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Abstract

Background: Metabolic flux analysis has become an established method in systems biology and functional
genomics. The most common approach for determining intracellular metabolic fluxes is to utilize mass
spectrometry in combination with stable isotope labeling experiments. However, before the mass spectrometric
data can be used it has to be corrected for biases caused by naturally occurring stable isotopes, by the analytical
technique(s) employed, or by the biological sample itself. Finally the MS data and the labeling information it
contains have to be assembled into a data format usable by flux analysis software (of which several dedicated
packages exist). Currently the processing of mass spectrometric data is time-consuming and error-prone requiring
peak by peak cut-and-paste analysis and manual curation. In order to facilitate high-throughput metabolic flux
analysis, the automation of multiple steps in the analytical workflow is necessary.

Results: Here we describe iMS2Flux, software developed to automate, standardize and connect the data flow
between mass spectrometric measurements and flux analysis programs. This tool streamlines the transfer of data
from extraction via correction tools to 13C-Flux software by processing MS data from stable isotope labeling
experiments. It allows the correction of large and heterogeneous MS datasets for the presence of naturally
occurring stable isotopes, initial biomass and several mass spectrometry effects. Before and after data correction,
several checks can be performed to ensure accurate data. The corrected data may be returned in a variety of
formats including those used by metabolic flux analysis software such as 13CFLUX, OpenFLUX and 13CFLUX2.

Conclusion: iMS2Flux is a versatile, easy to use tool for the automated processing of mass spectrometric data
containing isotope labeling information. It represents the core framework for a standardized workflow and data
processing. Due to its flexibility it facilitates the inclusion of different experimental datasets and thus can contribute
to the expansion of flux analysis applications.
Background
In metabolic flux analysis (MFA), fluxes are defined as
the flows of molecules between different metabolite
pools catalyzed by the corresponding enzymes and/or
transporters. MFA allows the determination of in vivo
fluxes in a given metabolic network. To achieve this,
MFA combines a stoichiometric model, as the mathemat-
ical representation of the metabolic network, and mea-
surement data from isotope labeling experiments [1,2].
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Taken together the model and the metabolite labeling
information facilitate the calculation of in vivo fluxes not
accessible by direct techniques. However, MFA is char-
acterized by certain technical and conceptual challenges,
for example the exact quantification of the stable iso-
topes introduced to the system under investigation [3-5].
The determination of the amount of label taken up is
complicated by several factors: (i) naturally occurring
stable isotopes (NOIs) of almost all elements found in
metabolites, including 13C: 1.1%, 2H 0.0115%, 17O 0.038%,
18O 0.2% 15N 0.366%, and 34S: 4.2%, [6,7]; (ii) additional
elements with stable isotopes introduced by derivatiza-
tion such as 29Si or 30Si, natural abundance 4.7% and
3.1%, respectively [8-11]; (iii) proton gain or loss during
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Figure 1 Illustration of the mass isotopomer distribution vector
(MDV) of a three carbon compound, e.g. alanine. The signals
with the grey background, the MDV, comprise the fractions of
completely unlabeled (M+0), singly labeled (M+1), doubly labeled
(M+2), and completely labeled (M+numC in general, i.e. M+3 in this
example) analyte. The preceding (M-n) and following (M+numC+n)
masses, which form a boundary around the analyte masses, are
indicated.

Poskar et al. BMC Bioinformatics 2012, 13:295 Page 2 of 10
http://www.biomedcentral.com/1471-2105/13/295
mass spectrometric analysis. The extent of this depends
on the chemical nature of the metabolites, the mass spec-
trometric technique employed, and the sample compos-
ition, e.g. the McLafferty rearrangement [12]; and (iv)
dilution by the original biomass of the biological sample
prior to the feeding of isotope labeled tracers [13,14].
To avoid systematic errors in the determined fluxes, the
labeling levels detected have to be corrected for these
biases.
In other “omic” technologies higher throughput rates

have evolved through the development of more efficient
workflows. This involves automating and integrating dif-
ferent steps of the analytical process. The example of
metabolomics is instructive where sample preparation,
spectrometric analysis and data processing are now rou-
tinely integrated [15-18]. As parallel processing of samples
and automated instrumental analyses have become com-
mon, accurate processing of labeling data can limit the
throughput of flux analysis or profiling. A typical isotope
tracer experiment can result in multiple chromatograms,
each containing mass spectrometric (MS) information on
dozens of analytes, each of which can yield mass isoto-
pomer patterns of multiple fragments. The entirety of
mass isotopomers of a fragment ion is called the mass
isotopomer distribution vector (MDV) [4], cf. Figure 1.
The capability for high–throughput labeling studies

was recently demonstrated for cell cultures of mamma-
lian cells or microbes. Steady state flux analysis (one time
point) was performed with up to 135 strains of Bacillus
subtilis [19] using one labeling substrate, as well as
92 strains of Escherichia coli [20] using four different
labeling substrates and the isotope labeling data of
~12 amino acids were analyzed. Time course labeling
experiments using multiple labeling substrates were per-
formed with human cells, with two treatments, [21] or
Clostridium acetobutylicum [22], at ~7 time points, with
up to 20 analytes measured by liquid chromatography –
mass spectrometry (LC-MS). However these examples of
high-throughput experiments are still the exception. In
general the throughput has not dramatically increased in
the last several years, although the number of analytes
for which labeling can accurately be detected in a single
run is now potentially much larger [9,23-26] and the
value of multiple biological replicates using different
label combinations has been demonstrated [27-29].
A range of useful software is available that perform

different aspects required for MFA including MS data
extraction [30,31], data correction [11,32], model devel-
opment and analysis [33,34], see Table 1. So far only one
unified framework exists, FiatFlux [35], which attempts
to combine all of the above mentioned aspects.
Consequently the automation of MS data processing,

examination and correction of large and heteroge-
neous tracer experimental datasets would provide a more
efficient workflow and bring MFA significantly closer to
being a high–throughput technology. Here we describe
iMS2Flux, a tool that provides a framework for a standar-
dized workflow to automatically process MS data from
isotope tracer experiments. It includes data quality
checks as well as correcting the MS data for NOIs,
proton loss or gain and original biomass. Finally the
processed data can be delivered in formats used by
MFA dedicated modeling software.

Implementation
iMS2Flux has been developed in PERL (the Practical
Extraction and Reporting Language) which is available
for all major computing platforms. iMS2Flux consists of
five major parts: data input, data checking, data correc-
tion, post correction checks, and output (cf. Figure 2).
Additionally a graphical user interface for Microsoft
Windows™ has been developed in Visual Basic.

Input
There are three distinct input components: 1.) command
line arguments to set program options or to override



Table 1 Comparison of iMS2Flux and other available MS correction tools

Tool MSCorr CORRECTOR iMS2Flux FiatFlux corrMatGen (OpenFLUX)

MS Data Extraction a - - - √ -

MS Data Quality Check √ - √ √ -

MS Data Correction Methods:

NA / NOI √ √ √ √ √e

OBM - - √ √ -

Proton loss/gain - - √/√ - -

Output ready for use in Flux-Software:

13CFlux/ 13CFlux2 - - √/√ - -

OpenFlux - - √ - √

FiatFlux - - - √ -

Model development & analysis - - - √ √

Quantification of isotope enrichment - √ √ - -

High-throughput capability b - √ √ √ -

Multiple labeling substrate / isotope c √/- √/√ √/√ - √/√

Analytical platform GC GC/LC GC/LC GC GC/LC

additional software required d proprietary - free proprietary proprietary

Full source code available √ √ √ - -
a directly from chromatogram files like net-cdf files.
b multiple compounds in multiple chromatograms.
c the data processing is independent from the utilized labeling substrate (e.g. uniformly labeled or different positional labeling) and can be adapted to other
elements then carbon (e.g. nitrogen, oxygen).
d requires additional software in order to be used like MATLAB or PERL.
e functional support is provided but not directly integrated.
Abbreviatons: NA - Natural Abundance; NOI - Naturally Occuring stable Isotopes; OBM - Original Biomass; GC - Gas Chromatography; LC - Liquid Chromatography.
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regular operation; 2.) the configuration file (an example
is given in the file config.txt with explanation in the user
manual, see ‘Supporting Information’), which provides
settings for various program options and the names of
additional files containing pertinent information; 3.) a
primary input data file containing the MS data and add-
itional data files, if needed, for a variety of information,
such as original biomass (OBM) or the names for groups
of biological replicates. The MS data consists of MDVs
(Figure 1), all measured intensities or ion counts of the
mass isotopomers of given analytes or fragments. If mul-
tiple chromatograms represent biological replicates they
may be treated as individual datasets or averaged (after
correction). Each supported compound is provided as a
unique extension of the parent data type class. Each exten-
sion is named DataClass_XX.pm, where XX is a unique
two character identifier for each supported compound
class. The currently supported compounds are specified
in Table 2. By following a modular approach, new com-
pounds can be easily added using the existing com-
pounds as a template with minor additions to the main
program (to register a new identifier). The only add-
itional information required is the elemental composition
and structure of each analyte.
The options available for processing the MS data de-

pend on the actual data provided. A part of modularity
in design includes the presentation of data, as such the
main data format is text based, spreadsheet-compatible,
tab-separated values (TSV). In this standard matrix the
first column contains the analyte identifiers; the second
column the mass of the respective mass isotopomers and
the following columns the measured intensities for each
chromatogram; the first row contains an optional title in
the first element; the second row contains the identifiers
for each chromatogram, an example is given in the file
Example_AA.txt (see ‘Supporting Information’). This is a
one dimensional data representation, meaning that each
data file contains only a single type of data, such as raw
MS measurements (typically expressed as ion counts or
arbitrary units) or retention times. Therefore, to provide
multiple types of data requires one TSV file per data type,
otherwise there is no restriction on the type(s) of data that
may be represented. In addition to the standard TSV for-
mat, third party/proprietary formats may be used through
a custom import module. A third party module that is
currently available extends the supported import formats
to include the Waters Quanlynx™ report formats. For a
detailed description of working through this format see
the getting started guide; MSto13C with QuanLynx and
iMS2Flux.pdf (see ‘Supporting Information’).
Due to the highly individualized nature of data extrac-

tion from MS chromatograms from different instruments,



Figure 2 Overview of the MFA workflow. This scheme of the data
processing steps highlight (blue background) those implemented in
iMS2Flux. The bars on the right indicate the reduction of “hands on
time” (in red) for the scientist by automation (in blue) of the MS
data processing, bringing MFA one step closer towards high-
throughput. Colour bar a) illustrating the standard workflow and
colour bar b) illustrating the automated workflow with iMS2Flux.
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iMS2Flux does not extract MS data directly from chroma-
tograms represented in proprietary formats. Instead one
can use the extraction capabilities of third party software,
e.g. TagFinder [30], MZmine 2 [31] or commercial solu-
tions such as Waters Quanlynx™.
Data checking
When implementing any form of automation it is crucial
to thoroughly verify the quality of the original data. Thus
before performing any data correction the program can
perform several checks: first a simple check for missing
values is performed; additional optional checks are:
thresholds for minimum and maximum signal intensity
(linear detector range), this is applied to all MS data in-
cluding boundary data (see below and Figure 1), and devia-
tions from the expected retention time window (specified
as a number of standard deviations) of a respective ana-
lyte. Most data checks are performed on a per-fragment,
per-chromatogram basis, with the exception of the reten-
tion time check. For statistical significance the mean and
standard deviations of the retention times are calculated
over all fragments and all chromatograms, which is valid
for any set of chromatograms measured continuously in
a given set of samples. A complete example illustrating
the use of retention time analysis as a data check is pro-
vided in the appendix of the users’ manual (see ‘Support-
ing Information’). If any errors are found the program
generates a list of the affected data and allows the user
to review the data, going back to the chromatogram if
necessary, manually edit or regenerate the data, and
adjust the selected data check parameters if desired.
Feedback is provided in TSV format, with any errors
located in the position corresponding to the flagged data.
In this way the error feedback can be overlaid as a mask
on the measurement data facilitating user review of the
flagged data.
Each chromatogram has to be composed of the same

groups of MDVs. The first mass of these vectors is
assumed to be the M+0 mass isotopomer (if not other-
wise indicated in the configuration file), and is used to
identify a fragment. Each fragment has a predetermined
number of carbon atoms, and the last mass of a frag-
ment is M+number of C-atoms (M+numC) (cf. Figure 1).
For example, the molecular ion of alanine has a 3 carbon
backbone, thus the last mass fragment would be M+3. It
is also allowed to provide incomplete fragments. The de-
fault behavior of iMS2Flux is to expect that each frag-
ment’s measurement value is provided in order. When
an out of order mass is encountered iMS2Flux considers
it to be the start of a possible new fragment. Thus, if a
mass is missing in the middle of the MDV, iMS2Flux
does not assume it is zero. Instead the fragment is trea-
ted as incomplete, and the remaining measurements be-
long to a non-existent fragment (and thus skipped). In
such a case or whenever unknown data is encountered
feedback is provided identifying where the problem was
encountered. The program can also process boundary
data around each mass fragment. If included, it can ex-
tract M-n and/or M+numC+n data points (Figure 1)
which may be monitored for their relative value. To use



Table 2 Overview of the analytes currently supported by iMS2Flux and the analytical platform on which they can be
measured on

Analytes (with Acronym) Analytic
platform

Comments Reference

monomers from storage compounds: GC-MS compound specific derivatization,
multiple analytes/multiple fragments

Allen et al. 2007,
Junker et al. 2007

proteinogenic amino acids (AA) from proteins,
glycerol (GY) and fatty acids (FA) derived from lipids,
glucose (GL) from starch

soluble metabolites (SM): GC-MS compound specific derivatization,
multiple analytes/multiple fragments

Huege et al. 2007, 2010

sugars, amino and organic acids, et al.

plant cell wall precursors (CW): LC-MS multiple analytes/single fragments Alonso et al. 2010

sugars, sugar-phosphates and nucleotide-sugars
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either of these options all fragments must be consistent
in the number of extra data points.

Data correction
Each MDV is corrected separately and the resulting cor-
rected intensities scaled to 100%, of the sum of all sig-
nals in the MDV. The corrections, if any, are applied in
the order they are listed in the configuration file. If no
corrections are specified, the uncorrected data are scaled
and may be used as is.
Correcting for proton loss [36], see Figure 3b, or pro-

ton gain [37], is required when an individual hydrogen
atom is lost or gained by the analyte during the MS
process. Proton gain is characteristic for fatty acids when
measured via GC-MS and adds mass to the McLafferty
ion of fatty acid methyl esters [12,37,38]. For this correc-
tion it is assumed that the loss or gain affects a fixed
percentage of the molecules, regardless of their labeling.
Figure 3 Overview of MS data correction methods. The comparison of
they are after applying the respective correction method (on the right). Als
NOIs B) correcting for proton loss [the correction for proton gain follows th
This fixed percentage is called the scaling factor α. In
the example illustrated in Figure 3b an analyte with a
2-carbon backbone is measured including the first pre-
ceding border mass, identified as mass M-1. The analyte
suffers a single proton loss, causing a fixed percentage of
each mass measurement to be artificially reduced, and
for a non-negligible measurement of the M-1 mass, as
described by the following set of equations:

Mmeas
�1 ¼ M

0
�1 � αM

0
�1 þ αM

0
0

Mmeas
0 ¼ M

0
0 � αM

0
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0
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0
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0
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2 ¼ M

0
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The non-linear set of equations is solved iteratively for
the scaling factor, assuming the ideal case that the real
boundary measurement is negligible. In the case where
MDV intensities is shown as they were measured (on the left) and as
o illustrated is the bias of the respective distortions: A) correcting for
e same principles] C) the influence the OBM.



Poskar et al. BMC Bioinformatics 2012, 13:295 Page 6 of 10
http://www.biomedcentral.com/1471-2105/13/295
this assumption is not valid, it is possible for the scaling
factor to be artificially inflated or for no stable value to be
found. When no scaling factor is found the original data
are left uncorrected. Similarly, correcting for proton gain
requires the following border measurement, M+numC+1.
The main correction is for naturally occurring stable

isotopes, or natural abundance (NA). Correcting for
NOIs (Figure 3a), is performed for the specified set of
elements that make up the measured analytes. For a
given element, the NA of N atoms with n stable isotopes
Ii, each with probability p(Ii) and occurring f(Ii) times in
the analyte is given by:

Abundance ¼ N !⋅ Π
n

i¼1

p Iið Þf Iið Þ

f Iið Þ!

 !

Due to the diminishing probabilities of multiple heavy
atoms occurring in one molecule by natural abundance,
correction is performed only considering the labeling
probabilities of the M+0, M+1 and M+2 isotopes of
these elements [3-5,11]. A correction matrix is generated
based on the number of atoms of each element consid-
ered and their natural isotope abundance [6,7]. The
square size of the resulting matrix is related to the num-
ber of mass isotopomers, i.e. the size of the MDV, of the
fragment being corrected.
For labeling experiments where the period of steady

state metabolism during labeling is limited, the original
biomass (OBM) makes up a significant percentage of the
final biomass [13,14]. Under this condition it is neces-
sary to remove the bias of the original unlabeled biomass
from the labeling data. This correction for original bio-
mass (Figure 3c) subtracts the OBM from the measured
fragment [13,14] by using the natural abundances of the
carbon isotopes (as used for NOI correction) to distrib-
ute the OBM over each measured mass isotopomer in a
fragment. This correction requires an additional data file
containing information of the percentage of OBM in
each sample, an example is given in the file OBM.txt
(see ‘Supporting Information’).

Post correction checks
Once the MS measurement data has been corrected, it is
possible to perform additional checks, such as for aver-
age labeling. Average labeling is the calculation of the
average labeling due to the supplied label (e.g. 13C), and
therefore must be performed after correction of the data.
The average labeling is calculated on a per MDV basis
as well as for an entire data set, and may be calculated
for each chromatogram separately, or over each replica
group. To be most useful the average carbon labeling
must be performed on MS data from both labeled and
unlabeled samples to identify possible contamination in
individual MDVs, entire analytes or individual chroma-
tograms. As with the other data checks the feedback is
provided in matrix format (TSV) for manual analysis,
allowing contaminated data to be excluded before fur-
ther use. A complete example illustrating the use of
average labeling is provided in the appendix of the user’s
manual (see ‘Supporting Information’).

Output
Output is generated at different stages of processing. If
the raw data is to be output, MS measurements and re-
tention times, this occurs immediately. Output may also
be generated after the data checks and, as specified in
the configuration file, at the completion of processing.
All data types are generated in the standard TSV matrix,
with one type of data per file. If feedback is generated
during the (pre-correction) data check phase the pro-
gram is terminated without performing correction. If the
post correction data check is selected, output is always
generated for both the average carbon labeling and the
desired output as specified in the configuration file. Pro-
cessed data is generated for each chromatogram with all
boundary data removed. Even with no corrections
selected, processed data for each fragment will still be
normalized. In addition, if there is more than one repli-
cate, basic statistics may be generated over each set of
replicate data. For the calculation of statistics with repli-
cate data the number of replicates in each group must be
specified in the configuration file. Correspondingly, the
experimental data for replicates must be given in con-
secutive order (column-wise) in the input MS data file,
and in the same order as the number of replicates
entered in the configuration file. In the case of no repli-
cates, a default value (of five percent) is returned in place
of the standard deviation to ensure compatibility (with
MFA software that require an error value be entered).
Optionally a file containing unique identifiers may be
included for each experimental replicate set; otherwise
generic file names are used for each replicate group.
In addition to the standard output format, iMS2Flux

can generate data directly for use with third party MFA
tools. Currently support is provided for the FTBL format
for use with 13CFlux [33] the CSV format of OpenFLUX
[34] and the FML format of 13CFLUX2 [39]. For
13CFLUX the MS measurement data can be generated
for inclusion in either the ‘Mass Spectrometry’ or ‘Label
Measurements’ sections of an FTBL file. This data can be
generated into a set of individual files (one per set of
replicates), or it can be directly included into one or
more model files (of the specified format). To facilitate
the use of analytes from different compound classes
(such as amino acids and glucose) MS data can be
appended to the existing MS data section of a given
model file.
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Tool validation
iMS2Flux has gone through extensive validation of both
the algorithms and the supported compound classes. In
particular the central correction, for natural abundance,
has been compared to both manually corrected measure-
ments and those corrected by other correction tools.
Manual correction compared both hand calculated cor-
rection and cut and paste with an Excel spreadsheet
[38,40,41]. The algorithm was also compared with both
the CORRECTOR [32] and to the MATLAB correction
tool from Wahl et al. 2004 (afterwards called MSCorr)
[11] correction tools. Minor variation was accounted for
by different natural abundance fractions used in each
method. Similarly the proton loss and gain were com-
pared with the results in [38]. A complete set of uncor-
rected amino acid measurements from 24 experiments is
provided with the software, together with the expected
corrected values.
Results and discussion
iMS2Flux has been designed to act as a high-throughput
framework for MS data analysis, targeting MFA as its
primary application, but is not inherently limited to
MFA. The software is designed to be modular and flex-
ible emphasizing a standard data exchange format. The
standard data format allows for easy access through any
spreadsheet application, and is supported with import
and export modules to easily allow new tools to make
use of the data. In Figure 2 an MFA workflow maximizing
automation is illustrated, utilizing iMS2Flux to branch
from data extraction to data analysis with 13C-Flux soft-
ware (see ‘Supporting Information’). iMS2Flux defines not
only the generic correction tool, but a fully standardized
data format, and through it an automated workflow
connecting third party extraction and analysis tools.
The performance of iMS2Flux was tested on a commer-

cially available PC. The Perl interpreter was ActivePerl
v.5.12.2 (from ActiveState). iMS2Flux is a non-threaded
application and ran entirely on a single core. A set of
GC-MS generated data comprising 128 chromatograms
with a total of 65 fragments corresponding to 412 masses
was processed in 119 seconds. To perform the benchmark
iMS2Flux was set to check for missing data, detector
threshold limits and poor peak values, extract an add-
itional measurement (M+numC+1) from each fragment,
perform natural abundance correction, generate the car-
bon labeling summary (post correction data check), gen-
erate average and standard deviations over replicates,
and generate a complete set of output data (raw mea-
surement, corrected measurement, average and standard
deviation of corrected, and model data for each experi-
mental set in 13CFlux FTBL format for inclusion in
the MASS_SPECTROMETRY section). The data was
pre-screened to ensure that the MS data would pass
all data checks to complete processing.
As illustrated in Table 1 iMS2Flux offers a variety of

options for data correction. Similar to MSCorr, it offers
checks to ensure the MS data is within the upper and
lower boundaries of the MS detector, whereas the tool
CORRECTOR [32] assumes the process MS data is ac-
curate. Depending on the tools used to extract the rele-
vant MS data from chromatograms, e.g. [30,31,42] or
manufacturer software, checks for data accuracy and
quality can be performed during data extraction. Open-
FLUX [34] is an MFA analysis tool that also provides a
NOI correction tool (not directly integrated). Similar to
MSCorr, the OpenFLUX correction is provided as a func-
tion in MATLAB (corrMatGen) which requires the user
to enter the chemical formula and other specifics about
each compound individually. MSCorr, corrMatGen, and
CORRECTOR correct for NOIs, iMS2Flux allows add-
itional correction methods: for original biomass as well
as proton-loss or gain. Furthermore, iMS2Flux is capable
of performing all the above mentioned corrections on
large and heterogeneous data sets, comprising multiple
analytes with multiple MDVs in multiple chromatograms.
The addition of new analyte sum formulas in iMS2Flux is
intuitive, since it only requires the total chemical formula
of the new analyte, without separation of the metabolite
derived part of an analyte from any derivatization reagent
additions. Alternatively fully generalized analyte classes
supporting multi-stage and multiple alternative derivati-
zation are also possible. Finally the output of iMS2Flux
is ready-to-use in MFA-dedicated software. The afore-
mentioned FiatFlux is able to correct GC-MS data for
natural abundance and original unlabeled biomass. The
quality of the extracted MS data is checked in a similar
way as in MSCorr, and faulty MS data can be removed
manually from further calculations. Similar to MSCorr
new compounds require a separation of the atoms of the
analyte from the derivatizing agent. FiatFlux is focused on
deriving flux ratios and absolute fluxes for microorganisms
solely from 1-13C and/or U-13C glucose experiments
combined with GC-MS analysis of amino acids [35].
Although iMS2Flux was designed to serve the needs of

MFA, it can be used as a general tool to quantify stable
isotope labeling in any kind of isotope tracer experiment,
e.g. [32,40,43]. Furthermore, although carbon labeling
with 13C is the method of choice in MFA, other ele-
ments such as nitrogen, hydrogen or oxygen are con-
ceivable for tracer studies [44-46]. iMS2Flux can easily
be adapted to any other element as isotope tracer. In
order to allow the general application of iMS2Flux in
MFA, independent of the MS platform the labeling data
were acquired on, it was designed to process GC-MS,
LC-MS or MS/MS data. Additionally, besides data from
steady state labeling experiments, iMS2Flux can process
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dynamic labeling data as well. For the exploitation of the
full potential of dynamic labeling experiments, such as
short labeling time [47,48], it is necessary to be able to
measure and evaluate MS data not only derived from
metabolic end products (storage compounds) but from
metabolic intermediates, which can have a very fast
turnover [49,50]. This would increase the resolution of a
metabolic network and can resolve precursor-product
relationships which are difficult or impossible to resolve
with data derived from end product labeling [11]. To
give iMS2Flux this capability, data of the elemental com-
position of polar soluble intermediates of primary me-
tabolism, as previously published [32,41], were included.
This list of supported analytes can be extended as
needed, in case new metabolites are of interest or a dif-
ferent derivatization strategy is applied.
In the context of measuring complex biological matri-

ces of soluble metabolic intermediates, similar to meta-
bolic profiling measurements, it seems appropriate to use
specialized software. Since there are multiple software
solutions available, especially dedicated to the alignment
of multiple MS chromatograms and extracting the rele-
vant MS data, e.g. [30,31,42] or manufacturer software,
our efforts focused on finding a general input format that
supports the respective data outputs, the TSV format
described above. iMS2Flux was implemented in PERL
which is freely available and runs on all major computing
platforms. Furthermore, MS data are usually provided in
tabular form, which is either already in the TSV format,
or is easily exported to TSV, thus a text manipulation
language was the obvious choice. PERL supports multiple
programming paradigms and no compilers are required,
as it is a dynamic language a respective script just needs
to be edited and can be run directly. To further promote
the use of iMS2Flux, the code is provided in full and
since the program is not compiled the source is immedi-
ately available to be reviewed and extended for individual
needs. To support flexibility the different data formats,
optional data checks, data correction and output formats
are contained in individual modules.

Conclusions
With iMS2Flux we have developed an MS data proces-
sing tool for isotope labeling experiments with special
focus on increasing throughput at multiple stages of the
data analysis pipeline. Thus from the computational side
MFA technology is now ready to be applied on a large
scale, as is already common in the other –omics methods.
By using iMS2Flux in our daily work we found that by
liberating the researcher from the most laborious tasks of
MS data processing, iMS2Flux removes the limitations
on the number of samples that can be processed per
tracer experiment, including the number of treatments
or genotypes studied, the replication of each experiment,
the number of substrate combinations used, and/or the
number of time points analyzed. This increases the accur-
acy and coverage of MS data; in turn this has the potential
to improve the accuracy (including overdetermination)
and scope of MFA and flux profiling and its integration
into multiomic systems biology.
Availability and requirements
Project name: iMS2Flux
Project home page: http://sourceforge.net/projects/

ims2flux
Operating system(s): Platform independent
Programming language: PERL
Other requirements: PERL v.5 or higher
License: This work is licensed under the Creative Com-

mons Attribution-NonCommercial 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA.
Any restrictions to use by non-academics: license

needed.

Supporting information
The iMS2Flux software and all auxiliary files and
instructions can be downloaded from the SourceForge
project website: http://sourceforge.net/projects/iMS2Flux
The main download is a zip file, iMS2Flux.zip. When

unzipped it will create a folder iMS2Flux containing the
following:

� readme1st.txt – a brief introduction and a complete
listing of the directory structure.

� iMS2Flux.pl - the main program,
� iMS2Flux-Manual.pdf – the user's manual,
� Example_AA – a folder containing all of the

example files, including a copy of the expected
results when running the example using the
instructions in the relevant getting started guide.

� FluxY_Lib – a folder containing the program
libraries common to several projects in the larger
FluxY toolset,

� Getting_Started – a folder containing instructions
on getting started installing and using the software
on different platforms, and

� Math – a folder containing the CPAN library used
by iMS2Flux.
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