling. This is a pleasing result in RS-A4, indicating that constraints arising from new
physics contributions to FCNC processes tend to be weaker than in flavor anarchic models,
see for example [14, 20, 22| and references therein. Another important difference between
RS-A4 and anarchic frameworks stems from the dominance of SM-like dipole operators,
and the lack of enhancement of the opposite chirality operators.

To conclude the analysis of the constraints arising from €' /e we state the results from
the numerical and semianalytical diagonalization of the three-generation 12 x 12 mass
matrices. For x = 0.037 the numerical result is

(S )Remy, ~ 0.1 (Mgg)Re™, = 0.98TeV (5.27)

close to the spurion-overlap and the one-generation mass-matrix diagonalization approxi-
mations. The results of the semianalytical diagonalization for the RS-A,4 contributions to
€' /e are given by

Oe) el ~ 03 (Mk) o4t ~2.5Y TeV . (5.28)

As anticipated, the deviation of the semianalytical 12 x 12 estimate from the numerical one
can be attributed to the fact that the mass matrices in the first case are only approximately
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diagonalized, and a residual contamination of O(z) is noticed to be still present in the
second- and third-generation off-diagonal blocks of the approximately diagonalized mass
matrix. Nonetheless, the importance of the semianalytical method stays in providing some
insight into the way the A4 flavor structure induces cancellation patterns, due to the explicit
phase structure of the LO Yukawa interactions in eq. (2.8).

5.3 How stringent is the constraint from b — sv?

Measurements of the branching ratio BR(B — Xy7v) are already accurate enough to provide
stringent constraints on new physics contributions to b — sv. It is thus instructive to obtain
the NP physics contributions to b — sy in RS-Ay, derive the corresponding bound on the
KK mass scale and compare with the flavor anarchic results of [22] and [21].

As it is also true for € /e, and in contrast to flavor anarchic models, the largest contri-
bution to b — sy in RS-Ay is generated by the single-chirality effective dipole operator

07 = %ERJMVFuVSL, (5.29)
while the contribution arising from the opposite chirality operator O is suppressed by
ms/myp as in the SM. This can easily be inferred by looking at the i = 2, j = 3 (for O7) and
i =3,j = 2 (for O}) components of the Wilson coefficients defined in egs. (3.13) and (3.14).

The Wilson coefficient C7 for Or is generated by the loop amplitudes in figures 1 and 2
and we follow the same procedure as for €' /e to estimate the dominant contributions to
C7.° For the down-type contributions we obtain the following dominant terms

1 B§ fgmsmy

C d—type: -
() 3 8uZMZ,

(r3adagd+ r2a9), (5.30)
where the factor —1/3 comes from the charge of a down-type quark. Considering
egs. (2.17)—(2.19), it is clear that the second term in eq. (5.30) is dominant, despite the
presence of fg in the first one. As before, we assign a collective magnitude to the 5:2-"’(1,
zj?’d parameters in terms of g, p and look for the phase assignments that maximize the
total contribution. We thus first rewrite the maximal magnitudes of A(1i72,3’ defined in

egs. (2.17)—(2.19), in terms of gp. It is straightforward to obtain

m, -~ m ~
max(|Af) = T (27 +217) gp max(Af)) = T (25 +207) o
mg s ~
maz(|Af]) = T (26 +2£}) i, (5.31)

and similar bounds for the up-type right-handed diagonalization matrices are obtained via
the replacement (d, s,b,9p) — (u,c,t,gy) in the above equation. In particular, the bound
in eq. (5.31) on A%, to which the dominant term in eq. (5.30) is proportional, is obtained
with the assignment

i = wpd = 74 = wid = jpetr. (5.32)

5Considering the definition of O7, we should correspondingly rescale the contributions coming from
eqgs. (3.13) and (3.14) by (87%/my), supplementing us again with a coefficient of dimension [mass] 2.
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The above bounds can now be used to estimate the down-type contribution to O7 leading to

Y2jp

C d—type ~__ dD
(Cr) A2 M2,

(m2£2005 + 12 + 23308+ POUE+ 1), (5:33)
where we used fc2g ~ 9.9, and Bg, ~ 1.5 and made explicit the Y? scaling behavior. In
the up sector, we learn from eq. (3.14) that there are two dominant contributions to the
effective coupling of Oz, leading to

B - _ - _

O (fmR = S Vi + FmE(FE(E)" + wl@8)) + LT + wi),
KK

(5.34)

where the factor 5/3 comes from the electric charge of an internal up-type quark in figure 1

-
(Crytome = 2

and a negatively charged Higgs in figure 2. All the other up-type contributions to C; are
suppressed by at least another order of magnitude. To obtain a conservative bound on
NP contributions to b — s7v, we can again find the maximal values of the combined up
and down contributions in the model parameter space. We first use eq. (2.13) to rewrite
the up-type contribution as

u—type 5 Bluafé 2,2 b(zd ~d t(zu ~q
(Cq)t7Pe ~ gm [ — fimj (fx(x3~|—wy3) — f (@5 ‘|‘WZ/3))
2 2 C((mu\* ~1\ % b(d ~d
+f2m2 (fe(8)" + () >+fx<x3+wy3>)] : (5.35)
where we use f2m? < fPm?, and in particular fZm? = (y2/y2)(ro/rs0)? fim? ~

6.35 f2m?2, so that the first term in eq. (5.35) is dominant for O(1) parameter assignments.
The maximal combined up and down contributions to C7 would be realized when both
are real and negative. This corresponds to dpsp = 0 in eq. (5.32) and for the up sector:

Ty =wys =Ty =wly = —Ju - (5.36)

With this assignment the second (subdominant) term in eq. (5.35) vanishes. Using Bj ~
L5 and f3 =~ 9.9 we obtain

5Y 2s

(07)u—type ~ _
42 ME

(rEmire+ 1) - (5.37)
It thus turns out that the up-type contribution to b — sy dominates over the down-type
by roughly an order of magnitude.

A bound on the KK mass scale can be extracted by comparing with the SM contribution
to b — s7v and the corresponding experimental bound. Contrary to flavor anarchic models,
the dominant contributions from NP and SM both come from the single chirality Wilson
coefficient C7. The SM contribution evaluated at the W scale can be written as follows [34]

. 9° Vi Vi D (me)

Ve ~1.06 x 1077 (GeV) 72, (5.38)
w

CM ()
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where D{j(m;) ~ 0.4, My = 80.4GeV and g ~ 0.65. Following the analysis in [21] we
conveniently define the ratio between the NP and SM contributions as

CH5~M(Mgk) _ 1.3 x 1077(GeV) ™2 e TeV)?

o7 = ~
T O () 1.06 x 10-7(GeV) 2~ MZ,

Y20, (5.39)
which is thus a function of gy and Mkk. An analogous definition holds for C,. We
realize that, even for KK masses as low as 3 TeV and for the largest Yukawa allowed by
perturbativity bounds Y = 47 /y/Nkk ~ 9, the RS-A4 new physics contribution predicted
in the spurion-overlap approximation is at most comparable to the SM one, and it is
suppressed by roughly an order of magnitude for the parameter assignments that yield a
realistic CKM matrix. To impose a conservative bound on the KK mass scale we proceed as
in the analysis of flavor anarchic models [21, 22]. To compare with the experiment, we use
the model independent ratio [21] T*tl(h — sv)/TM(b — s7) =~ 1 + 0.68Re(d7) + 0.11|84|
which takes into account the running from Mgk down to jup, with Tt oc |Cr(up)|? +
|C%(11p)]?. Given that the running of the Wilson coefficients from the KK scale down to
up remains an O(1) suppression effect, and using the experimental value for BR(b — sv)
affected by ~ 10% uncertainty, a O(20%) departure of NP contributions from the SM
prediction is still allowed. Considering separately the contributions from C7 and C%, the
allowed window translates into [21] Re(d7) < 0.3 and |65 < 1.4. Since the contribution
to C% in our setup is further suppressed by ms/my, compared to the one of C7 and the
bound on d7 is far less stringent, the constraint on the KK mass scale will come from d7.
Substituting in eq. (5.39), we obtain a conservative bound, which do not correspond to a
realistic CKM matrix

(Mkx)§s, 2 2.1V /G TeV . (5.40)

Using instead the parameter assignment of eq. (2.15) to obtain a realistic CKM matrix,
leads to the more realistic constraint

(Mxk)§ 58 2 14Y \/fjiy TeV . (5.41)

One important difference between RS-A4 and flavor anarchic models resides in the
dominance of C7 in the new physics contributions. This can obviously lead to different
patterns of interference between NP and SM contributions in direct CP asymmetries.
Hence, a study of the latter might discriminate among NP models more efficiently than
the measure of branching ratios. In RS-A4, a non trivial pattern of interference between
CH5=A4 and CSM might be in place.

Since the above constraint is the most significant we have encountered so far, we go
beyond the spurion-overlap approximation and use the results of the analytical diagonal-
ization of the one-generation mass matrices. In this way we are able to obtain a better
description of the overlap dependence of the above process. The modifications to the

overlap factor B}, for b — s are obtained in appendix B.2 and the resulting new overall
KK(1gen)
b—sy

scale bound. The dependence of the resulting constraint on the size of Yukawa couplings

correction factor is (B) ~ —1.54, which has a very moderate effect on the KK mass

is illustrated together with the constraints from €'/e and the neutron EDM, in figure 3.

~ 99 —



—  EDM(th)
== EDM-N
6F — €/eg(th)

== €fex—N

bosy—N

—
>
L
%4 = b-sy(th)
=

Figure 3. Bounds on the KK mass scale Mkyk as a function of the overall Yukawa scale Y for
the neutron EDM (bottom, red) €'/e (centre, green) and b — sy (top, black). The analytical
(th) results (solid lines) are obtained within the one-generation approximation combined with the
spurion-overlap analysis and compared with the numerical (N) results (dashed lines) of the three-
generation case. In both cases, predictions are obtained for the model parameters that lead to a
realistic CKM matrix.

Finally, we state the results of the numerical and semianalytical approach to the three-
generation case. Numerically, and by adding up- and down-type contributions in quadra-
ture, we obtain

(57)Num, ~ 0,03 (Mgk)pe V™) > 1.27TeV (5.42)
while the semianalytical diagonalization scheme leads to
(67) 1o 34 >~ 0.06  (Mkk) o4y 2 1.8Y TeV . (5.43)

Figure 3 provides a summary of the results obtained in this section. We compare the bounds
on the KK mass scale Mkk as a function of the Yukawa coupling for the neutron EDM,
€'/e and b — sv. Differently from flavor anarchic models, the most stringent constraint
eventually comes from b — svy. For an overall Yukawa scale Y ~ 1° all constraints are
weaker than the one implied by EWPM, in particular Zbzby. In figure 3 we also compare
the analytical prediction (th), obtained in the combined spurion-overlap and one-generation
diagonalization scheme described in section 4.1, with the ezact numerical analysis (N) of
all three generations. Both predictions are obtained for the model parameters that lead to
a realistic CKM matrix. It is worth to recall that the analytical prediction for the neutron
EDM reported in figure 3 and eq. (5.9), represents a very conservative estimate coming
from the up sector contribution in eq. (5.7) and entirely due to the non degeneracy of
overlap factors. Differently from other quantities, the neutron EDM identically vanishes in
the spurion-overlap approximation with degenerate overlap factors.

77777

Yu,d,c,s,b = 1 and Yt = 2.8.
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We conclude that the constraints on new physics contributions from the neutron EDM,
(¢€'/e) and b — sy are relaxed in our setup compared to generic warped flavor anarchic
models. In order to impose significant bounds on the KK mass scale in RS-A4 using the
above processes we must wait for more precise measurements of these observables. This
might not be the situation with Higgs mediated FCNCs, considered in the next section.

6 New physics from Higgs mediated FCNCs

It has been pointed out, both in the context of a composite Higgs sector of strong dynam-
ics [28] and warped extra dimensions [29], that higher dimensional operators in the low
energy 4D effective theory with extra insertions of a Higgs field generally leads to a misalign-
ment between mass and Yukawa matrices and consequently to tree level Higgs mediated
FCNCs. The presence of a misalignment is a quite general and model independent result.

In the RS-A,4 framework, once Ay is completely broken by “cross-talk” interactions,
the 4D effective Yukawa couplings originate from 5D Yukawa operators that involve the
Higgs, and one or both flavons ® and . This is relevant to determine the typical strength
of the effective 4D interactions. The operators that generate the misalignment between the
Higgs Yukawa couplings and SM fermion mass matrices in the 4D effective theory, are of
dimension six and can be written in terms of the 4D fields as follows [29]:

H?
AL HQr,(Ug,. Dr,), B;

i A2 DR @Dr;, Cij

H? _
i A2 UR aUR ; KijFQLiaQLja

(6.1)
where @, and Dpg,(Ug,) are the SU(2)r, SM fermion doublets and singlets, respectively,
and the Higgs field H = v + h is a 4D field containing the physical Higgs h. The scale
A is the 4D cutoft and the coefficients A;;, B;;, C;; and K;; are in general complex. The

’L] A2

indices ,j denote flavors of the SM quarks. Once the electroweak symmetry is broken
at the Higgs VEV scale, v = 174 GeV, the above operators will induce corrections to the
fermion masses, Yukawa couplings and kinetic terms. The corrected mass and kinetic
terms can be generically parametrized as [29]

~ 0ij 0 2
(yw +A;l] A2) QL,-DR]- 5 < = +K i A2> QL @QLJ 5 ( 4 +B1] A2> DR @DR ’
(6.2)
while the corrected Yukawa interactions with the physical 4D Higgs h are generally given by

2
<ym +3A4% A2> hQr,Dr, , (6.3)
and analogously for the wup contributions Aj; and Cj;, where QZSJM . =
Uud sz s d r{h® (cqQ;sCu;,d;,8) are the SM leading order Yukawa couplings. The

origin of the mlsahgnment between Yukawa couplings and SM masses [29] resides in the
simple fact that an additional multiplicity factor 3 is associated with the corrected Yukawa
couplings to the physical Higgs h. In the mass insertion approximation, the leading
corrections to Yukawa couplings and fermion masses are generated by the second diagram
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Figure 4. Higgs mediated corrections to masses and Yukawa couplings of SM fermions in the mass
insertion approximation. The 4D effective Higgs field is defined here as H = v+ h and contains the
physical Higgs field h.
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Figure 5. Higgs mediated corrections to kinetic terms of SM fermions in the mass insertion
approximation.

in figure 4, while the corrections to the fermion kinetic terms are generated by the second
diagram in figure 5 via the exchange of KK modes.

After redefining the fermion fields to canonically normalize the corrected fermion ac-
tion, the total misalignment between SM masses and Yukawa couplings in the mass inser-
tion approximation is given by [29]

At =il — g v = Af+ A, (6.4)
where
A U,d u,d 1}2 A u(d) 1)2 U2
Ay = 24 45 Bmy =~ (B +Cu(Biy) s | - (6.5)

It is clear that, after the shift in eq. (6.4), the SM mass matrix and Yukawa couplings are in
general not diagonalized by the same biunitary transformation. Thus, in the diagonal mass
basis, non-diagonal Yukawa interactions are in general present and induce FCNC processes
by tree level Higgs exchange.

In [21] the contributions of Higgs mediated FCNC to AF = 2 processes were
estimated in the framework of flavor anarchy. It was found that the dominant contribution
to the misalignment is in this case due to (——) KK modes, and does not vanish for
an IR localized Higgs, contrary to the conclusions of previous analyses [42, 43]. Also,
the overall misalignment was calculated by mass diagonalization in the one-generation
approximation, and generalized to three generations using a spurion analysis in the
mass insertion approximation [14]. Here, we analyze the same misalignment in the
context of RS-Ay4 to establish whether a significant suppression of Higgs mediated FCNC
contributions to AF = 2 processes can be induced by the particular structure of up and
down diagonalization matrices of A4.
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We start with writing the explicit flavor structure of the corrections in eq. (6.5), in the
IR localized case and using the spurion analysis in the mass insertion approximation. In
the special interaction basis one would in this case obtain

. 2’1)3R/2 . . .
(A%I)U = — = |FoYual YuaFud S (6.6)
(Agj)zj = R i (] K () + K (cu )i, ) i d] " (6.7)

where K (¢;) = diag(K(¢;)) and

1 1 520—1 _ 52 51_20 _ 52
K(c) = — 6.8
(c) 1—-2¢ [ g2l 1 * (e2¢-1 —1)(3 — 2¢) * (1+2¢)(e21 — 1)] ’ (6.8)

with (R)™! = ke " ~ 1.8 TeV the UV cutoff of the 4D theory and ¢ = R/R' = e *7F,
The function K (c) was obtained in [29] by taking the brane localized Higgs limit (6g — o0)
of the original bulk function for one generation of down-type quarks. The ¢ dependence of
K (c) renders the shift from kinetic terms subdominant w.r.t. the one arising from Yukawa

interactions, in the case of first and second generation quarks that interest us.

To account for bulk effects in the three-generation case we use the spurion-overlap
approximation of section 3.3. One can easily realize that the general flavor structure of
the shift in eq. (6.6) for the up and down sectors is identical to the one of the down-type
contributions to dipole operators. This means that we can rewrite eq. (6.6) in the form
of eq. (3.13) with a new factor BH that quantifies to a good approximation the overall
effect of overlap corrections present 1n the second diagram of figure 4. The difference with
the dipole operator case in eq. (3.5) stems from the different type of KK modes: dKK nd
¢K¥ in figure 4 denote (——) and (+—) KK states in custodial RS-A4. The flavor structure

of the dominant contribution to the misalignment A%l thus contains two terms

o )
(AG) (44 X FQYau01(cqus €y, s, » B) Y T1-1- (Cay, uey €Qey ) Yau m10(€Quy » €y uy) P

(Adu)( )OCFQY dTo1- +(Cchu[1,dzl76) udrl+ 1(Cuzl,d21 CQg2aﬂ) Ydurlo(cQg2 cd],u]7ﬁ)qu~
(6.9)

Given the almost degeneracy of overlap factors as shown in appendix A.1, we can again
work in the approximation analogous to eq. (3.13), and define Bf.i ;
H d ~u,d au,d u,d au,d ~u,d

Bp, , = mazx ((rgo )3 (75 (BT S S S F ) (6.10)
as an overall multiplicative overlap factor. It is now important to notice that the IR peaked
profile of both ® and the Higgs and the vanishing of the (——) and (+—) profiles at the
IR brane, provide a suppression by almost an order of magnitude of the overlap factors
ri—1- and ry{+-;- compared to r1; and ri-+, rendering A}L{f smaller, but still dominant
over A“H;l In the same approximation of eq. (3.13) and in the mass basis AZ? reduces to

A Uyd u,dy % u,d
(AHl)ij = = VR )ni(VR )njfgn,dn~ (6-11)

1

/2 £2 2 H 3
2R” fomug.a;miy; 4, BF, ,
3

n
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Disregarding Au’j, the off-diagonal Yukawa couplings in the mass basis are then ob-
tained by dividing the contribution in eq. (6.11) by the Higgs VEV, v. Recalling
the structure of the right-handed diagonalization matrices in eq. (2.16) and the hi-
erarchy of f,, q;, it is straightforward to identify the dominant corrections. Defining
(Agsdy; = ai“j’d = (A?If)”/v we obtain

u uj,dj 2 u,d 37d2A11L7d %dAgj

a;’" ~ —fua(A77)" VALY . (6.12)

Y 3v 5 udve 2 ndy 2
- u,d(AQ ) - c,s(A3 ) ft,b

2
/2 £2 2 H

ij

Hence, new 4D effective operators of the form agthiLcE%—k (d — u)+h.c. will induce tree level
Higgs mediated FCNC. One can already notice that the suppression of third-generation
couplings, as for ¢¢, is much milder than in the flavor anarchic case [29]. For R’ ~ 1.8 TeV,
the suppression amounts to Ay, /y; ~ 4 x 1073, This is due to the degeneracy of the left-

handed fermion profiles fp and the consequent factorization of the left-handed matrices V..

6.1 Low energy physics bounds from AF = 2 processes

The Higgs flavor violating couplings can induce tree level FCNC contributions to various
observables. The most stringent constraints on their size may come from experimental
bounds on AF = 2 processes, such as K — K, Bgs — Bdﬁ and D — D mixing. AF = 2
processes are described by the general effective Hamiltonian [34, 44]:

5 3
Mot =2 =) CaOF" + ) CLOJ™, (6.13)
a=1 a=1

where

995 — qi9; — — qiq; —
07" = Q?LWQ?LQJQLWHQ?D 0y = q?Rq?ququﬁL’ 03" = qgo"ququRq?L
q:i9; _ _ 16] q:q; _
OF" = pal @ dp OFY = B, d a0k, (6.14)

with color indices a, 3. The opposite chirality operators are denoted with a ’ and obtained
from the operators above by the replacement L « R. For K — K, By — By, Bs — B, and
D — D mixing we have ¢iq; = sd, bd,bs and uc, respectively. In particular, Higgs mediated
tree-level processes as in figure 6 generate new contributions to Cs, C} (figure 6(A)) and
Cy (figure 6(B)) [29]. They read as follows
h_ % 'ho_ i ho_ ijQji
Cy = p— Cy' = po— Cy = g (6.15)
h h h

where my, denotes the mass of the physical Higgs. We adopt the model independent bounds
of [44], renormalized at the scale uj, = 200GeV as in [29], to make the comparison with
the flavor anarchic results in [29] transparent. The bounds

ImCE < 2.04 x 1071GeV ™2, ImCf < 5.9 x 10717GeV =2, |CP| < 2.77 x 10713GeV 72,
ICP] <1.18 x 10713GeV 72, |CF1] < 1.23 x 10712GeV 2, |CP4] < 5.1 x 107 3GeV 2,
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Figure 6. Contributions to AF = 2 processes from Higgs exchange at tree level.

ICB:| <1 x1071°GeV 2, |CF| < 3.46 x 10-11GeV 2 (6.16)

directly constrain both my, and a;;, and provide lower bounds for the KK mass scale. The
most stringent bound in RS-A4 should be provided by ImCK and comes from ex. Using
egs. (6.15) and (6.12) in the spurion-overlap approximation with an overall overlap factor,
one obtains

(2BgdféR/2)2

Im(Cf)RS_A4 ~ Im ( m2 (3,0)2
h

ffgmgmi’A‘fA‘f*) =0 (6.17)
for any parameter assignment to first order in irﬁl and @Zd. The next strongest con-
straint should come from C¥. Using again eqs. (6.15) and (6.12), assuming Im((A%)?) =
(maz(|AY)))? = 43},23(1")‘? + f;)Q, choosing m;, = 300 GeV and R’ = (1.8 TeV)~! as reference
values, the largest contribution to C4< in the same approximation is

(2BH fAR")? Y2jp (1.8 TeVR')*
Im(CE)Vps—a, = Im | ————co fim2mATAY | ~1.4 x 10720 GeV 2
m(C3" ) rs— A, m( mZ(30)2 famam ATAT X € (mn /300 GeV')2

(6.18)
where we used f; = 2.24 x 10%, fo = 3.13 and Bgd ~ (0.18. Thus, both constraints
from Cj4 and Cy are strongly suppressed in our setup. This is again due to the A4 pattern
of the Yukawa matrices. Suppression factors come from the mass ratios in V]%, due to
the mass hierarch{y and the consequent hierarchy of right-handed fermion profiles in Ay,
the presence of fx’s’b suppression factors also in VLd, and the suppressed overlap of (——)
and (+—) fermion KK modes with the IR peaked VEV of ® and the bulk Higgs. The
same sources of suppression are at work in the up sector. For completeness, we obtain the
largest possible estimation of the NP contribution to C¥, the most constraining bound in
the up sector. Assuming Im((AY)?) = (maz(]AY])? = 455 (f¥ + f£)?, and using the same
reference values for my, and R’ as before, we obtain

(2Bp* f5R?)?
mj, (3v)?

(CP) | rs—a, =

Y2y (L8 TeVR))*
Fim2miAYAY :2.4><10_18G6V_2( bu(L8TeV R ) )

(my, /300 GeV/)2

(6.19)
where we used Bgu’d = 0.18 from eq. (90). The above contribution is almost six orders of
magnitude suppressed compared to the model independent bound in eq. (6.16). Higher or-
der corrections in j?’d and gl%d will induce terms which are suppressed by at least O(f™)
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Figure 7. Bound on the KK mass scale Mgk (TeV) from Zbpby as a function of the Higgs mass,
my(TeV).

compared to the first order terms and they will generally combine incoherently. Hence, it
seems safe to expect that Higgs mediated FCNC contributions to AF = 2 processes do not
provide the most stringent bounds on the KK mass scale in the RS-A4 model, even going
beyond the spurion-overlap approximation and taking full account of generational mixing.
Far more stringent constraint thus remains the one coming from the Zbyby, coupling, which
is fairly satisfied for the choice c{} =04, R~' = 1.8TeV, m;, = 150 GeV and order one
Yukawa couplings. Figure 7 also shows how the bound on the KK mass Mxk ~ 2.55 R’}
becomes weaker upon increasing the Higgs mass.

7 Conclusions

We have illustrated how the presence of an additional A4 flavor symmetry in the bulk of a
warped two-brane scenario allows to relax the most stringent lower bounds on the KK mass
scale typical of flavor anarchic models. The most relevant difference between the RS-Ay
model proposed in [1] and flavor anarchy stems from the degeneracy of the left-handed
fermion bulk profiles, and the consequent factorization of the left-handed rotation matrices
in many contributions to dipole operators. The flavor hierarchy of the Standard Model is
induced by the Ay texture of the 5D Yukawa couplings and the bulk mass parameters of
the right-handed fermions.

At leading order in an expansion in powers of the UV cutoff of RS-Ay, i.e. in the
absence of cross-talk interactions [1], the CKM matrix is the unit matrix and no quark
mixing is generated in the effective 4D theory. At next-to-leading order, an almost realistic
CKM matrix is obtained in a rather economical way, due to the presence of cross-talk
higher-dimensional operators and cross-brane interactions. In particular, the presence of
hierarchical CKM elements stems from the occurrence of built-in cancellations induced by
the hierarchical masses and the Ay flavor structure. This pattern offers an alternative
to the descriptions provided by flavor anarchic models or larger realizations of the flavor
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symmetry, like 7" [23-27], the latter usually associated with a rather richer flavon sector.
We have also shown in [1] that the structure of the leading order Yukawa couplings may
induce exact cancellations in the contributions to dipole operators. It is hence natural
to expect the suppression of many contributions to the same operators, once the next-to-
leading order corrections to the Yukawa couplings are taken into account, as compared
with flavor anarchic descriptions.

It should also be noticed that whenever a flavor symmetry is present in the 5D theory, it
is important — and more relevant than in flavor anarchic models — to fully account for non-
degeneracies and KK mixing patterns within the same generation and among generations.
For this reason, we have considered various analytical approximations and compared their
prediction with an exact analysis based on a fully numerical diagonalization of the complete
KK mass matrix, a 12 x 12 matrix in the custodial case for three generations.

Concerning flavor violating processes, the first relevant difference with flavor anarchic
models is the fact that new physics contributions are dominated by the same chirality
operators as in the Standard Model and no enhancement of the opposite chirality oper-
ators is in place. Another relevant feature is the vanishing of the dominant new-physics
contribution to ex, mediated by a KK gluon exchange at tree level. This has striking
consequences, due to the fact that this contribution to ex is inversely proportional to the
Yukawa scale, while other relevant observables such as €' /ex, b — sy and the neutron
EDM are directly proportional to the Yukawa scale. The consequence in flavor anarchic
models [22] is that the combined constraints from ey, €' /ex and b — sy force large Yukawa
couplings, closer to the perturbativity bound, and an overall bound Mgk 2 7.5TeV. In
addition, the little CP problem [14], related to the generation of a far too large neutron
EDM in flavor anarchy, remains to be solved. In contrast, given the vanishing of the
leading new physics contributions to e€x in RS-Ay4, the most relevant constraints on the
new physics scale should come from the remaining FCNC processes, while relaxing the
constraints on the size of the Yukawa couplings.

Figure 3 is a summary of the most relevant results for FCNC processes in RS-Ay,
expressed in terms of the lower bounds on the KK mass scale Mxk ~ 2.55 R'~! and by
varying the typical size of Yukawa couplings. Given the absence of the constraint from e,
an O(1) Yukawa coupling is allowed, providing the overall bound Mgk = 1.3 TeV, induced
by b — s7v. The latter bound is weaker than any flavor anarchic bound and less stringent
than the bound Mgk > 4.6 TeV, from Zbrbs, in RS-A4 [1]. Another salient feature in
figure 3 is the substantial suppression of new physics contributions to the neutron EDM.
This stems from the Ay-induced degeneracies in the left-handed fermion sector, which
determine the vanishing of these contributions to the EDM also at next-leading-order in the
Yukawa couplings, in the spurion-overlap analysis within the mass insertion approximation.

The pattern of HMFCNC in RS-A,4 shows a much milder suppression of the top Yukawa
coupling if compared with flavor anarchic models, and more in general the A4 flavor struc-
ture guarantees weak bounds on the KK mass scale induced by Higgs mediated FCNC
processes. We defer to future work the study of potentially interesting features of an
extended P custodial symmetry [31, 45] within a A4 warped flavor model. Such an
additional symmetry is known [31] to relax the constraints from Zbpby.
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We conclude that the little CP problem related to the neutron EDM in flavor anarchic
models is avoided in the custodial RS-Ay4, while the most stringent bounds on the KK
mass scale come from EWPM, in particular the Zbyby, coupling. The dominance of the
constraint induced by b — s over the constraints from €' /e and the neutron EDM mainly
stems from the amount of non-degeneracy of the third-generation Yukawa coupling, in turn
induced by the degeneracy of the left-handed 5D profiles of all quarks in Ay.
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A Explicit calculation of overlap corrections

In this appendix we define and obtain explicitly the various overlap correction factors
introduced in eq. (2.4) and discussed through the text. We start by some definitions. The
bulk geometry is a slice of AdS5 compactified on an orbifold S;/Z and can be described
by the proper distance metric

ds? = dy? + e~ My, datda?, (A.1)

where k ~ Mp; is the AdSs curvature scale and —mR < y < wR. The UV and IR branes
are located at the orbifold fixed points y = 0 and y = TR, respectively. The same problem
is also studied by many authors in an interval setup with conformal coordinates. The
corresponding metric is in this case

R\ 2
ds? = (z) (—dz? + ndatde’), (A.2)

where z = ¥ /k, defined on the interval (R, R') with R = 2, = 1/k and R' = 2, = "™ /L.
One feature of the interval setup is that it naturally allows for more general boundary con-
ditions (BC) for the bulk fields, as compared to the orbifold case. On the other hand, only
the orbifold fixed points can be naturally interpreted as the location of physical branes due
to source terms originating from the “jump” of derivatives at the fixed points; in the inter-
val picture branes can only be assumed to be located at the edges of the interval, namely zp,
and z,. Since in the orbifold case the behavior of all bulk fields in the interval [-7R, 0] is
determined by their transformation law under the orbifold Z5 symmetry, we normalize all
wave functions and perform all integrals on the interval [0, 7 R] without loss of generality.

The normalized wave function for a fermion left-handed zero mode as a function of its

bulk mass is

2k(1/2 — c) (2—cp, )kl
‘ —_ : Cf; A.
xo(cs;5y) \/eka(l—%fi) _ 16 ’ (A.3)
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where f; = Q;,0;,u;,d;,e; and cy, is the corresponding bulk mass given in units of k. A
right-handed zero mode is obtained with the replacement ¢ — —c. The canonically normal-
ized wave function on the IR brane, o, is defined as Yo(cy,, 7R) = e(=3/2km Ry (¢, R).
The induced 4D VEV’s of the IR peaked bulk scalars & and H, required for the
definition of the IR localized Higgs limit, are related to the 5D VEV’s as follows

2k(1 + BH@’)) 4D _knR 4D _knR
Hy(®p) = \/1 — e—knR(2+2ﬂH(¢>)vH(q’)e ~ /2k(1 + ﬁH(q)))vH(@)e , (A.4)

where B0 = (/4 + p?, 4 tunes the amount of localization from the UV to the IR and pp,¢

is the corresponding bulk mass in units of k. The above relation is obtained by integrating
the solution (for H or @) of the bulk equation of motion along the extra dimension [32, 33].
In the IR localized Higgs and ® case, the charged fermion masses arising from the Yukawa
coupling to the Higgs, and before diagonalization, are obtained via [46-49]:

4D kmR Q(yf> U’U4D kTR
ekt . i) LO
(m ) yf Yo © Xo(ce, (cq,)s TR)Xo(Cep (Cqp ), TR) = ,
PR = = Z]) k2 @ )Xo R NTAR, kf&,Qifepuj (d;)

(A.5)
where ¢ = u,d, the matrix (g)f )ro of dimensionless 5D couplings is defined in eq. (2.8)

and v H = 174 GeV is the Higgs VEV. In the second equality we write the fermion
masses in similar notations to [14], where f; = V2k/Xo s, to make the comparison with
their results more transparent. In the setup we use, where charged fermion masses are
generated by the Yukawa interactions with bulk H and & and where LH fermion bulk
masses are degenerate, we have to consider the overlap of scalar VEV profiles and zero
mode fermion profiles, leading to the following masses before diagonalization:

. py Ho®o (™l (4B Ge) (Bl = R)
() B = (J;;)L0 2, dye e

XO(C&- (CQi)7 y)XO(CeRj (CqR]- )a y) :

(A.6)
As a natural choice for the bulk scalar profile, we assume [32, 33] fg o >~ 2+ €, with €
a small parameter for stabilisation purposes. To obtain the physical quark masses at the

—kwR

scale ke ~ 1.8 TeV we used the following assignment [1]:

ch =04, ¢, =079, ¢;=077, ¢;=0.683, c.=0.602, c,=0.557, ¢ =-0.17,

(A.7)
with yycdsp = 1 and y; ~ 2.8, which is still required to match m;(u = 1.8TeV) ~
140 GeV. The integration in eq. (A.6) is straightforward, given that all functions are simple
exponentials and only depend on 3 = By + [¢. Dividing eq. (A.6) by eq. (A.5), we obtain
the definition of the (LO) RS-A4 zero-zero overlap correction factors

(TH<I>) . (mf)Bulk; 2\/ 1+ BH)(l + 6@)”@ ve2k7rR) ~ 6
00 /13 (mf)[R (44 B + Po — ¢k — ey a,)viPveR TR T8 — ek — ey, 4,

where we used 8 = 8p ~ 2, Hy = 0.396 M), &g = 0.577TM % k ~ Mp; = 2.44x 10T eV
and kmR ~ 34.8. The numerical values of the bulk parameters in eq. (A.7) lead to

risd 0 0.88 15y~ 0.87 1y ~0.86 15y~ 0.85 rhy ~0.77, (A.9)
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with a rather mild flavor dependence. In an analogous way we obtain rg)q)x, the overlaps
associated with the NLO Yukawa interactions of eq. (2.10), for which the corresponding
integration for 3, = 2 was already performed in [1]:

420, \/(1+ Bu) (1 + Bo) (1 + By

6 + B + fo + By — b —cu,a,)(6 + B + o — By — ¢k — cu,a,)
24/6

(12— Cé’ — Cuyd; ) (8 — cé — Cusd;)

where in the second equality we used By o = 2 + €g0, and ey, < 1. Notice that

T$¢X(5H,<I>,X70qL7Cui,di) ~ (

2

(A.10)

the interactions with x are vanishing identically on the IR brane, for 3, = 2, due to the
VEV profile of x; thus the IR localized limit of Yukawa interactions involving y is naturally
suppressed. The correction r(%q)x, as defined in eq. (A.10), is just a way for us to parametrize
the bulk NLO Yukawa interactions in a way similar to the LO Yukawa interactions. The
same goes for the definition of the 4D VEV for the x field, xo = viDek”R\/(l + By). The
overlap correction factors from eq. (A.10) range from (ré%‘bx)t ~ (.64 to (ré{)‘bx)u ~ (.8.
Finally, the function f;j"’d", defined after eq. (2.10) and measuring the relative strength of
NLO and LO Yukawa interactions in the bulk case for generic By s, is given by:

H®
fuiydi — (’U;l(Dekﬂ-R/k) T‘OO X(C§7 Cu,-,di; /BH‘I)X) ~ Q/BXCX ) (All)
X r[%‘b(cg,cu“di,ﬂ]{qp) 6+ﬂH+5<1>+,6X _ch — Cu;,d;

We then consider the overlap correction factors associated with the interaction of KK and
zero mode fermions. They enter at each Higgs vertex (and mass insertion) in the one-loop
diagrams of figures 1 and 2. The wave functions for the KK fermion modes are [46-49]:

edklyl/2 J eklyl ; v eklyl AL
Xn(cay)—m o | Mn—— + ba(mn)Ya Mn—= 11> (A.12)

where a = |¢+ 1/2| and x,, denotes the normalized wave function of the level n KK mode.

The coefficients b, (m,,) and the mass spectrum m,, are determined by the BC imposed on
the corresponding fermion. For (4++) BC, one obtains [14, 46-49]
Jo—1(mn/k) Ja_l(mnek“R/k)

—b, = Yo 1 (1 /) = Yo 1 (e R (A.13)

The coefficient by,, for the wave function of the (— —) KK mode, is obtained by the replace-
ment &« — 1 — «, and the replacement ¢ — —c should also be made. The coefficient o], (m,)
for the (—+) KK mode is instead given by:

Y Jo(mn/k) Ja1(mne*™® /L

)
Yo(mp/k)  Yo_1(mpefm™8/k)’
)

(A.14)

while the coefficient ¥/, (mn,,), for the wave function of the (+—) KK mode, is obtained by
the replacement o <+ o — 1. The normalization factor NNV, for (+4) modes, is as follows

) e ()
- <Ja<”;”> + b (mn)Ya (T))QI , (A.15)

1
2
(Nn)(++) = 72]437TR
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and the one for (——) KK modes is given by the replacement &« — «— 1. The normalization
factor N, for (—+) KK modes, is instead

o (w5 i )
- <Ja_1 (T;) ¥ b () Yart (?))2] : (A.16)

and the one for (+—) KK modes is given by the replacement a < o — 1. For all KK modes,

1

2 _
(Nn)(—+) - 2%kmR

in the limit m,, < k and kR > 1, the normalization factor is well approximated by

kTR kTR eler/Q A
N, ~ Jo | m ~ . A7
= g (M) = e (417

In this way the value of all KK modes on the IR brane is approximately v/2k, as also

in [22] and others. The above definitions of the fermionic KK normalization constants are
needed when writing the 4D Lagrangian of eq. (2.4) in terms of the Yukawa couplings in
egs. (2.8) and (2.10).

The overlap correction factors for the KK modes in eq. (2.4) are thus defined as follows

ST dy/=gxXn(Cn Y) Xom (ms y) (Ho®o /K2 e+ Br+02)k(ly| -7 )
Xn(cna 7TR)Xm(Cm, 7TR) (UU%D)/(kQQQkﬂ'R) ’

where n,m =0,1,17",17,17,2,... denote the KK states. In the following, we will only
consider the effects of the first KK level, thus taking n,m = 0,1,177,17,17~. Notice
also that the overlap integral of eq. (A.18) with two bulk scalar fields is equivalent to the
overlap integral of a single bulk Higgs field with 5 = 2 + 8y + (¢, rescaled by a O(1)
correction factor, Ry

Tfn? (Cm Cmy, y) =

(A.18)

Ho®o/k? _2y/(L+ Bu) /(1 + Ba)
(v0gPe R /k)\ /234 B + Bo)  \2(1+ Bu + Ba)

All overlap factors can eventually be rewritten in terms of Ryg, in order to make a direct

RHq> = ~1.6. (A.lg)

comparison with the case of a single bulk scalar field, the Higgs, and no flavon fields.

L
q

and ® are exponentially peaked towards the IR brane, the ¢,, 4, dependence of the various

Since ¢y is strongly constrained by electroweak precision measurements [1], and H
overlap corrections in eq. (A.18) is mild. In addition, the continuous (——) and (+—)
wave functions vanish at the IR brane, thus further suppressing the corresponding overlap
corrections. It is also important to notice that egs. (A.13)—(A.16) imply that the (—+)
modes imitate the (4+-+) modes, while the (+—) modes imitate the (— —) modes. The same
behavior should be reflected in the corresponding overlap correction factors.

A.1 Numerical results for the overlap correction factors

We calculate the overlap integrals in eq. (A.18) numerically for the first level KK modes
and for the bulk masses assignments in [1] and eq. (A.7). In the following n,m = 0,1 and

we define:
ui,d; — idi
T lnym(m=) = rf(i,)m(m,)(ch, Cuy d;s ) riod =l (el cdyu B)- (A.20)
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Similarly we also define:
puidi = 'r’pr —(Cdyuyo ch, B). (A.21)

n-mt—

The (++) and (—+) KK-KK overlap corrections are given by:

it o 7“11 L~ 0.747 iy sy 0.744 7y Sy e 0.740
by b ~0.738 i, =~ 0.645 rt 4 ~0.708. (A.22)
The (— —) and (+ —) KK-KK overlap corrections are given by:
it~ 0.096 rid  ~0.070 ri_- ~0.093
ri-1+- ~0.075 r{-;- ~0.090 r{-1-+ ~ 0.080
rh_ - ~0.087 b4 ~0.082 rio - ~0.112
- ~0.048. (A.23)

The (++) KK-zero and (— +) KK-zero overlap corrections rg{’di are given by:

gl = rid, ~0.800 ey sy =~ 0.794 76y 6y = 0.790
oy &~ rh, -+ =~ 0.780 T =~ 0.670 o+ =2 0.755. (A.24)

The zero-KK (++) and zero-KK (— +) overlap corrections rlé’dl are given by:

7“10 ~ 0.806 ) +0 ~ 0.822 7"10 ~ 0.795 140~ 0.811
TlO ~ (0.790 Tl +0 = ~ 0.803 7‘10 ~ (0.784
rd i~ 0.798 o = 0.720 rt i~ 0.730. (A.25)

Using eqgs. (A.9) and (A.22)-(A.25) we obtain the coefficients B}f—,’d to be used in the
spurion-overlap formula in eq. (3.12),

BY% = B% ~ 1.5. (A.26)

Notice that, while B}é’d is larger than one, each independent overlap correction factor is
always smaller than one in magnitude and approaches one for IR localized H and ® fields.

B Diagonalization of the KK mass matrices

We provide more details of the diagonalization procedure described in section 4, starting
from the one-generation case, and then considering three generations. We first specify the
KK mass spectrum corresponding to the bulk parameters assignment in eq. (A.7). Masses
are obtained by solving egs. (A.13) and (A.14) numerically. The common left-handed bulk
mass parameter c determines the mass of all LH (+4) KK modes, Q( Jui % providing
MKK My ~ 2 55 ke *™1  The rest of the KK mass spectrum for the down-sector, in
unlts of R~! = ke % and omitting the label KK to ease the notation, is

Mdg) - 28 Md-g)—+ - 28 Ms(l) == 275

M. )+ =255 My =25 My =1.23, (B.1)
R R
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We start with the down-type contribution to the neutron EDM. The overlap depen-

dence of this contribution in the one-generation KK diagonalization scheme is encoded in

(B?D)HKE[E(I\I/IQ en), for which the most dominant contributions are as follows

(Bﬁio)fE[é(I\l/[gm) = (ro1 4 7101) [2:6r10(r11 + 7111) + 1.88r10(722 + T222) + 0.91 3700 (ro1 + 7101)] -
(B.16)

Here and in the following 7111 = r11-+, 7101 = To1-+, 722 = T1-1—, 222 = T1—-1+- and
the notation for the rest of the overlaps is the same as in eq. (2.4). As we naively expect
from the spurion-overlap analysis in the mass insertion approximation, each term in the
above equation is cubic in the overlap correction factors and of the characteristic form
(0—KK)(KK - KK)(KK —0),or (0-0)(0-KK)(0—- KK) for f(?? proportional terms.
Notice that the latter, with f% ~ 0.1, is suppressed compared to other O(x) ~ O(0.1)
terms. For this reason we can safely neglect the overlap correction terms proportional to

0(0.5) f% in the expressions below.
The overlap dependence of the up-type contribution to the neutron EDM is encoded

in (B}é)fé{éll\%en), for which the most dominant contributions are as follows

(B}é)fé%ﬁen) = (r10 + r101) [2.6r10(r11 + r111) + 2.9710(r22 + r222) + 0.46 fEr00(ro1 + r101)] -
(B.17)

The overlap dependence of the up- and down-type contributions within the first gener-
ation is almost identical, due to the similarity of the corresponding one-generation KK
diagonalization matrices of egs. (B.3) and (B.4) and given that ¢; = 0.77 and ¢, = 0.79.
More substantial differences between the overlap dependence of up- and down-type con-
tributions to €'/e and b — sy are to be expected, since they involve less degenerate bulk
parameters from the second and third generation. In addition, to account conservatively
for the generational dependence within the one-generation approximation, we will take the
maximum over all generations for the following Blu;d factors.

The overlap dependence of the down-type (neutral Higgs) contribution to € /e is thus

encoded in (B%)Si(lgen), for which the dominant terms are as follows
4 \KK(1gen) 1 5 " 2
(Bp)e,/E = maz | 701710 | 47111~ ;7222 + o +799) + foroorion || - (B.18)

For the up-type (charged Higgs) contribution to € /e we obtain

(BB s = max [Tomo <3.24r%1 — 6.06r111 (111 + 22) — 0.12572, + 5.93111722
11 + 722

r107 1
—|—2.687‘g2 — 6.437‘222(7“11 + T‘QQ)) + _to7ior <(T‘%1 + 7“%11) + 0.57r117922
ri1 +ro2 \ 8
—2.77“111(7‘11 + 7“22) + 0.3757’%2 — 3.377“222(7“11 + T22)>:| . (B.lg)

For the down-type (neutral Higgs) contribution to b — s7v, the dominant overlap depen-
dence is as follows

T
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+ 7101 (—0.125 r2 — i 4+ 0.5 + 0.625 7"32)]

10

—|rm (47“117“111 + 4.87111729 + 4.04r1171920 + 4.767"227'222)
111 + 7222

+ 7101 (—0.17F11 + 0.125r3, + 0.5471117222 + 0.625739,) ]

— 7101 (1.327’107“111 + 4.62T10T222)} s (B.20)

while the dominant up-type (charged Higgs) contribution is

r
(Bl%)figlgen) = max {10 |:’r‘01 (—018 7"%1 + \/57”%11 — 27"117’22 - IST%Q)
11 + o2

+ 7101 (0.125 rh i+ V2rire 4+ 1.275 7«32)]

710
_ [rm (—47“117“111 — 3.8r111799 — 4.047117992 — 3.87”227”222)
T111 + 7222

+ 7101 (0.125r7); — 0.12573, + 0.47r1117992 + 0.3477355) }

+ 7101 (1.327“107“111 — 2.9’/“107“222)} . (B.Ql)

Using the numerical results for the overlap corrections in the RS-A4 setup, as given in
appendix A.1, we obtain the following conservative estimate for the modified B}f—,’d overlap

factors
KK(1 KK(1 KK(1
(BE)apon " = 5.4 (BB g™ =53 (Bp)o 1 ~ 0.2,
(Bp)op o ~ —2.63, (BR), 505 ~ 098, (Bp),SUE ~ —154,  (B.22)

to be used in the combined spurion-overlap analysis with the diagonalization of the one-
generations mass matrices — see section 4.1.

B.3 Approximate analytical diagonalization of the three-generation mass ma-
trices

This section collects more details of the approximate analytical diagonalization scheme
described in section 4.2. In particular, we are going to inspect the structure of the down-
type mass matrix, Mgulb once it is rotated by the block KK diagonalization matrices,
OZ%K. This allows to understand why an additional rotation by the A4 12 x 12 matrices,

~

Of%‘ may provide an almost complete diagonalization. Similar arguments hold for the
up-type mass matrix, Mgull, which is of an analogous structure. Using the 4 x 4 block
notation, we write:
D - D
(M )aing/Micxc (07) VRO (O7<) YR 0p*a
~ | OO (Vi /M (01Tl
(OF)Y R OF e (OF)! VIRKOHSa (M) aing/ M
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In the above equation, Yd(fs”’QKK is a shorthand notation for the off-diagonal entries in
eq. (4.8), namely EA/C;KK = }A/dKK((Q%IO + ¢5©, f4) and so on. Using this notation, the matrix
}A/C;KK has the same structure as }A/dKK in eq. (4.5), up to the replacement ¥, 4 — gj;’d. At LO,
from eq. 2.8, one also has g, ; = (Yfgd)Lo = Q(Qﬁd)LovéDek”R/k, while eq. 2.10 provides
the NLO contribution. Since we want to perform the diagonalization to O(x), the slight
generational dependence of the overlap corrections is numerically negligible at this order.
The same goes for the zero-zero interaction terms in each of the off-diagonal blocks. It is
important to notice that the latter are proportional to z, hence it is clear that only the O(1)

)

mass matrix of eq. (B.23). The O(1) terms in the KK diagonalization matrices arise from

terms in O(Ld,’é’b KK will supplement us with off-diagonal O(z) entries in the “KK-rotated”
the rotations that diagonalize the corresponding nearly degenerate subspaces.

To illustrate it, we first focus on the (12) block in eq. (B.23) and write it explicitly.
From egs. (B.3) and (B.4), we learn that the O(1) terms in OZ{(}%{ correspond to 7/4
rotations in the (24) and (34) subspaces, respectively. Similarly the O(1) terms in O7"f of
egs. (B.5)— (B.6), correspond to 7/4 rotations (plus a phase 6. = Arg(y.)) in the (34) and
(24) subspaces, respectively. Using (§%5) o = (5% L0, we have Jls ™ Yo’ and the (12)
block of MP ) turns out to be:

(KK
f_lf,l o -1 o 1 o f§17“101 o
Q Js To0YsT fqo mo19cx fg T0Ys® 75— e
0c o o 6 > 9
(I\N/I&KQ = 0 S5 (raseyi — eyl 0 S5 (rooaly — ro2yi)
1 v 1 o o 1 o
12 Js 'r10Ysx _ 57111YcX T11Ysx 57111YcX

i0¢

ifc o o
0 — S5 (T2l + 1220i) 0 -5

(rooolfs + rooy¥) x
(B.24)

Because of the near degeneracy of roo and ro9s, one concludes that the second row is
approximately vanishing. A similar pattern will emerge for the (21) block, where the third
column will be the one that approximately vanishes at this order. Considering the (13)
block, we recall that (qu’éd)Lo = (940, which implies Uty = Yt b, thus leading to

“rD
(M), = (B.25)
f*lfflr y @ y @ Y —1 Y
o Jo Toodb 5 019t 5 019t fo rogex
6 o o i0c v v
_ 1 0 €t (raselif — roelip) @ S5 (roaoliy — roolff) @ 0
Jy T10YsT %ﬂbw %ﬂbﬂc 1117
i0 o o i0 o o
0 — 5 (rooalif + roaliy) @ — S5 (raoa¥if + roaliy) @ 0

It is already at this level that we notice the modifications induced by y; ~ 2.8, as compared
t0 Yu,c,d,s,p = 1. The difference of Yukawa couplings now spoils the vanishing of the second
row for the (13) block, differently from the (12) block. An analogous situation arises in the
third column of the (31) block.This will be the main obstacle in obtaining a fully analytical
diagonalization of all blocks involving the third generation.

Finally, we focus on the (23) block of M(DKK). From eqs. (B.9) and (B.10) it is

clear that the O(1) terms in O%KE correspond to a 7/4 rotations in the (23) subspace of

"Notice that we also have §. ~ ¥, which is an exact equality for the LO Yukawa interactions.
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the (M%K))Qg block plus a phase 6, = Arg(yy). Using (§y, )Lo = w?(9y d)LQ, we get
i = wPrp and the (23) block turns out to be:

(M(KK)> = (B.26)
1 -1
w2f¢5 Fr roode w? Z§T0137b$ w? Q2 T01YbT w2f§17"10127t$
= 2 _i6 0 7% T22ybx W\/§ T.22ybx 2 1'9»0
£ LfQ T10Ub —(w ben + & yt7’222)$ (7 ben + £ yﬁ“222)$ 7“’\/% c7“111f/z£15

wc

2 _ 2 i0c o
fQ roly (4% C o1 — £ ytrm)aﬁ (== ybr11+ yfrm)w IRV RA R

As expected, the cancellation pattern we encountered in the (12) block gets modified even
further than in the (13) block, due to the different rotations involved in the (23) block of
M?KK). Observing egs. (B.24)- (B.26), we realize that the distribution of the 1, w and
w? factors in the off-diagonal blocks of M& K) approximately corresponds to the one of

the leading order Yukawa couplings (Q?j’d)Lo, up to complex conjugations of terms propor-

tional to ¥ ., ;.- For this reason, we expect the A4 12 x 12 rotation matrices defined as

U,D ~ . . . ~
O(L R Jaq = V]-:“‘ ’g ® 14x4 to induce some cancellations among the various blocks of M@( K)"

However, due to the difference of y; from the rest of the LO Yukawa couplings and due to
the different rotations in each of the off-diagonal blocks of l\N/I& K)’ it is clear that the can-

. . U,D . .
cellations induced by O(L R J4s can never be exact, even if we only consider the LO Yukawa

interactions. Thus, the above diagonalization scheme will still fail to fully diagonalize the
degenerate subspace. On the other hand, off-diagonal elements in the non degenerate sub-
spaces like the zero-KK and a few KK-KK entries can be treated using non degenerate
perturbation theory.

At this level, the exact structure of the approximate 12 x 12 diagonalization matrices
composed of the OlL)Ij%K, O(UD)A4

ing the analytical dlagonahzatlon, is very complicated and impossible to write in a compact

and the perturbative rotation matrices, used in attempt-

way. Instead, to better estimate the inaccuracy of this diagonalization scheme, we assign
Yucdsp = 1, yr =~ 2.8 and set the bulk masses according to eq. (A.7), which yield the phys-
ical running quark masses at the scale R'~! ~ 1.8 TeV and fix all the overlap correction
factors. The NLO Yukawas are assigned according to eq. (2.15), to provide a realistic CKM
matrix in the ZMA. The = parameter is left unassigned. We then write the magnitude of the
off-diagonal elements in the degenerate subspace of l\N/I(DK K)M(DI; K
the “contaminations”, which can not be trzaa;cfd using non degenerate perturbation theory

4

) to gain an insight into

and can only be partly reduced by the O, rotation matrices. A similar procedure is
followed for M( Dy )M?K K) and the rlght—handed rotations.

From egs. (B.13)-(B.15), we learn that the degenerate subspace approximately de-
composes in two blocks, one corresponding to the (2,4, 6) subspace, where all KK masses
are approximately 1.1 Mgk and the (3,7,8,10,11) subspace,® where all KK masses are

approximately Mgk ~ 2.55 R~ In M( % K)MZ( K) these masses appear squared, since

8Since the contaminations in the off-diagonal elements of the degenerate subspace are of O(z), the O(x)
corrections to the KK masses will have a minor effect on this estimation.
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every diagonal block is proportional to a diagonalized one-generation KK mass ma-
trix squared plus additional O(x?) terms. Hence in total, we have the squared spec-
trum (1.21,1,1.21,1.21,1,1,1,1) on the diagonal of the (2,3,4,6,7,8,10,11) subspace of

M([)K K)M(Dzi K)’ and the contaminations in the same subspace amount to

(MPMP) (kgp.,) & (B.27)
1.21  O(z?) O(2?) 0.03x 0.02¢  0.02x —0.1z —0.15x
o@?) 1 0O@?) 0.2z 0.25¢x 0.2z 0.252 0.25x
O(z?) O(z*) 1.21 —0.03z —0.25z 0.25z 0.05x 0.2x
| 003z 022z —0.03z 1.21 O(z®) O(z*) (—0.05+ 0.15i)z —0.05 + 0.1ix
| 0.02z 025z —0.25z O(2?) 1 0@E? 0.25ix 0.2ix
0.02z 0.2z 0.25z O(z?) O(x?) 1 —0.1z —0.14x
—0.1z 0.3z 0.05z (—0.05+40.153)z 0.25iz —0.1x 1 O(z?)
—0.15z 0.3z 0.2z (—0.05+0.1%)z 0.2ix —0.14z O(z?) 1

We realize that the largest contaminations of O(0.25z) are numerically suppressed by three
orders of magnitude compared to the diagonal entries for  ~ 0.04, which corresponds to
R'—1 = 1.8 TeV. For this reason, the results of the approximate analytical diagonalization
scheme can still provide an order of magnitude estimate for the physical couplings between
zero modes and KK modes. From the above matrix, one can also infer the way OfKK
deviates from the “true” diagonalization matrix; in particular it is evident that the first
row of Of KK is the least contaminated. This qualitatively explains why the semianalytical
estimation for the neutron EDM is in better agreement with the numerical result than in
the case of €' /e and b — sy. We have failed to find a better analytical method which would
allow us to further diagonalize the contaminated subspace of eq. (B.27). Nevertheless, the
adopted scheme allows to qualitatively understand the way some of the cancellation mecha-
nisms still act in the full 12 x 12 case. An analogous situation occurs for (MD (Y e )( KKpeg.)
and the right-handed diagonalization matrix OgKK.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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