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spin chains and classical integrable many-body systems. It provides an alternative (to the

nested Bethe ansatz) method for computation of spectra of the spin chains. Namely, the

spectrum of the quantum transfer matrix for the inhomogeneous gln-invariant XXX spin

chain on N sites with twisted boundary conditions can be found in terms of velocities of

particles in the rational N -body Ruijsenaars-Schneider model. The possible values of the

velocities are to be found from intersection points of two Lagrangian submanifolds in the

phase space of the classical model. One of them is the Lagrangian hyperplane corresponding

to fixed coordinates of all N particles and the other one is an N -dimensional Lagrangian

submanifold obtained by fixing levels of N classical Hamiltonians in involution. The latter

are determined by eigenvalues of the twist matrix. To support this picture, we give a direct

proof that the eigenvalues of the Lax matrix for the classical Ruijsenaars-Schneider model,

where velocities of particles are substituted by eigenvalues of the spin chain Hamiltonians,

calculated through the Bethe equations, coincide with eigenvalues of the twist matrix, with

certain multiplicities. We also prove a similar statement for the gln Gaudin model with

N marked points (on the quantum side) and the Calogero-Moser system with N particles

(on the classical side). The realization of the results obtained in terms of branes and

supersymmetric gauge theories is also discussed.
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1 Introduction

The notion of duality was introduced into the landscape of integrable models long ago. In

a general sense, it connects integrable systems of different types and ranges from purely

quantum field theory models like sin-Gordon and Thirring to purely classical integrable

systems with finite number of degrees of freedom. On the other hand, dualities play a

key role in supersymmetric gauge theories and their stringy and M-theory UV comple-

tions. In this context, we again have plenty of correspondences between the gauge theories

like S-duality, T-duality, mirror symmetry, Seiberg duality etc. All of them have one or

another geometrical origin and many of them can be most clearly expressed in terms of

brane motion.

It is known nowadays that integrable models are closely related to the SUSY gauge

theories in different dimensions and provide an effective tool to describe them in the low-

energy sector in the spirit of the Seiberg-Witten solution [1, 2]. In particular, some low-

energy effective actions in N=2 gauge theories have been obtained via mapping to the

corresponding integrable many-body systems [3, 4] (see [5] for a review). To some extent

the integrable systems capture the emerging hidden symmetry when the integration over

the moduli space of the non-perturbative solutions relevant for the particular SUSY gauge

theory is taken into account. The degrees of freedom of the corresponding integrable

systems as well as the commuting flows are identified with the coordinates of the different

branes localized in different dimensions in ten- or eleven- dimensional geometry of the

string and M-theory.

The relation between gauge theories and integrable systems can be used in both di-

rections. The Adams-Harnard-Hurtubise (AHH) duality [6, 7] together with the results

of [8, 9] allows us to obtain an interesting interrelation [10] between Heisenberg magnetic

– 1 –



J
H
E
P
0
1
(
2
0
1
4
)
0
7
0

chains and their degenerate cases known as Gaudin models [11, 12]. It was known for quite

a long time that a similar phenomenon takes place in the theory of classical many-body

systems of the Calogero-Moser (CM) [13–16] or the Ruijsenaars-Schneider (RS) [17, 18]

types. These issues have been discussed in [19–22]. Recently, an improved version of the

AHH duality (the spectral duality) turned out to be a very effective tool in analyzing the

2d/4d duality [23–26] and the AGT correspondence [27–34]. The AHH duality has been

identified as the 3d mirror symmetry [35].

In this paper we will focus on the intriguing classical-quantum (QC) duality between

integrable models with finite number of degrees of freedom. One of the models is quantum

and another one is classical. Let us stress that this correspondence (based on the recent

results of [36–41] and older results of [42]) has nothing to do with the quasiclassical limit.

Presumably, it exists for integrable models only.

This kind of duality suggests an alternative way for calculating joint spectra of com-

muting quantum operators (transfer matrices and Hamiltonians), without any use of the

coordinate or algebraic Bethe ansatz technique [43–48], which so far was a key tool in any

exact solution of quantum integrable models with non-trivial interaction. There is also no

need in such an unavoidable intermediate step as solving Bethe equations. The spectra of

quantum Hamiltonians of an integrable system appear to be encoded in algebraic properties

of the Lax matrix for a very different and purely classical model!

In a nutshell, the quantum spectral problem for an integrable spin chain on N sites

reformulated in terms of the “QC-dual” N -body integrable 1D systems of classical me-

chanics is as follows. Let us fix coordinates qi of the N classical particles and levels of the

N Hamiltonians Hi in involution. Then possible values of particles velocities give spectra

of the spin chain Hamiltonians. In other words, one may say that the eigenstates of the

quantum Hamiltonians correspond to intersection points of two Lagrangian submanifolds

in the 2N -dimensional phase space of the classical N -body system. One of them is the N -

dimensional hyperplane with fixed qi’s and the other one is an N -dimensional Lagrangian

manifold obtained by fixing levels of N classical Hamiltonians. Since their dimensions

are complimentary, the intersection set is a finite number of points. It appears that they

contain a specific information about eigenstates of the quantum spin chain.

It is natural to conjecture that it is the Yang-Yang (YY) function (yielding solutions of

the Bethe equations as its critical points) that characterizes the structure of the intersection

set. It was argued in [49] that the YY function plays the role of the generating function for

the Lagrangian submanifold in the classical model. However, the meaning of this statement

is still to be clarified on particular examples.

The QC duality is traced back to paper [36], where joint spectra of some finite-

dimensional operators were linked to the classical Toda chain. Later it was extended

to the following cases:

a) The Gaudin model (from the quantum side) and the CM many-body system (from

the classical side) [37, 38, 41];

b) Inhomogeneous spin chains of the XXX- and XXZ-type with twisted boundary

conditions (from the quantum side) and rational or trigonometric RS many-body

systems (from the classical side) [39, 40]
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The particles coordinates in the CM or RS models were identified with the inhomo-

geneities at the sites in the spin chains while eigenvalues of the Lax matrix for the CM or

RS models were shown to coincide with eigenvalues of the twist matrix at the spin chain

side, with certain multiplicities. The QC duality has been recently discussed in the brane

framework in [35] and was related to the duality between quiver 3d theory and 4d theory

at the interval with nontrivial boundary conditions. Moreover, it was suggested that the

generalized duality holds when the number of inhomogeneities in the spin chain does not

coincide with the number of particles on the classical side. However, the arguments in

favour of the QC duality used in all these works were rather indirect.

The main goal of this paper is to give a precise formulation of the QC duality for a

rather representative class of models together with direct proofs. The latter require an

elaborate algebraic analysis. We also present the brane counterparts of all its aspects using

the brane interpretation of the duality as the relation between the 3d quiver gauge SUSY

theory and 4d SUSY gauge theory with nontrivial boundary conditions [35].

To be precise, we give a direct proof of the following correspondence between quantum

and classical integrable systems (Theorem 1 in section 4).

On the quantum side, consider the inhomogeneous GL(n)-based generalized spin chain

of XXX type with a formal Planck’s constant ~ on N sites with inhomogeneity parame-

ters qi and vector representations at each site. Let us impose twisted boundary conditions

with the twist matrix V = diag (V1, V2, . . . , Vn), with the generating function of commuting

integrals of motion (the transfer matrix) depending on the spectral parameter z being of

the form

TXXX(z) = trV +
N∑

j=1

HXXX

j

z − qj
.

The residues HXXX

j are (non-local) Hamiltonians of the spin chain. Their eigenvalues

depend on the set {qi}N and on a solution
{
{µ1

i }N1
, . . . , {µn−1

i }Nn−1

}
of the system of

(nested) Bethe equations (BE): HXXX

j = HXXX

j ({qi}N ; {µ1
i }N1

, . . . , {µn−1
i }Nn−1

), where Na

denotes the number of Bethe roots at the a-th level of the nested Bethe ansatz.

On the classical side, consider the RS model with coupling constant ~ and the number

of particles, N , equal to the number of sites of the GL(n) spin chain. The Lax matrix of

the model is

LRS

ij ({q̇i}N , {qi}N , ~) =
~ q̇j

qi − qj + ~
, i , j = 1 , . . . , N (1.1)

where {qi}N are coordinates of the particles and {q̇i}N are their velocities.

The claim is that under the substitution

q̇j =
1

~
HXXX

j

(
{qi}N ; {µ1

i }N1
, . . . , {µn−1

i }Nn−1

)
, j = 1 , . . . , N , (1.2)

where the set of µa
i ’s is any solution of the nested BE for the spin chain, the eigenvalues

of the Lax matrix are

(
V1 , . . . , V1︸ ︷︷ ︸

N−N1

, V2 , . . . , V2︸ ︷︷ ︸
N1−N2

, . . . , Vn−1 , . . . , Vn−1︸ ︷︷ ︸
Nn−2−Nn−1

, Vn , . . . , Vn︸ ︷︷ ︸
Nn−1

)
.

(1.3)

– 3 –



J
H
E
P
0
1
(
2
0
1
4
)
0
7
0

This means that the spectral problem for the quantum spin chain is equivalent to an “inverse

spectral problem” for the Lax matrix of the classical RS system: for the matrix of the

form (1.1) find velocities q̇i in such a way that the spectrum has the form (1.3).

The simplest example is given in section 4.

The paper is organized as follows. In section 2 the main properties of the classical

many-body systems are summarized. In section 3 we review the relevant facts concerning

the quantum spin chains and in section 4 the algebraic analysis yielding the precise corre-

spondence between the data at the classical and quantum sides is presented. The brane

picture behind the correspondence considered can be found in section 5. A partial list of

open problems is given in the last section.
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2 Classical integrable many-body systems

The Ruijsenaars-Schneider (RS) model [17, 18]: of glN type is defined by the

following N ×N Lax matrix

LRS

ij =
ην eηpj

qi − qj + ην

N∏

k 6=j

qj − qk + ην

qj − qk
, i, j = 1 , . . . , N , (2.1)

where pi and qi are the canonical variables with the Poisson brackets {pi, qj} = δij , ν is

the coupling constant and η is the inverse of the light speed. Note that there is a freedom

in definition (2.1) coming from the canonical transformation

eηpj −→ eηpj
∏

k 6=j

(
qj − qk + ξ

qj − qk − ξ

)g

, (2.2)

where g and ξ are arbitrary constants. The conventional form of the RS Lax matrix [17, 18]

is reproduced by choosing ξ = ±ην, g = ∓1
2 .

The Hamiltonian of the model is

HRS = trLRS =
N∑

j=1

eηpj
N∏

k 6=j

qj − qk + ην

qj − qk
. (2.3)
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The higher Hamiltonians in involution are HRS

k = 1
k
tr(LRS)k, HRS

1 = HRS.

As is seen from (2.3), the velocities are given by

q̇j =
∂H

∂pi

RS

= ηeηpj
N∏

k 6=j

qj − qk + ην

qj − qk
. (2.4)

In terms of velocities, the Lax matrix (2.1) takes the form

LRS

ij =
ν q̇j

qi − qj + ην
, i, j = 1 , . . . , N. (2.5)

The equations of motion are:

q̈i = −
∑

k 6=i

2η2ν2q̇iq̇k

(qi − qk)
(
(qi − qk)2−η2ν2

) , i = 1, . . . , N. (2.6)

In what follows we put η = 1 since it can be easily restored. But before that let us consider

the non-relativistic limit η → 0.

The Calogero-Moser (CM) model [13–16]: is defined by the Lax matrix

LCM

ij = lim
η→0

LRS

ij − δij

η
= δij

(
pi + ν

∑

k 6=i

1

qi − qk

)
+ ν

1− δij
qi − qj

, i, j = 1 , . . . , N . (2.7)

The η-expansion of the Hamiltonian HRS is HRS = 1 + ηPCM + η2HCM +O(η3), where

PCM =
N∑

j=1

(
pj +

∑

k 6=j

ν

qj − qk

)
=

N∑

j=1

pj , (2.8)

HCM =
1

2
tr (LCM)2 =

1

2

N∑

i=1

(
pi +

∑

k 6=i

ν

qi − qk

)2

−
N∑

i<j

ν2

(qi − qj)2
(2.9)

are respectively the total momentum and the Hamiltonian of the CM particles. Similarly

to the η 6= 0 case, there is a freedom to make a canonical transformation of the form

pj → pj + ν ′
∑

k 6=j

1

qj − qk
(2.10)

in (2.7), where ν ′ is an arbitrary constant. The conventional form of the CM Lax matrix

corresponds to the choice ν ′ = −ν. The higher Hamiltonians in involution are HCM

k =
1
k
tr(LCM)k, with HCM

1 = PCM, HCM

2 = HCM.

The particles velocities are

q̇i =
∂H

∂pi

CM

= pi +
∑

k 6=i

ν

qi − qk
. (2.11)

In terms of the velocities, the Lax matrix and the equations of motion acquire their con-

ventional form:

LCM

ij = δij q̇i + ν
1− δij
qi − qj

, i, j = 1 , . . . , N , (2.12)

q̈i = −
∑

k 6=i

2 ν2

(qi − qk)3
, i = 1 , . . . , N . (2.13)

– 5 –



J
H
E
P
0
1
(
2
0
1
4
)
0
7
0

3 Quantum spin chains and Gaudin models

The generalized GL(n)-invariant inhomogeneous XXX spin chain [50]. The

Hilbert space H of the model is the tensor product of the highest weight gln-modules

M1 ⊗ . . .⊗MN with the highest weights λ(1) , . . . , λ(N), λ(i) = (λ
(i)
1 , . . . , λ

(i)
n ) with λ

(i)
1 ≥

λ
(i)
2 ≥ . . . ≥ λ

(i)
n ≥ 0. Let Λ = {λ(1) , . . . , λ(N)} be the set of the highest weights. By

M0 = C
n we denote the auxiliary space of the vector GL(n)-representation with the

highest weight λ(0) = (1, 0, . . . , 0).

The GL(n)-invariant R-matrix R0j(z) acts non-trivially in M0 ⊗Mj . It has the form

R0j(z) = 1⊗ 1 +
~

z

n∑

a,b=1

E
(0)
ab ⊗ E

(j)
ba , (3.1)

where (E
(0)
ab )cd = δacδbd are basic matrices in the auxiliary space and E

(j)
ab are generators of

gln acting in Mj with the standard commutation relations [E
(j)
ab ,E

(j)
a′b′ ] = δa′bE

(j)
ab′ − δab′E

(j)
a′b.

The quantum transfer matrix is an operator inH defined as trace of a product of the R-

matrices and the twist matrix V = diag(V1 , . . . , Vn) ∈ GL(n) taken in the auxiliary space:

T̂XXX

Λ (z) = tr0

[
V0R01(z − q1) . . . R0N (z − qN )

]
, (3.2)

where we write V0 instead of V to stress that this matrix acts in M0. Sometimes we will

use the more detailed notation T̂XXX

Λ (z) = T̂XXX

Λ (z; {qi}, V, ~). Hereafter we assume that

the inhomogeneity parameters qi are all distinct. The Yang-Baxter equation satisfied by

the R-matrix and the GL(n)-invariance of the R-matrix imply that the transfer matrices

T̂XXX

Λ (z) with the same {qi}, Λ, ~ and V commute for all values of z. Therefore, the transfer

matrix can serve as a generating function for commuting quantum Hamiltonians. It is clear

from (3.2) that T̂XXX

Λ (z) has simple poles at z = qi. The Hamiltonians can be defined as

residues at these poles:

ĤXXX

Λ, i := Res
z=qi

T̂XXX

Λ (z). (3.3)

In general, they are non-local operators involving spins at all sites of the chain.

As is shown in [50] (see also [51–53]), the eigenvalues of the transfer matrix and the

Hamiltonians are of the form

TXXX

Λ (z) =
n∑

b=1

Vb

N∏

k=1

z − qk + ~λ
(k)
b

z − qk

Nb−1∏

γ=1

z − µb−1
γ + ~

z − µb−1
γ

Nb∏

γ=1

z − µb
γ − ~

z − µb
γ

, (3.4)

1

~
HXXX

Λ, i =
n∑

b=1

Vbλ
(i)
b

N∏

k 6=i

qi − qk + ~λ
(k)
b

qi − qk

Nb−1∏

γ=1

qi − µb−1
γ + ~

qi − µb−1
γ

Nb∏

γ=1

qi − µb
γ − ~

qi − µb
γ

, (3.5)

where the parameters µb
γ satisfy the system of the nested BE:

Vb

N∏

k=1

µb
β − qk + ~λ

(k)
b

µb
β − qk + ~λ

(k)
b+1

Nb−1∏

γ=1

µb
β − µb−1

γ + ~

µb
β − µb−1

γ

=Vb+1

Nb∏

γ 6=β

µb
β − µb

γ + ~

µb
β − µb

γ − ~

Nb+1∏

γ=1

µb
β − µb+1

γ − ~

µb
β − µb+1

γ

.

(3.6)
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Here b=1 , . . . , n−1, β=1 , . . . , Nb. It is convenient to put N0 = Nn = 0. The total number

of equations equals
∑n−1

b=1 Nb. We also have [50, 52, 53]: N ≥ N1 ≥ N2 ≥ . . . ≥ Nn−1 ≥ 0.

It is known [52, 53] that the operators

M̂a =
N∑

j=1

E
(j)
aa , a = 1, . . . , n, (3.7)

commute with the transfer matrix. The eigenvectors of the latter, built from solutions to

the BE with the numbers of Bethe roots at level b equal to Nb, are also eigenvectors of the

operators M̂a with the eigenvalues

Ma = Na−1 −Na +
N∑

j=1

λ(j)
a . (3.8)

In what follows we consider the important particular case of vector representations of

GL(n) at all sites of the chain, i.e.,

λ(i) = (1, 0 , . . . , 0) , for all i = 1, . . . , N . (3.9)

In this case we will simply write T̂XXX(z) and ĤXXX

i for the transfer matrix and Hamilto-

nians. Then all terms in (3.5) vanish except the first one:

1

~
HXXX

i = V1

N∏

k=1

qi − qk + ~

qi − qk

N1∏

γ=1

qi − µ1
γ − ~

qi − µ1
γ

. (3.10)

The eigenvalues of the operators M̂a are: M1 = N − N1, Ma = Na−1 − Na, a = 2, . . . , n.

The BE simplify as well because the first product in the l.h.s. of (3.6) is non-trivial only

at b = 1. The BE (3.6) are naturally divided into n− 1 groups:

BE1 : V1

N∏

k=1

µ1
β − qk + ~

µ1
β − qk

= V2

N1∏

γ 6=β

µ1
β − µ1

γ + ~

µ1
β − µ1

γ − ~

N2∏

γ=1

µ1
β − µ2

γ − ~

µ1
β − µ2

γ

, (3.11)

BE b : Vb

Nb−1∏

γ=1

µb
β − µb−1

γ + ~

µb
β − µb−1

γ

= Vb+1

Nb∏

γ 6=β

µb
β − µb

γ + ~

µb
β − µb

γ − ~

Nb+1∏

γ=1

µb
β − µb+1

γ − ~

µb
β − µb+1

γ

(3.12)

for b = 2 , . . . , n−2 and

BEn−1 : Vn−1

Nn−2∏

γ=1

µn−1
β − µn−2

γ + ~

µn−1
β − µn−2

γ

= Vn

Nn−1∏

γ 6=β

µn−1
β − µn−1

γ + ~

µn−1
β − µn−1

γ − ~
. (3.13)

In what follows we will use the notation HXXX

i ({qi}N , {µ1
α}N1

) for the function given by

the r.h.s. of (3.10). When the set {µ1
α}N1

is taken from a solution to the system of BE,

this function is equal to an eigenvalue of the Hamiltonian.
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Example: GL(2) XXX chain. In this case the twist matrix is V =
(
eω 0
0 e−ω

)
and

eigenvalues of the transfer matrix and the Hamiltonians are given by

TXXX

Λ (z) = eω
N∏

k=1

z − qk + ~λ
(k)
1

z − qk

N1∏

γ=1

z − µγ − ~

z − µγ
(3.14)

+e−ω
N∏

k=1

z − qk + ~λ
(k)
2

z − qk

N1∏

γ=1

z − µγ + ~

z − µγ

1

~
HXXX

Λ, i = eωλ
(i)
1

N∏

k 6=i

qi−qk+~λ
(k)
1

qi − qk

N1∏

γ=1

qi−µγ−~

qi − µγ
(3.15)

+e−ωλ
(i)
2

N∏

k 6=i

qi−qk+~λ
(k)
2

qi − qk

N1∏

γ=1

qi−µγ+~

qi − µγ

with the BE of the form

e2ω
N∏

k=1

µα − qk + ~λ
(k)
1

µα − qk + ~λ
(k)
2

=

N1∏

γ 6=α

µα − µγ + ~

µα − µγ − ~
, α = 1 , . . . , N1 . (3.16)

With the choice (λ
(i)
1 , λ

(i)
2 ) = (1, 0) for all i = 1, . . . , N (spin 1

2 at each site) the second

term in (3.15) vanishes and we get

1

~
HXXX

i = eω
N∏

k 6=i

qi − qk + ~

qi − qk

N1∏

γ=1

qi − µγ − ~

qi − µγ
, i = 1 , . . . , N, (3.17)

where µα’s satisfy the BE

e2ω
N∏

k=1

µα − qk + ~

µα − qk
=

N1∏

γ 6=α

µα − µγ + ~

µα − µγ − ~
, α = 1 , . . . , N1 . (3.18)

The rational gln Gaudin model [11, 12]: is the ε → 0 limit of the inhomogeneous

XXX spin chain with the transfer matrix T̂XXX

Λ (z; {qi}, V ε, ε~). The expansion as ε → 0

is

T̂XXX

Λ (z; {qi}, V ε, ε~) = n+ ε

(
tr v +

N∑

i=1

~C
(i)
1

z − qi

)
+ ε2

(
1

2
tr v2 +

∑

i

~ ĤG

Λ, i

z − qi

)
+O(ε3)

(3.19)

where v = log V , C
(i)
1 =

∑

a

E
(i)
aa =

∑

a

λ(i)
a is the first Casimir operator of U(gln) at the i-th

site and

ĤG

Λ, i =
∑

a

vaE
(i)
aa +

∑

j 6=i

~

qi − qj

∑

ab

E
(i)
abE

(j)
ba = lim

ε→0

ĤXXX

Λ, i ({qi}, eεv, ε~)− ε~C
(i)
1

~ε2
. (3.20)

These operators are called Gaudin Hamiltonians. Their eigenvalues can be found by sub-

stituting (3.5) into (3.20) and tending ε → 0. This gives

HG

Λ, i =
n∑

b=1

(
vb +

N∑

k 6=i

~λ
(k)
b λ

(i)
b

qi − qk
+

Nb−1∑

γ=1

~λ
(i)
b

qi − µb−1
γ

−
Nb∑

γ=1

~λ
(i)
b

qi − µb
γ

)
(3.21)
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with the BE of the form

vb − vb+1 +
N∑

k=1

~(λ
(k)
b − λ

(k)
b+1)

µb
β − qk

= −
Nb−1∑

γ=1

~

µb
β − µb−1

γ

+ 2

Nb∑

γ 6=β

~

µb
β − µb

γ

−
Nb+1∑

γ=1

~

µb
β − µb+1

γ

, (3.22)

where b=1 , . . . , n−1, β=1 , . . . , Nb N0=Nn=0. By analogy with the XXX spin chain we

call the matrix v = diag(v1 , . . . , vn) the twist matrix of the Gaudin model. In the context

of the Gaudin model, the parameters qi are often called marked points.

The operators M̂a and their eigenvalues on the eigenstates of the Gaudin Hamiltonians

are are given by the same formulas (3.7), (3.8). In the case λ(i) = (1, 0, . . . , 0) for all i the

above formulas simplify:

HG

i = v1 +

N∑

k 6=i

~

qi − qk
−

N1∑

γ=1

~

qi − µ1
γ

(3.23)

with the BEb :

vb − vb+1 + δ1b

N∑

k=1

~

µb
β − qk

= −
Nb−1∑

γ=1

~

µb
β − µb−1

γ

+ 2

Nb∑

γ 6=β

~

µb
β − µb

γ

−
Nb+1∑

γ=1

~

µb
β − µb+1

γ

(3.24)

The eigenvalues of the operators M̂a are: M1 = N − N1, Ma = Na−1 − Na, a = 2, . . . , n.

Similarly to the XXX spin chain case, we will use the notation HG

i ({qi}N , {µ1
α}N1

) for the

function given by the r.h.s. of (3.23). When the set {µ1
α}N1

is taken from a solution to the

system of BE (3.22), this function is equal to an eigenvalue of the Hamiltonian.

Example: the rational gl2 Gaudin model. For the gl2 Gaudin model with the twist

matrix v =
(
ω 0
0 −ω

)
equations (3.23) and (3.24) read

1

~
HG

i = ω +
N∑

k 6=i

~

qi − qk
+

N1∑

γ=1

~

µγ − qi
, (3.25)

2ω + ~

N∑

k=1

1

µα − qk
= 2~

N1∑

γ 6=α

1

µα − µγ
(3.26)

for all α = 1 , . . . ,M . Here µα = µ1
α.

4 The QC duality

In this section we derive the relation between the spectrum of the quantum XXX spin

chain Hamiltonians and the spectrum of the classical RS Lax matrix which is the basis of

the QC duality. Our main statement is the following theorem.

Theorem 1. Given the Lax matrix (2.5) of the glN RS model

LRS

ij ({q̇}N , {q}N , ν) =
ν q̇j

qi − qj + ν
, i , j = 1 , . . . , N,
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make the substitution

ν = ~ and q̇j =
1

~
HXXX

j

(
{qi}N , {µ1

α}N1

)
(4.1)

where the r.h.s. is given by (3.10). If the N1 parameters µ1
α are taken from any so-

lution
{
{µ1

α}N1
, . . . {µn−1

α }Nn−1

}
to the system of BE (3.11)–(3.13) for the inhomoge-

neous spin chain on N ≥ n sites with inhomogeneity parameters qi and the twist matrix

V = diag (V1, . . . , Vn), then the spectrum of the Lax matrix has the following form:

SpecLRS

(
1

~

{
HXXX

j

}
N
, {qj}N , ~

)∣∣∣
BE

=
(
V1 , . . . , V1︸ ︷︷ ︸

N−N1

, V2 , . . . , V2︸ ︷︷ ︸
N1−N2

, . . . , Vn−1 , . . . , Vn−1︸ ︷︷ ︸
Nn−2−Nn−1

, Vn , . . . , Vn︸ ︷︷ ︸
Nn−1

)
(4.2)

The rest of this section is devoted to the proof of the theorem. But before passing to the

proof, let us say a few words about the meaning of this statement. It implies, in particular,

that one can solve the spectral problem for the Hamiltonians of the inhomogeneous spin

chain without addressing the BE at any step but by solving an “inverse spectral problem”

for the Lax matrix LRS of the classical RS system of particles. More precisely, let {qi}N
be the inhomogeneity parameters of the spin chain with the Planck’s constant ~ and V

its twist matrix. Let the eigenvalues of the RS Lax matrix be equal to the eigenvalues Va

of the twist matrix, with some multiplicities Ma ≥ 0 such that
∑

aMa = N . (This fixes

values of all the RS Hamiltonians: HRS

k = 1
k

∑
aMaV

k
a .) Then the spectrum of ĤXXX

j in

the sector where eigenvalues of the operators M̂a are equal to Ma is given by the values of

HXXX

j such that the matrix LRS

ij =
HXXX

j

qi−qj+~
has the prescribed spectrum. Here we assume

that each site carries the vector representation of GL(N). We anticipate that this approach

can be extended to the spin chains with arbitrary highest weight representations at sites.

The proof will use the results of [54]. In order to prove the statement, i.e.,

det

[
LRS

(
1

~

{
HXXX

j

}
N
, {qj}N , ~

)∣∣∣
BE

− λ

]
=

n∏

a=1

(Va − λ)Ma , (4.3)

where M1 = N−N1, Ma = Na−1−Na (2 ≤ a ≤ n) let us introduce the following pair

of matrices:

Lij({xi}N , {yi}M , g) =
g ~

xi − xj + ~

N∏

k 6=j

xj − xk + ~

xj − xk

M∏

γ=1

xj − yγ
xj − yγ + ~

, i , j = 1 , . . . , N

(4.4)

and

L̃αβ({yi}M , {xi}N , g) =
g ~

yα − yβ + ~

M∏

γ 6=β

yβ − yγ − ~

yβ − yγ

N∏

k=1

yβ − xk
yβ − xk − ~

, α, β = 1 , . . . ,M ,

(4.5)

From the computational point of view the QC duality is based on the following algebraic

relation between L and L̃:
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Proposition 4.1. For the pair of matrices (4.4) and (4.5) it holds:

det
N×N

(
L ({xi}N , {yi}M , g)− λ

)
= (g − λ)N−M det

M×M

(
L̃ ({yi}M , {xi}N , g)− λ

)
(4.6)

The proof of (4.6) is given in the appendix.

Proof of Theorem 1. The proof of (4.3) includes n − 1 steps and consists in successive

application of (4.6) and taking into account the BE (3.11)–(3.13). Indeed, set

L
(0)
ij = LRS

ij

(
1

~
{HXXX

j }N , {qi}N , ~

)
=

~V1

qi − qj + ~

N∏

k 6=j

qj − qk + ~

qj − qk

N1∏

γ=1

qj − µ1
γ − ~

qj − µ1
γ

= Lij({qi−~}N , {µ 1
α}N1

, V1) ,

(4.7)

and define (at the first step)

L
(1)
αβ = L̃αβ({µ 1

α}N1
, {qi−~}N , V1) =

~V1

µ1
α − µ1

β + ~

N1∏

γ 6=β

µ1
β − µ1

γ − ~

µ1
β − µ1

γ

N∏

k=1

µ1
β − qk + ~

µ1
β − qk

,

(4.8)

where α, β = 1 , . . . , N1. Equation (4.6) implies that

det
N×N

(L(0) − λ) = (V1 − λ)N−N1 det
N1×N1

(L(1) − λ) . (4.9)

Next, impose BE (3.11) to get:

L
(1)
αβ

∣∣∣
BE1

=
~V2

µ1
α − µ1

β + ~

N1∏

γ 6=β

µ1
β − µ1

γ + ~

µ1
β − µ1

γ

N2∏

γ=1

µ1
β − µ2

γ − ~

µ1
β − µ2

γ

, α, β = 1 , . . . , N1 , (4.10)

i.e.,

L(1)
∣∣∣
BE1

= L({µ 1
α−~}N1

, {µ 2
α}N2

, V2) . (4.11)

At the second step we define

L
(2)
αβ = L̃αβ({µ 2

γ }N2
, {µ 1

γ −~}N1
, V2) , α, β = 1 , . . . , N2 , (4.12)

and, similarly to the previous step, we use (4.6) and BE (3.12) to get:

det
N1×N1

(L(1) − λ) = (V2 − λ)N1−N2 det
N2×N2

(L(2) − λ) , (4.13)

L(2)
∣∣∣
BE2

= L({µ 2
α−~}N2

, {µ 3
α}N3

, V3) . (4.14)

... (4.15)

and so on until the last step, where we use (3.13):

L
(n−1)
αβ

∣∣∣
BEn−1

=
~Vn

µn−1
α − µn−1

β + ~

Nn−1∏

γ 6=β

µn−1
β − µn−1

γ + ~

µn−1
β − µn−1

γ

, α, β = 1 , . . . , Nn−1 . (4.16)

The latter matrix obeys the equation det
Nn−1×Nn−1

(L(n−1) − λ) = (Vn − λ)Nn−1 which follows

from Proposition 4.1 for N = Nn−1 and M = 0.
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In the limiting case we have the QC duality between the quantum Gaudin and the

classical CM models. The following analogue of Theorem 1 holds true.

Theorem 2. Given the Lax matrix (2.12) of the glN CM model

LCM

ij = δij q̇i + ν
1− δij
qi − qj

, i, j = 1 , . . . , N,

make the substitution

ν = ~ and q̇j =
1

~
HG

j

(
{qi}N , {µ1

α}N1

)
, j = 1 , . . . , N , (4.17)

where the r.h.s. is given by (3.23). If the N1 parameters µ1
α are taken from any solution{

{µ1
α}N1

, . . . {µn−1
α }Nn−1

}
to the system of BE (3.24) for the gln Gaudin model with N ≥ n

marked points qi and the twist matrix v = diag (v1, . . . , vn), then the spectrum of the Lax

matrix has the following form:

SpecLCM

(
1

~

{
HG

j

}
N
, {qj}N , ~

)∣∣∣
BE

=
(
v1 , . . . , v1︸ ︷︷ ︸

N−N1

, v2 , . . . , v2︸ ︷︷ ︸
N1−N2

, . . . , vn−1 , . . . , vn−1︸ ︷︷ ︸
Nn−2−Nn−1

, vn , . . . , vn︸ ︷︷ ︸
Nn−1

)
(4.18)

The proof is based on the analogue of Proposition 4.1. Introduce the pair of matrices

Lij({xi}N , {yi}M , ω) = δij

(
ω +

N∑

k 6=i

~

qi − qk
+

M∑

γ=1

~

µγ − qi

)
+ (1− δij)

~

qi − qj
, (4.19)

where i , j = 1 , . . . , N and

L̃αβ({yi}M , {xi}N , ω) = δαβ

(
ω −

M∑

γ 6=α

~

µα−µγ
−

N∑

k=1

~

qk−µα

)
+ (1− δαβ)

~

µα−µβ

,

(4.20)

where α, β = 1 , . . . ,M . The relation between them is given by

Proposition 4.2. For the pair of matrices (4.19) and (4.20) it holds:

det
N×N

(
L({xi}N , {yi}M , ω)− λ

)
= (ω − λ)N−M det

M×M

(
L̃({yi}M , {xi}N , ω)− λ

)
. (4.21)

The proof is given in the appendix.

We conclude this section by the simplest example of the correspondence between the

spectra of Gaudin Hamiltonians and diagonal elements of the CM Lax matrix with fixed

eigenvalues.
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The simplest example: the rational gl2 Gaudin model with 2 marked points (sites)

q1,2 = ±q with spins 1
2 and the twist matrix v =

(
ω 0
0 −ω

)
. There Hilbert space of the

model is 4-dimensional and the states are classified according to eigenvalues of the spin

z-projection operator:

1)
(

1
0

)
,
(

1
0

)
. In this case there are no Bethe roots and the spectrum is given by (3.25):

1

~
HG

1,2 = ω ± ~

2q
. (4.22)

2)
(

1
0

)
,
(

0
1

)
or
(

0
1

)
,
(

1
0

)
. The single Bethe root satisfies the BE

− 2ω =
~

µ− q
+

~

µ+ q
. (4.23)

Substituting its solution(s) µ± = − ~

2ω ±
√

4ω2q2+~2

2ω we get the spectrum:

1

~
HG

1 |µ=µ∓
= ±

√
4ω2q2 + ~2

2q
,

1

~
HG

2 |µ=µ∓
= ∓

√
4ω2q2 + ~2

2q
. (4.24)

3)
(

0
1

)
,
(

0
1

)
. Two Bethe roots satisfy the following BE:





−2ω +
2~

µ1 − µ2
=

~

µ1 − q
+

~

µ1 + q
,

−2ω +
2~

µ2 − µ1
=

~

µ2 − q
+

~

µ2 + q
.

(4.25)

The solutions µ1 = − ~

2ω ±
√

4ω2q2−~2

2ω and µ2 = − ~

2ω ∓
√

4ω2q2−~2

2ω lead to the spectrum

1

~
HG

1,2 = −ω ± ~

2q
. (4.26)

Let us obtain the same spectrum from the classical rational 2-body CM model with

the coupling constant ~. The Lax matrix is

LCM =

(
q̇1

~

q1−q2

− ~

q1−q2
q̇2

)

Let us put q1,2 = ±q as in the Gaudin model. The requirement for this matrix to have

eigenvalues (v1 , v2) provides the following values of the velocities:

q̇1,2 =
v1 + v2

2
±
√

(v1 − v2)2

4
+

~2

4q2
. (4.27)

The QC duality claims that q̇1,2 = 1
~
HG

1,2. The above described three cases follow

from (4.27) when 1) v1 = v2 = ω, 2) v1 = ω, v2 = −ω, 3) v1 = v2 = −ω.
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5 Relation to branes and gauge theories

In this section we briefly comment on the realization of the QC duality in terms of branes

and gauge theories.

First let us note that there are two types of dualities in the integrable systems relevant

to our discussion: the bispectrality and the QC duality. The bispectral transformations

preserve the class of quantum spin chains. Roughly speaking, the inhomogeneity param-

eters and twists get interchanged under this transformation. On the classical level, the

bispectrality acts by interchanging coordinates and eigenvalues of the Lax operator and

preserves the class of CM-RS models of different kinds (rational, trigonometric, elliptic).

The mapping can be defined for the classical and quantum models independently with the

clear semiclassical picture in between. One can also show that spectral curves (on the clas-

sical level) or the systems of BE (on the quantum level) for the bispectrally dual models

are related in a controllable way.

In distinction of the bispectrality, the QC duality we have focused on in this paper

is a relation between representatives from the two different families of models: quantum

(spin chains, Gaudin) and classical (CM-RS). The spin chain inhomogeneity parameters,

twists and Hamiltonians get mapped respectively to coordinates of the CM-RS particles

and eigenvalues of the Lax matrix while the Hamiltonians of the spin chain get mapped to

velocities of the CM-RS particles. The spectral problem for Hamiltonians of the spin chain

(equivalent to solving the BE) corresponds to a bit unusual problem at the classical CM-RS

side: given values of all integrals of motion in involution, we should fix all coordinates and

look for the allowed values of particles velocities (or just momenta in the CM case). In

other words, the quantum eigenstates are encoded by intersection points of two Lagrangian

submanifolds in the phase space of a classical integrable model.

The interpretation of bispectrality in terms of the gauge theories on the brane worldvol-

umes in the simplest cases has been found at the CM-RS side in [22] and at the spin chain

side in [19]. More recently, the bispectrality transformation has been used to prove the

AGT duality [24, 25] and the bulk-worldsheet 2d/4d duality for the nonabelian strings [23]

in the integrability framework. The comprehensive analysis of the bispectrality for the gen-

eral case has been developed in [35]. It was identified as the mirror transformation in the

quiver 3d theory with the generic matter in the fundamental representation. Moreover, the

QC duality was interpreted there in the same quiver set-up which encodes the particular

brane configuration responsible for the gauge theory [35].

The brane configuration relevant to our quiver gauge theory is as follows. We have n

parallel NS5 branes extended in the (x0, x1, x2, x7, x8, x9) directions, Ni D3 branes extended

in (x0, x1, x2, x3) between i-th and (i + 1)-th NS5 branes, and Ki D5 branes extended in

(x0, x1, x2, x3, x4, x5, x6) directions between the i-th and (i+ 1)-th NS5 branes. From this

brane configuration we obtain the
∏n

i U(Ni) gauge group on the D3 brane worldvolume

with additional Ki fundamentals for the i-th gauge group. The distance between the i-

th and (i + 1)-th NS5 branes yields the gauge coupling for the U(Ni) gauge group while

coordinates of the D5 branes in the x7, x8 plane correspond to the masses of fundamentals.

The positions of D3 branes in the x7, x8 plane correspond to the coordinates on the Coulomb
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branch in the quiver theory. The additional Ω-deformation reduces the theory with N = 4

SUSY to the N = 2∗ theory. At the energy scale below the scale dictated by the lengths

of the intervals the theory on D3 branes is identified as N = 2∗ 3d quiver gauge theory.

In what follows we assume that one coordinate is compact that is the 3d theory lives

on R2 × S1.

The mapping of the gauge theory data into the integrability framework goes as follows.

The Yang-Yang function is identified with the twisted superpotential in the 3d gauge theory

on the D3 branes and its extrema yield solutions to the BE for the XXZ spin chain or

equivalently the equation for the supersymmetric vacuum state in the gauge theory [33, 34].

The D3 branes are identified with the Bethe roots which are distributed according to the

ranks of the gauge groups at each of n steps of nesting in
∏n

i U(Ni). Generically, the

number of the Bethe roots at different levels of nesting is different. The distances between

the NS5 branes define the twists at the different levels of nesting while the positions of the

D5 branes in the x7, x8 plane correspond to the inhomogeneity parameters of theXXZ spin

chain. To complete the dictionary, recall that the anisotropy parameter of the XXZ chain

is defined by the radius of the compact dimension while the parameter of the Ω-deformation

plays the role of the Planck constant for the XXZ spin chain. To get the XXX chain

from the XXZ one, one should just send the radius of the compact coordinate to zero.

In terms of the brane configuration the dualities correspond to particular brane mo-

tions. The bispectrality corresponds to the interchange between the Coulomb and Higgs

branches that is the mirror symmetry [35]. To this aim, one should adjust the parameters

in such a way that two D5 branes become at the same position in the 7,8,9 coordinates.

Then one should remove the segment of the D3 brane stretched between two D5 branes

and bring it to infinity. The position of the D3 brane in the 7,8,9 coordinates corresponds

to the coordinate at the Higgs branch. Under the bispectrality the roles of the D5 and

NS5 branes get interchanged and positions of the NS5 branes and D5 branes play the role

of inhomogeneity parameters and twists respectively.

The interpretation of the QC duality is more involved [35]. First, we have to perform

the Hanany-Witten move and translate all D5 branes to the left. Upon this move we get

the configuration involving the
∑
i

Ki D5 branes yielding the left boundary condition, n

NS5 branes defining the right boundary condition and Q D3 branes in between, where

Q =
n∑

j=1

jKj . (5.1)

Since the distance between boundaries with the Dirichlet and Neumann conditions is

large, we get the N = 2∗ D = 4 gauge theory with the U(Q) gauge group on R2 × S2 × I.

The QC duality is now identified as the duality between the N = 2∗ D = 3 quiver gauge

theory with particular content of fundamentals and the N = 2∗ D = 4 theory with U(Q)

gauge group with nontrivial boundary conditions. The information about the D = 3

quiver is now encoded in the boundary conditions of the D = 4 theory via embedding

SU(2) → U(Q) at the left and right boundaries.

Now we are ready to explain the brane interpretation of the QC duality in the degen-

erate XXX case we have elaborated. At the spin chain side the positions of n NS5 branes
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along the x3 direction are identified with the twist parameters Vi and the number of the

NS5 branes fixes the rank of the group. The positions of the D5 branes along x7, x8 are

identified with the inhomogeneity parameters qi. In the algebraic consideration given above

we considered the case when the total number of the qi’s (which is equal to
∑n

j=1 jKj)

coincides with the number of particles Q at the RS side. To get Q = N we have to put all

N D5 branes at the interval between two leftmost NS5 branes as it can be seen from (5.1).

In this case K1 = N and Kj = 0, j = 2, . . . n.

Upon the Hanany-Witten move we get the N = 2∗ D = 4 U(N) gauge theory on the D3

branes. The object of interest in this theory is the moduli space of the vacua which is known

to be parameterized by the U(N) flat connections on the torus with one marked point with

particular holonomy determined by the Ω-deformation parameter [55–57]. This is exactly

the description of the phase space of the trigonometric RS model with N particles [58].

One of the radii of this auxiliary torus is the radius of the compact coordinate which the

4d theory is defined on. Since we argued above that the reduction from XXZ to XXX

implies vanishing of this radius in the 3d quiver theory, we have to take the same limit in

the 4d theory. It can be immediately recognized as the transition from the trigonometric

to the rational RS model. Hence we arrive exactly to the duality between the XXX spin

chain and the rational RS model as it was discussed in [35].

Now the boundary conditions fix two Lagrangian submanifolds in this space. At the

left Dirichlet boundary there are N D5 branes which provide the coordinates for the RS

model with N degrees of freedom and correspond to SU(N) holonomy around the cycle

with the vanishing radius. The second SU(N) holonomy (around the cycle with non-

vanishing radius) corresponds to the Neumann boundary conditions imposed by the NS5

branes. Due to the nontrivial monodromy around the marked point two holonomies can not

be diagonalized simultaneously and the second one can be identified as the Lax operator

of the rational RS model we have discussed above. Hence we arrive at the picture of

intersection of two Lagrangian submanifolds. For the trigonometric case, this picture has

been discussed for the first time in [49].

Now, the algebraic consideration of the previous section tells us how the positions

Vi, i = 1 . . . n, of the n NS5 branes in the initial quiver 3d gauge theory (corresponding to

the GL(n) spin chain of length N) provide the multiplicity of the Lax eigenvalues at the

RS side. Equation (4.2) tells that V1 has multiplicity N −N1, V2 multiplicity N2 −N1 etc.

Since Ni is just the number of the D3 branes at the i-th segment, we could claim that the

structure of the clasterization of the Lax eigenvalues in the RS model is dictated by the

difference of the D3 branes at the corresponding step of nesting. Hence we obtain a very

explicit prescription how the quiver data in the 3d theory get mapped into the choice of

the particular Lagrangian submanifold in the moduli space of vacua in the 4d gauge theory

at the interval at small length of interval.

6 Discussion

In this paper we have described a clear-cut relationship between the quantum XXX spin

chain and the rational classical RS model. This QC duality and its generalization to
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the trigonometric case has been discussed in [35] in the brane framework but an explicit

algebraic analysis was missing. We put this on the firm ground and get some important

identifications. The spectrum of the XXX spin chain Hamiltonians coincides with possible

values of velocities of the RS particles under the conditions that their coordinates equal

the inhomogeneity parameters of the spin chain and eigenvalues of the RS Lax matrix

coincide with the twist parameters with certain multiplicities depending on the total “spin

projection”. The stationary states of the quantum model appear to be in one-to-one

correspondence with intersection points of two Lagrangian submanifolds in the phase space

of the classical model. The brane picture behind this pattern has been presented.

This paper together with [35] has just started the systematic investigation of the new

type of dualities in integrable models and their gauge theory meaning. We believe that they

may be potentially very useful in many physical applications. In particular, the possibility

to find spectra of quantum Hamiltonians in terms of the QC-dual classical model seems to

be especially intriguing and promising.

We conclude by a list of some interesting related topics deserving further investigation.

• The generalization of the algebraic analysis to the trigonometric case is straightfor-

ward. We expect that the QC duality extends also to integrable models with elliptic

R-matrices. However, such a generalization is going to be non-trivial since in the

elliptic case there are no continuous twist parameters. This probably means that

they get quantized.

• It would be extremely interesting to enrich the QC duality by a recipe of finding, via

the map to a classical system, not only spectra of quantum Hamiltonians but also

the eigenstates themselves. We conjecture that such specifically quantum information

might be encoded in the fine structure of the intersection of Lagrangian submanifolds.

• A related problem is to elucidate the meaning of the YY function and Baxter’s Q-

operators in the context of the CM-RS models. The YY function was conjectured [49]

to be the generating function for Lagrangian submanifolds in the RS phase space.

However, the validity and consequences of this identification deserve further study.

As the results of [42] suggest, the Baxter’s Q-operators should be related to Backlund

transformations on the classical side. The details are to be clarified.

• It is important to extend our analysis to the generalized duality suggested in [35] when

the number of inhomogeneity parameters at the spin chain side does not coincide with

the number of particles at the RS side. In the brane language this corresponds to

the generic quiver.

• The quantum-classical duality discussed in this paper should be somehow extended

to a quantum-quantum one, when the classical CM or RS model gets quantized. The

question is what happens with the spin chains under this deformation. Presum-

ably, they turn into non-stationary models described by equations of the Knizhnik-

Zamolodchikov type. This issue is also closely related to evaluation of knot invari-

ants [59].
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• So far only two types of the brane moves have been identified as some dualities in the

associated integrable systems: the move corresponding to Higgsing and the Hanany-

Witten move. It would be interesting to obtain the dualities corresponding to more

general brane moves.

• Recently some new field theory generalizations of higher rank Painlevé-Schlesinger

equations and the corresponding models of the Gaudin-Calogero type were sug-

gested [60]. They should respect the same kind of dualities and, therefore, it is

tempting to study possible continuous limits of spin chains in order to find the dual-

ities between local and non-local models which may be of special interest.

• As is mentioned in [25], the quantization of the spectral curves of integrable chains

leads to the relations (the Baxter equations) which are very similar to their classical

analogues. This might allow one to interpret the QC duality in terms of a combination

of the spectral duality [10, 24] and the Symplectic Hecke Correspondence [61–67]

(cf. [58]).

A Proofs of propositions

Here we prove Propositions 4.1 and 4.2.

Proposition 4.1. In the appendix we employ the auxiliary notation xN = {xi}N , yM =

{yi}M for brevity. Another frequently used notation, eN , means the N -dimensional vector

(1 , . . . , 1), so xN − ~eN = {xi − ~}N , etc.

Recall the statement: the pair of matrices

Lij(xN ,yM , g) =
g ~

xi − xj + ~

N∏

k 6=j

xj − xk + ~

xj − xk

M∏

γ=1

xj − yγ
xj − yγ + ~

, i , j = 1 , . . . , N (A.1)

and

L̃αβ(yM ,xN , g) =
g ~

yα − yβ + ~

M∏

γ 6=β

yβ − yγ − ~

yβ − yγ

N∏

k=1

yβ − xk
yβ − xk − ~

, α , β = 1 , . . . ,M .

(A.2)

are related by the identity

det
N×N

(
L(xN ,yM , g)− λ

)
= (g − λ)N−M det

M×M

(
L̃(yM ,xN , g)− λ

)
. (A.3)

To prove this, we need some technical lemmas.

Lemma A.1. [54] The matrices L and L̃ can be represented in terms of diagonal matrices

Dij = δij

M∏

γ=1

yγ − xj
yγ − xj − ~

, i , j = 1 , . . . , N , (A.4)

D̃αβ = δαβ

N∏

k=1

yβ − xk
yβ − xk − ~

, α , β = 1 , . . . ,M , (A.5)
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diagonal matrices D0 and D~

(D0)ij(uK) = δij
K∏
k 6=i

(ui − uk) , (D~)ij(uK) = δij
K∏
k 6=i

(ui − uk + ~) ,

i , j = 1 , . . . ,K ,

(A.6)

the Vandermonde matrix Vij(uK) = ui−1
j , i , j = 1 , . . . ,K, and the triangular matrix

(C~,K)ij =





(i− 1)! ~i−j

(j − 1)!(i− j)!
, j ≤ i ,

0 , j > i ,

i , j = 1 , . . . ,K (A.7)

in the following way:

L(xN ,yM , g) = g D−1
~

(xN )V T (xN + ~ eN )
(
V T
)−1

(xN )D~(xN )D
= g D−1

~
(xN )V T (xN )CT

~,N

(
V T
)−1

(xN )D~(xN )D . (A.8)

L̃(yM ,xN , g) = g D0(yM )V −1(yM )V (yM − ~ eM )D−1
0 (yM ) D̃

= g D0(yM )V −1(yM )C−~,M V (yM )D−1
0 (yM ) D̃ .

(here (. . .)T means transposition of the matrix).

Notice that detD = det D̃. Therefore, statement (A.3) can be rewritten as

det
N×N

(
L0(xN , g)− λD−1

)
= (g − λ)N−M det

M×M

(
L̃0(yM , g)− λ D̃−1

)
, (A.9)

where

(L0)ij(xN , g) = Lij |M=0 =
g ~

xi − xj + ~

N∏

k 6=j

xj − xk + ~

xj − xk
, i , j = 1 , . . . , N (A.10)

and

(L̃0)αβ(yM , g) = L̃ij |N=0 =
g ~

yα − yβ + ~

M∏

γ 6=β

yβ − yγ − ~

yβ − yγ
, α , β = 1 , . . . ,M . (A.11)

Lemma A.2. The l.h.s. of (A.3) (or that of (A.9)), i.e., the function

| LN |(M)
def
= det

N×N

(
L0(xN , g)− λD−1

)
(A.12)

has no poles of the form 1
xa−xb

or 1
xa−xb+~

for all a , b = 1 , . . . , N . All poles of (A.12)

come from the diagonal matrix D−1.

Proof. The idea is to represent | LN |(M) in the form of determinant of a matrix whose

elements have no poles of the form 1
xa−xb

or 1
xa−xb+~

for all a , b = 1 , . . . , N . Using

Lemma A.1 we have

det
(
L0 − λD−1

)
= det

(
LT
0 − λD−1

)
(A.13)

= det
(
gD~V

−1C~,NV D−1
~

− λD−1
)
= det

(
gC~,N − λVD−1V −1

)
.
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The latter expression does not contain any poles of the type 1
xa−xb+~

. However, it may

contain poles of the type 1
xa−xb

since detV =
∏
i>j

(xi−xj). Let us verify that all such poles

vanish if D is given by (A.4). Indeed, the inverse of the Vandermonde matrix is given by

V −1
kj =

1

(j − 1)!
∂(j−1)
ρ

N∏

s 6=k

ρ− xs
xk − xs

∣∣∣∣
ρ=0

. (A.14)

Therefore, the matrix element (VD−1V −1)ij takes the form

(
VD−1V −1

)
ij
=

N∑

k=1

VikD−1
kk V

−1
kj =

N∑

k=1

xi−1
k D−1

kk

1

(j − 1)!
∂(j−1)
ρ

N∏

s 6=k

ρ− xs
xk − xs

∣∣∣∣
ρ=0

. (A.15)

Consider the linear combination of columns
N∑
k=1

xi−1
k D−1

kk

N∏
s 6=k

ρ−xs

xk−xs
=

N∑
k=1

(
VD−1V −1

)
ik
ρk−1

which is a generating function for them. Powers of the auxiliary variable ρ correspond to

the values of j−1 = 0 , . . . , N−1. An arbitrary pole 1
xa−xb

appears in the sum for k = a, b.

The residue is given by

N∏

s=1

(ρ− xs)

(
xi−1
a

ρ− xa

D−1
aa∏

l 6=a ,b

(xa − xl)
− xi−1

b

ρ− xb

D−1
bb∏

l 6=a ,b

(xb − xl)

)
. (A.16)

This expression vanishes at xa = xb if D−1
aa = D−1

aa (xa). This is the case of (A.4).

Lemma A.3. The r.h.s. of (A.3) (or that of (A.9)), i.e. the function

| L̃M |(N)
def
= det

M×M

(
L̃0(yM , g)− λ D̃−1

)
(A.17)

has no poles of the form 1
ya−yb

or 1
ya−yb+~

for all a , b = 1 , . . . ,M . All poles of (A.17)

come from the diagonal matrix D̃.

The proof is similar to the previous Lemma A.2.

Proof of Proposition 4.1. The proof is by induction in M . The nontrivial part of C~,K

has a form of the left-justified Pascal’s triangle (of binomial coefficients) weighted by ~
i−j .

Notice that (C~,K)
jj

= 1 for all j = 1 , . . . ,K. Therefore,

det(g C~,K − λ) = (g − λ)K . (A.18)

Let us first check (A.3) for M = 0 and arbitrary N (or N = 0 and arbitrary M). Since

D |M=0 = IdN , it follows from (A.8) that

det(L0 − λ) = det(g C~,N − λ) = (g − λ)N . (A.19)

Similarly, det(L̃0 − λ) = (g − λ)M . Suppose (the induction assumption) that (A.9) holds

true for all N and some fixed M − 1, i.e.,

| LN |(M − 1) = (g − λ)N−M+1| L̃M−1 |(N) , ∀N . (A.20)

In order to prove that (A.9) holds for M − 1 → M , we expand both sides of (A.9) as sums

over poles in yM and compare the results.
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1) Consider first the l.h.s. of (A.9):

| LN |(M) = det

∣∣∣∣∣∣

∣∣∣∣∣∣
g ~

xi − xj + ~

N∏

k 6=j

xj − xk + ~

xj − xk
− λδij

M∏

γ=1

yγ − xj − ~

yγ − xj

∣∣∣∣∣∣

∣∣∣∣∣∣
, (A.21)

where i , j = 1 , . . . , N . Notice that | LN |(M) is a rational function of the yM with

simple poles at x1 , . . . , xN . Therefore, it can be represented in the form

| LN |(M) = | LN |(M)|yM=∞ +
N∑

l=1

1

yM − xl
Cl . (A.22)

The first term equals LN |(M) |yM=∞ = | LN |(M − 1). To find Cl, let us note that

the pole 1
yM−xl

appears only in the ll-th component of the second (diagonal) term of

matrix (A.21), −λD−1
ll . Hence,

Cl = ∆ll |yM=xl
Res

yM=xl

(
−λD−1

ll

)
, (A.23)

where ∆ll is the principal minor of the matrix LN obtained by removing the l-th

column and the l-th row. It is easy to see that

∆ll |yM=xl
= | Ll

N−1 |(M − 1)
N∏

j 6=l

xj − xl + ~

xj − xl
, (A.24)

where the index l in Ll
N−1 emphasizes that its argument is xN−1 =

x1 , . . . , xl−1, xl+1 , . . . , xN , i.e. {xN} \ xl. The residue in (A.23) equals

~λ
M−1∏
γ=1

yγ−xj−~

yγ−xj
. Then expression (A.22) takes the form

| LN |(M) = | LN |(M − 1) +
N∑

l=1

~λ

yM − xl
× (A.25)

×
M−1∏

γ=1

yγ − xj − ~

yγ − xj
| Ll

N−1 |(M − 1)
N∏

j 6=l

xj − xl + ~

xj − xl
.

By the induction assumption, the determinants | LN |(M − 1) and | Ll
N−1 |(M − 1),

l = 1 , . . . , N satisfy (A.9), i.e.,

| LN |(M − 1) = (g − λ)N−M+1| L̃M−1 |(N) ,

| Ll
N−1 |(M − 1) = (g − λ)N−M | L̃M−1 |(N − 1)l

(A.26)

The lower index l in the r.h.s. again emphasizes that the set of its arguments is

xN−1 = {xN} \ xl.

2) The r.h.s. of (A.9) is determined by

| L̃M | (N) = det

∣∣∣∣∣∣

∣∣∣∣∣∣
g ~

yα − yβ + ~

M∏

γ 6=β

yβ − yγ − ~

yβ − yγ
− λδαβ

N∏

k=1

yβ − xk − ~

yβ − xk

∣∣∣∣∣∣

∣∣∣∣∣∣
, (A.27)
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where α , β = 1 , . . . ,M . As it follows from Lemma A.3, | L̃M |(N) has no poles of

the type 1
ya−yb

or 1
ya−yb+~

. Therefore, similarly to (A.22), we have the decomposition

| L̃M |(N) = | L̃M |(N) |yM=∞ +

N∑

l=1

1

yM − xl
C̃l . (A.28)

At yM = ∞ the matrix L̃M takes the form
(
L̃M−1 0

0 g−λ

)
. Hence,

| L̃M |(N) |yM=∞ = (g − λ)| L̃M−1 |(N) . (A.29)

To find C̃l, notice that all poles of the type 1
yM−xl

, l = 1 , . . . , N, are contained only

in the element
(
L̃M

)
MM

. Therefore, C̃l = ∆MM |yM=xl
Res

yM=xl

(
L̃M

)
MM

. It is easy

to see that Res
yM=xl

(
L̃M

)
MM

= λ~
∏N

k 6=l
xl−xk−~

xl−xk
and

∆MM |yM=xl
= | L̃M−1 |(N − 1)l

M−1∏

β=1

yβ − xl − ~

yβ − xl
, (A.30)

where | L̃M−1 |(N − 1)l is defined in (A.26). Finally, for (A.28) we have

| L̃M | (N) = (g − λ)| L̃M−1 |(N) +
N∑

l=1

λ~

yM−xl
×

×
N∏

k 6=l

xl−xk−~

xl−xk
| L̃M−1 |(N − 1)l

M−1∏

β=1

yβ−xl−~

yβ−xl
. (A.31)

3) At last, compare (A.25) with (A.26) and (A.31). In this way we arrive at the equality

| LN |(M) = (g − λ)N−M | L̃M |(N) , ∀N (A.32)

that finishes the proof.

Proposition 4.2: the “non-relativistic” limit ~ → 0. The analogue of Lemma A.1 is

Lemma A.4. [54] The matrices

Lij(xN ,yM , ω) = δij

(
ω +

N∑

k 6=i

~

qi − qk
+

M∑

γ=1

~

µγ − qi

)
+ (1− δij)

~

qi − qj
,

i , j = 1 , . . . , N

(A.33)

and

L̃αβ(yM ,xN , ω) = δαβ

(
ω −

M∑

γ 6=α

~

µα − µγ
−

N∑

k=1

~

qk − µα

)
+ (1− δαβ)

~

µα − µβ

,

α, β = 1 , . . . ,M .

(A.34)
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can be represented in terms of the diagonal matrices

Dij = δij

M∑

γ=1

~

µγ − qi
, i , j = 1 , . . . , N , (A.35)

D̃αβ = δαβ

N∑

k=1

~

µα − qk
, α , β = 1 , . . . ,M , (A.36)

the diagonal matrix

(D0)ij(uK) = δij

K∏

k 6=i

(ui − uk) , i , j = 1 , . . . ,K , (A.37)

the Vandermonde matrix

Vij(uK) = ui−1
j , i , j = 1 , . . . ,K (A.38)

and

(C0,K)ij =





j , i = j + 1 , i = 2 , . . . ,K,

0 , otherwise

(A.39)

in the following way:

L(xN ,yM , ω) = ω + ~D−1
0 (xN ) ∂zV

T (xN + z eN )
(
V T
)−1

(xN + z eN )D0(xN ) +D
= ω + ~D−1

0 (xN )V T (xN )CT
0,N

(
V T
)−1

(xN )D0(xN ) +D . (A.40)

L̃αβ(yM ,xN , ω) = ω + ~D0(yM )V −1(yM − z eM )∂zV (yM − z eM )D−1
0 (yM ) + D̃

= ω − ~D(yM )V −1(yM )C0,M V (yM )D−1(yM ) + D̃ . (A.41)

Proposition 4.2 can be proved either directly or by taking the limit ~ → 0 together

with the substitutions g := exp(~ω) , λ := exp(~λ). After taking the limit one should

also rescale the variables as

xi → xi/~ , i = 1 , . . . , N , yγ → yγ/~ , γ = 1 , . . . ,M . (A.42)

Then the statement of Proposition 4.2 (4.21) with the matrices (4.19), (4.20) follows

from Proposition 4.1 (4.6) for the matrices (4.4), (4.5). The relation between (4.4), (4.5)

and (4.19), (4.20) is given by (2.7) with η = ~. The matrices C~,K and C0,K are related in

the same way.
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