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1 Introduction

Finding the high Tc superconductors on the cuprates system, which are not described by the

usual BCS theory, is a remarkable breakthrough in the condensed matter physics occurred

almost 26 years ago. Even though there are huge developments after that, both theoretically

and experimentally, we are still missing the core mechanism governing the system. One

of the common mysterious phenomena in these superconductivity is its Non-Fermi-liquid

behavior above the superconducting phase, which occurs near the quantum critical point.

The main difficulty to understand the mechanism of these high Tc superconductor is, of

course, its strongly coupled dynamics and its lack of the normal quasi-particle pictures.

We do not yet fully understand by what mechanism and for what materials, how high

Tc superconductor can occur in nature. However, as is recent discovery of iron-based

superconductor, experimental progresses on this field are remarkable. These include recent

developments of the cold atom experiments. Therefore it can happen that in the near

future, we get more crucial experimental data which helps to deepen our understanding of

the core mechanism.

On the other hand, one of the most surprising development coming from the string

theory is the realization of holographic principle, which states that two totally different

theories, string (or gravitational) theories in asymptotically anti-de Sitter space background

and strongly coupled large N gauge theories, are equivalent at some limit [1–3]. Recent

developments of the holography by applying that to the strongly coupled condensed matter

system, is just tremendous.1 Especially the construction of the holographic superconductor

(superfluid) [8–10], where the U(1) symmetry breaking through the hairy black hole in the

bulk, intrigues the many interesting developments. See, for examples, [11, 12] for the review

of the holographic superconductors.

1See for examples, [4–7].
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In the real-world materials, it happens quite frequently that the materials showing the

superconducting phase do not have a translational invariance and Lorentz symmetry, due to

the crystal structure of the background atoms. In high Tc superconductor, the effects of the

background atomic structure are very important and it is expected that two-dimensional

structure plays the significant role. One of the very important effects of the background

atomic lattice is that it violates the translational invariance and Lorentz invariance and

induces the periodic potential.

If the material possesses a translational invariance and a net charge, it is more or less

guaranteed that its electric conductivity shows the delta function peak at zero frequency.

This is simply because of the fact that the charged objects are kept accelerated by the

outer electric field in a translationally invariant system. We can also understand this

from the fact that by the Lorentz boost, the system acquires a nonzero current with zero

applied electric field. However, once we break the translational invariance by the lattice,

then, there is no guarantee that such a zero frequency delta function peak appears on the

conductivity.2 Therefore it is quite interesting to consider how the delta function peak in

many interesting holographic system is influenced by these lattice effects. This is because

it is crucial that superconductor possesses such a zero frequency delta function peak even

with lattice effects, to have an infinite DC conductivity. In this paper, we take a first step

towards the lattice effects on the holographic superconductor; we study the lattice effects

on a toy model, which is massive U(1) gauge theory for the bulk action. The mass term of

gauge boson is for the U(1) gauge symmetry breaking in the bulk.

Our toy model, although it is a different theory from the holographic superconductor

model analyzed by [9, 10], has properties which is similar to the holographic superconduc-

tor; Without the lattice, it shows the mass gap, and AC conductivity is quite similar to

the results of [9]. It also shows the delta function peak at zero frequency. Therefore, we

find it interesting to ask how the zero frequency delta function peak in our model, which is

due to the translational invariance and the mass term, is influenced by the lattice effects.

Since in our model the gauge boson has mass term, corresponding to the U(1) symmetry

breaking of the superconductor (superfluid) phase, this analysis is a first step to study the

generic lattice effects on the holographic superconductor phase.

In this paper, we focus on the low frequency limit of the AC conductivity to see if zero

frequency delta function peak survives after the lattice effects are introduced. Note that

even though zero frequency delta function peak is sensitive to the lattice effects, the lattice

effects are expected to be small in the very high frequency limit. This is because, under the

very high frequency limit, the degrees of freedom in the system will be excited and obtain

the energy which scales as ∝ ω2. However this scale is much bigger than the typical energy

scale of the lattice, which scales as ∝ 1/q2, where q is the wavenumber of the lattice.

Therefore, in the ω → ∞ limit, the lattice effects are negligible. Therefore interesting

phenomena by the lattice effects are in the low frequency and also in the intermediate

frequency regime of the AC conductivity.

2Even if the system has a translational invariance, if we apply magnetic field, this delta function peak

disappears. This is because momentum is not conserved in the presence of magnetic field. The same is true

in the presence of disorder. See, for example, [13, 14] for the explicit examples of these in the holographic

conductivity calculations.
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There are several technical points which are worth quoted at this stage. In this paper,

we consider the probe limit, namely we neglect the effects of the gravity. It is known

that in the normal phase (i.e., non-superconducting phase) without taking into account

the gravity, conductivity becomes trivial and there is no delta function peak appearing.

The delta function peak appears only if we take into account the gravity effects in the

normal phase. On the other hand, in the superconducting phase of [9], the delta function

peak appears without taking into account the gravity effects, so is our bulk massive U(1)

gauge model. In this paper, without taking into account the gravity, we study how the

delta function peak in our model is influenced if we introduce the lattice effects (periodic

disturbance to the system) perturbatively.

Before we end this introduction, we comment on several closely related references.

Recently there are developments to take into account the lattice effects for the holographic

condensed matter system. In the paper by Maeda, Okamura, and Koga [15], the geometry,

where the back reaction of lattice effects is taken into account perturbatively, is constructed.

In that paper, the lattice effects are introduced through the chemical potential. In [16],

Horowitz, Santos, and Tong calculated the conductivity under the presence of the lattice

for the normal phase, namely, non-superconducting phase. They showed, using a very

powerful numerical technique, how the AC conductivity, especially the zero frequency delta

function peak, is influenced by the lattice effects. They showed that the delta function peak

disappears by the lattice effects, as is expected for the properties of the normal phase. In

that paper, the lattice effects are introduced through the neutral scalar field, without

relying on the perturbation. Very recently, a paper [17] by Liu, Schalm, Sun, Zaanen,

appears where on the geometry without gravitational back reaction, they discussed the

lattice effects for the holographic fermion correlators, especially its pole for the Non-fermi-

liquids, to see how their dissipation relations are modified.

2 Massive U(1) gauge boson model

2.1 The model

In this paper we consider the following toy model of holographic superconductor for the

bulk action.

S =

∫
d4x
√
−g
(
−1

4
F 2 − V (u, x)A2

)
, (2.1)

where V (u, x) is external potential, and plays the role of position-dependent mass term for

the gauge boson Aµ. u is radial coordinate in the bulk and x is the spatial coordinate in

the boundary theory. In more realistic holographic superconductor model, V (u, x) is given

by the condensation of the charged scalar field Ψ as [8–10]. There, the massless U(1) gauge

boson couples to the charged scalar Ψ, where Ψ takes non-zero VEV, Ψbackground

Ψ = Ψbackground(u, x) 6= 0 . (2.2)

This gives the potential

V (u, x) ∼ |Ψbackground|2 . (2.3)
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corresponding to the spontaneous U(1) symmetry breaking in the bulk, which is dual to

the global U(1) symmetry breaking in the boundary theory. However in this paper, we

consider V (u, x) as given input for the symmetry breaking. Especially, we consider V (u, x)

which satisfies

V (u, x)→ 0 (at the boundary), (2.4)

so that at the boundary, the mass term V (u, x) for the gauge boson disappears. We would

like to calculate the AC conductivity through the bulk U(1) dynamics Aµ, and discuss the

delta function peak with the lattice effects.

One of the main reasons why we consider this toy model is its simplicity. By restricting

the degrees of freedom, the calculation for the AC conductivity, especially by choosing ap-

propriate boundary condition, becomes much simpler than the holographic superconductor

model in [9, 10]. However, as we will show later, this model, without the lattice, shows

the AC conductivity which is quite similar to the one of the holographic superconductor

model. It shows the energy gap. Since one of the essential features of the holographic su-

perconductor model is the U(1) symmetry breaking in the bulk, we expect this bottom-up

model captures some of the essential features. In this paper, we consider the lattice effects

on this model.

The equations of motion for gauge field become

∇νFµν =
1√
−g

∂ν(
√
−gFµν) = −2V (u, x)Aµ , Fµν = ∇µAν −∇νAµ . (2.5)

We give, by hand, the non-zero arbitrary VEV for the background gauge potential Aµ as

Aµ = Abackgroundµ (u, x) 6= 0 , (2.6)

which should be correlated with the nonzero VEV of the charged scalar field (2.2) in

holographic superconductor [9, 10]. This nonzero VEV produces a net charge for the

boundary theory through the normalizable mode of Abackgroundµ . On this background, in

order to calculate the conductivity, we will add small fluctuations given by the ansatz

δAµdx
µ = δAt(t, u, x)dt+ δAx(t, u, x)dx+ δAu(t, u, x)du . (2.7)

From the dynamics of these fluctuations δAµ, we would like to calculate the AC conductiv-

ity. However, since the U(1) gauge boson equations of motion are linear equations, all of

our analysis are independent on the VEV of the gauge boson (2.6). Therefore our argument

for the calculations of the conductivity is independent on the background VEV (2.6).

We take the background metric to be

ds2background =
L2

u2

(
−h(u)dt2 + dx2 + dy2 +

du2

h(u)

)
, (2.8)

where h is radial dependent function, given by

h(u) = 1− u3 , (2.9)

corresponding to the Schwarzschild AdS black brane.
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We study the lattice effects on our model given by the action (2.1). As we quoted

already, this model is a different theory from the holographic superconductor one [9], where

the degrees of freedom is U(1) gauge boson and the charged scalar field. We give the U(1)

symmetry breaking background by hand as (2.2) and (2.6). We have not taken into account

the dynamics of the charged scalar field fluctuation in the U(1) symmetry breaking phase,

which might not be consistent from the original gauge boson and charged scalar field theory

in the bulk. Therefore the reader may regard our model a rather toy model akin to the

U(1) symmetry breaking phase of the holographic superconductor. Although our massive

U(1) gauge boson model is different model, there are several merit to study this model.

First, due to the lack of the dynamical charged scalar, the analysis of solving the equations

of motion is simpler in this model. Second, even though we will not take into account the

charged scalar field fluctuation for the conductivity calculation, the results of conductivity

without the lattice in our model are quite similar to the superconductor model, it shows the

mass gap. Technically, this is because charged scalar fluctuation does not directly couple

to the gauge boson fluctuation without the lattice. Third, this simple model also shows the

zero frequency delta function peak in the probe limit of the holographic superconductor.

Therefore even though this model is different, since this model shows very similar properties

to the U(1) symmetry breaking phase of the holographic superconductor, we regard this

model belongs to the same category to the one in [9]. Therefore even in this model, there

are interesting questions we can ask. In this paper, we restrict our attention to this model,

and we study the lattice effects on it.

We also point out that in this work, we neglect gravitational back reaction. Once we

take into account for the back reaction, the metric will be modified either into Reissner

Nordström AdS type of brane or AdS hairy black brane solution. We expect that even if

we go beyond the probe limit, the back reaction does not change the picture drastically as

is seen explicitly in the case of holographic superconductivity [9, 10]. This is because the

most essential feature is not the gravitational back reaction but rather the U(1) symmetry

breaking, which we will take into account in this paper. For this reason, we take the

background to be Schwarzschild AdS black brane as (2.8), even though there are non-

trivial background flux (2.6), to simplify the calculation.

2.2 Generic analysis

We would like to consider the gauge boson fluctuation so that we can obtain AC conduc-

tivity. For each of the fluctuation (2.5), the equations of motion becomes

h δAt,uu − (δAx,tx − δAt,xx)− h δAu,ut −
2L2

u2
V (u, x)δAt = 0 , (2.10)

h
∂

∂u
(h δAx,u)− (δAx,tt − δAt,xt)− h

∂

∂u
(h δAu,x)− 2L2h

u2
V (u, x)δAx = 0 , (2.11)

δAt,tu − h δAx,xu − δAu,tt + h δAu,xx −
2L2h

u2
V (u, x)δAu = 0 . (2.12)

Equation of motion for the y component is trivially satisfied by δAy = 0.

Clearly, if the potential V (u, x) is independent on position x, then there exists the

solution where both δAt = δAu = 0 with nontrivial δAx, which is independent on x.
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In such cases, fluctuation equation for δAx becomes single differential equation for the

second order.

Taking the simple time-dependence as δAi = e−iωtai (i = t, x, u) for the AC conduc-

tivity, we obtain

hat,uu + at,xx + iωax,x + iωhau,u −
2L2

u2
V (u, x)at = 0 , (2.13)

h
∂

∂u
(hax,u) + ω2ax − iωat,x − h

∂

∂u
(hau,x)− 2L2h

u2
V (u, x)ax = 0 , (2.14)

−iωat,u − hax,xu + ω2au + hau,xx −
2L2h

u2
V (u, x)au = 0 . (2.15)

We would like to solve these coupled differential equations by perturbation and obtain

the AC conductivity. For that purpose, we add the lattice effects which simply take the

following cosine form by the perturbation as

V =
1

L2
(V0(u) + ε δV (u) cos qx) , (2.16)

where ε is a small parameter. V0(u) corresponds to the homogeneous charged scalar con-

densation, while δV (u) corresponds to the lattice effects. We take the ansatz that the

lattice has position x dependence given by the wavenumber q. We will take an explicit

example later, but for a moment we keep it generic u-dependent functions V0(u) and δV (u).

We will conduct perturbation expansion for small ε as

ax = a(0)x (ω, u) + εa(1)x (ω, u) cos qx+ ε2a(2)x (ω, u, x) + · · · , (2.17)

at = εa
(1)
t (ω, u) sin qx+ ε2a

(2)
t (ω, u, x) + · · · , (2.18)

au = εa(1)u (ω, u) sin qx+ ε2a(2)u (ω, u, x) + · · · . (2.19)

Note that a
(0)
i and a

(1)
i are independent on x but we keep the implicit x dependence for

a
(2)
i . Then, from (2.13), (2.14), (2.15), we obtain

h
d

du

(
h
da

(0)
x

du

)
+ ω2a(0)x −

2hV0
u2

a(0)x = 0, (2.20)

h
d2

du2
a
(1)
t − (q2a

(1)
t + iqωa(1)x ) + iωh

d

du
a(1)u −

2V0
u2

a
(1)
t = 0, (2.21)

h
d

du

(
h
da

(1)
x

du

)
+ ω2a(1)x − iqωa

(1)
t − qh

d

du
(ha(1)u )− 2hV0

u2
a(1)x =

2hδV

u2
a(0)x , (2.22)

−iω d

du
a
(1)
t + qh

d

du
a(1)x + ω2a(1)u − q2h a(1)u −

2hV0
u2

a(1)u = 0 , (2.23)

h
∂2

∂u2
a
(2)
t +

∂2

∂x2
a
(2)
t + iω

∂

∂x
a(2)x + iωh

∂

∂u
a(2)u −

2V0
u2

a
(2)
t =

2δV

u2
a
(1)
t sin qx cos qx ,

(2.24)
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h
∂

∂u

(
h
∂a

(2)
x

∂u

)
+ω2a(2)x − iω

∂

∂x
a
(2)
t −h

∂

∂u

(
h
∂a

(2)
u

∂x

)
− 2hV0

u2
a(2)x =

2hδV cos2 qx

u2
a(1)x ,

(2.25)

−iω ∂

∂u
a
(2)
t − h

∂2

∂u∂x
a(2)x + h

∂2

∂x2
a(2)u + ω2a(2)u −

2hV0
u2

a(2)u =
2hδV

u2
a(1)u sin qx cos qx .

(2.26)

In order to simplify, we define the average physical quantities over the spatial direction

x on the range 2π/q as

A(u) :=
q

2π

∫ 2π/q

0
A(u, x)dx. (2.27)

Then, due to the periodicity of the perturbation along the x direction, (2.25) becomes a

simple differential equation as

h
d

du

(
h
da

(2)
x

du

)
+ ω2a

(2)
x −

2hV0
u2

a
(2)
x =

hδV

u2
a(1)x , (2.28)

namely, a
(2)
x decouples from a

(2)
t , a

(2)
u .

Furthermore in order to impose ingoing boundary condition at the horizon, we re-define

the fields as

a
(n)
i = eiωu∗ξ

(n)
i , n = 0, 1, 2, · · · (2.29)

for i = (t, x, u), where

u∗ ≡
∫ u du

h(u)
. (2.30)

Then, from (2.20), (2.21), (2.22), (2.28), we obtain

h
d2

du2
ξ(0)x +

(
h′ + 2iω

) dξ(0)x

du
− 2V0

u2
ξ(0)x = 0 , (2.31)

h
d2

du2
ξ
(1)
t + 2iω

dξ
(1)
t

du
+

[
−iωh′

h
− ω2

h
− q2 − 2V0

u2

]
ξ
(1)
t

= iqωξ(1)x + ω2ξ(1)u − iωh
dξ

(1)
u

du
, (2.32)

h
d2

du2
ξ(1)x +

(
h′ + 2iω

) dξ(1)x

du
− 2V0

u2
ξ(1)x

=
(
iqω + qh′

)
ξ(1)u + qh

dξ
(1)
u

du
+
iqω

h
ξ
(1)
t +

2δV

u2
ξ(0)x , (2.33)

ω2

h
ξ
(1)
t − iω

dξ
(1)
t

du
+ iqωξ(1)x + qh

dξ
(1)
x

du
+

(
ω2 − q2h− 2hV0

u2

)
ξ(1)u = 0 , (2.34)

h
d2ξ

(2)
x

du2
+
(
h′ + 2iω

) dξ(2)x

du
− 2V0

u2
ξ
(2)
x

=
δV

u2
ξ(1)x , (2.35)
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where ′ means the u-derivatives. The zeroth order ξ
(0)
i gives the conductivity without

the lattice effects. By solving (2.31), we can obtain the zeroth order conductivity, i.e.,

conductivity without the lattice.

Let us first concentrate on the leading perturbation ξ
(1)
i . We are interested in the zero

frequency delta function peak. For that purpose, it is enough to study the behavior of

these equations at low frequency limit. For that purpose, we expand those fields in small

ω as

ξ
(1)
i = ξ

(1),0
i + ωξ

(1),1
i + ω2ξ

(1),2
i + · · · (2.36)

for i = t, x, u.

Then at the O(ω0) order corresponding to the static limit, we have

h
d2

du2
ξ
(1),0
t +

(
−q2 − 2V0

u2

)
ξ
(1),0
t = 0 , (2.37)

h
d2

du2
ξ(1),0x + h′

dξ
(1),0
x

du
− 2V0

u2
ξ(1),0x = qh′ξ(1),0u + qh

dξ
(1),0
u

du
+

2δV

u2
ξ(0),0x , (2.38)

qh
dξ

(1),0
x

du
+

(
−q2h− 2hV0

u2

)
ξ(1),0u = 0 . (2.39)

Therefore in this static limit ω → 0, ξ
(1),0
t decouples from ξ

(1),0
x and ξ

(1),0
u . Then it is de-

termined by solving the equation (2.37), which gives unique radial coordinate u dependent

solution once we give the following two boundary condition; The non-normalizable mode of

ξ
(1),0
t must vanish at the boundary. ξ

(1),0
t must vanish at the horizon, so that Wilson loop

e
∫
Aµdxµ ∼ e

∫
Aτdτ (2.40)

vanishes on the trivial cycle at the horizon, in the Euclid signature. These boundary

condition determines that

ξ
(1),0
t = 0 . (2.41)

Given this, for the next order O(ω1), we have

h
d2

du2
ξ
(1),1
t +

(
−q2 − 2V0

u2

)
ξ
(1),1
t = iqξ(1),0x − ihdξ

(1),0
u

du
, (2.42)

h
d2

du2
ξ(1),1x + h′

dξ
(1),1
x

du
+ 2i

dξ
(1),0
x

du
− 2V0

u2
ξ(1),1x (2.43)

= iqξ(1),0u +qh′ξ(1),1u +qh
dξ

(1),1
u

du
+

2δV

u2
ξ(0),1x ,

iqξ(1),0x +qh
dξ

(1),1
x

du
+

(
−q2h− 2hV0

u2

)
ξ(1),1u = 0 . (2.44)

From (2.39) and (2.44), we can write down ξ
(1),0
u , ξ

(1),1
u in terms of ξ

(1),0
x , ξ

(1),1
x as

ξ(1),0u =
q

q2 + 2V0
u2

dξ
(1),0
x

du
, (2.45)

ξ(1),1u =
q

q2 + 2V0
u2

(
dξ

(1),1
x

du
+
i

h
ξ(1),0x

)
. (2.46)
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These give

ξ(1)u =
q

q2 + 2V0
u2

(
dξ

(1)
x

du
+
iω

h
ξ(1)x

)
+O(ω2) . (2.47)

From this, it is straightforward to check that at the horizon where h → 0, ξµξ
µ is

divergent-free.3

By plugging this (2.47) back to the equations (2.32) and (2.33), we obtain differential

equations for ξt and ξx up to order O(ω2) accuracy as,

h
d2

du2
ξ
(1)
t +

[
−q2 − 2V0

u2

]
ξ
(1)
t

= iqωξ(1)x − iωh
d

du

(
q

q2 + 2V0
u2

dξ
(1)
x

du

)
+O(ω2) , (2.53)

h
d2

du2
ξ(1)x +

(
h′ + 2iω

) dξ(1)x

du
− 2V0

u2
ξ(1)x

=
q (iqω + qh′)

q2 + 2V0
u2

(
dξ

(1)
x

du
+
iω

h
ξ(1)x

)
+ qh

d

du

(
q

q2 + 2V0
u2

(
dξ

(1)
x

du
+
iω

h
ξ(1)x

))

+
2δV

u2
ξ(0)x +O(ω2), (2.54)

3To see this, note that by using the regularity of ξt at the horizon, (2.42) gives

ξ
(1),1
t = − iq

q2 + 2V0
u2

ξ(1),0x . (2.48)

So we have

ξ
(1)
t = −ω iq

q2 + 2V0
u2

ξ(1),0x +O(ω2) . (2.49)

Therefore, we have, at the horizon where h→ 0, neglecting O(ω3),

ξµξνg
µν = (ξt)

2gtt + (ξx)2gxx + (ξu)2guu

=
u2

L2
h−1ω2

(
q

q2 + 2V0
u2

)2

(ξ(1),0x )2 +
u2

L2
(ξ(1),0x + ωξ(1),1x + ω2ξ(1),2x )2

+
u2

L2
h

(
q

q2 + 2V0
u2

(
dξ

(1),0
x

du
+ ω

(
dξ

(1),1
x

du
+
i

h
ξ(1),0x

))
+ ξ(1),2u

)2

+O(ω3) . (2.50)

Here, by using the similar argument, from (2.34), we can see ξ
(1),2
u diverges at the horizon as

ξ(1),2u = O(h−1) . (2.51)

Let’s consider the leading divergent terms in above ξµξνg
µν . Under the regularity condition for ξx, the

leading divergent terms which blow up as O(h−1) are

ξµξνg
µν =

u2

L2
h−1ω2

(
q

q2 + 2V0
u2

)2

(ξ(1),0x )2 +
u2

L2
ω2h

(
q

q2 + 2V0
u2

i

h
ξ(1),0x

)2

+O(h0) . (2.52)

So at least up to O(ω2), the leading divergent terms, which behave as h−1 in ξµξνg
µν , cancel.
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Note that terms like ωξ
(1)
t are O(ω2). We can solve those equations and resultantly we can

determine the conductivity in the low frequency limit. The results allow us to check if zero

frequency delta function peak exists or not at this order.

Conductivity is given by

σ ≡ Ax,u
Fxt

=
ax,u

at,x + iωax
, (2.55)

which is generically position dependent. Here in numerator, dominant term is a normaliz-

able mode, and in the denominator, dominant term is non-normalizable mode. Expanding

Ax and At by ε, we obtain,

σ = σ(0)(ω) + ε cos qx σ(1)(ω) + ε2σ(2)(ω, x) + · · · (2.56)

and

σ(0)(ω) = 1 +
ξ
′(0)
x (0)

iωξ
(0)
x (0)

, (2.57)

σ(1)(ω) = − iξ
′(1)
x (0)

ωξ
(0)
x (0)

+
iξ

(1)
x (0)ξ

′(0)
x (0)

ωξ
(0)
x (0)2

+
iqξ

(1)
t (0)

ωξ
(0)
x (0)

+
qξ

(1)
t (0)ξ

′(0)
x (0)

ω2ξ
(0)
x (0)2

, (2.58)

where ′ is u-derivative. If we look at the spatially averaged part of the conductivity σ as

σ(ω) ≡ q

2π

∫ 2π/q

0
σdx

≡ σ(0) + εσ(ω)(1) + ε2σ(ω)(2) + · · · , (2.59)

then we obtain,

σ(1)(ω) = 0,

σ(2)(ω) =
ξ′

(2)
x (0)

iωξ
(0)
x (0)

− ξ
(2)
x (0)ξ′(0)x (0)

iωξ
(0)
x (0)2

+
qξ

(1)
t (0)ξ

(1)
x (0)

2iωξ(0)(0)2
+
ξ
(1)
x (0)2ξ

(0)′
x (0)

2iωξ(0)(0)3

−ξ
(1)
x (0)ξ

(1)′
x (0)

2iωξ
(0)
x (0)2

− q2ξ
(1)
t (0)2

2ω2ξ
(0)
x (0)2

− qξ
(1)
t (0)ξ

(1)
x (0)ξ

(0)′

t (0)

ω2ξ
(0)
x (0)3

+
qξ

(1)
t (0)ξ

(1)′
x (0)

2ω2ξ
(0)
x (0)2

− q2ξ
(1)
t (0)2ξ

(0)′
x (0)

2iω3ξ
(0)
x (0)3

. (2.60)

We would like to evaluate these perturbative corrections to the conductivity by the lattice

effects. However, in the real-world experiments, we usually apply a homogeneous electric

field and see the conductivity. This means, that we should choose the boundary condition

such that inhomogeneous parts of the electric field are set to be zero. This corresponds to

choosing non-normalizable modes of the O(ε) terms, ξ
(1)
i (u) for (i = t, x), are set to zero

ξ
(1)
i (0) = 0 , (i = t, x) , (2.61)
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since they have cos qx dependence. Therefore, above conductivity formula reduces to

σ(1)(ω) = − iξ
′(1)
x (0)

ωξ
(0)
x (0)

, σ(2)(ω) =
ξ′

(2)
x (0)

iωξ
(0)
x (0)

− ξ
(2)
x (0)ξ′(0)x (0)

iωξ
(0)
x (0)2

. (2.62)

These are the quantities which we will evaluate.

Without solving the equations of motion explicitly, we can guess how the solution

behaves at the zero frequency limit, and therefore, how the zero frequency delta function

peak behaves at ω → 0 limit at this stage.

In the ω → 0 limit, as we showed in (2.36) and (2.41), we have

ξ
(1)
t = O(ω) , ξ(0)x = O(1) , ξ(1)x = O(1) . (2.63)

Similarly we can also confirm that

ξ(2)x = O(1) . (2.64)

Then by plugging these into the perturbative results (2.62), we can obtain that

Imσ(0) ∼ 1

ω
, Imσ(1) ∼ 1

ω
, Imσ(2) ∼ 1

ω
. (2.65)

Therefore we can guess that imaginary of σ has a simple pole structure ∼ 1
ω , as far as we

consider the lattice effect perturbatively. However this argument is very naive, since there

is a possibility that the residue of the pole becomes zero and pole disappears. For example,

in the normal phase without lattice structure, the above argument breaks down since ξ
(0)
x

becomes zero therefore the residue of the 1
ω vanish. Therefore in order to confirm above

expectation, we will now solve the equations of motion in more explicitly and obtain the

solutions. Then, we would like to see if the imaginary of σ has a pole as

Imσ ∼ 1

ω
. (2.66)

Once this behavior is confirmed, using the Kramers-Kronig relation

Im[σ(ω)] = − 1

π
P
∫ ∞
−∞

dω′
Re[σ(ω′)]

ω′ − ω
, (2.67)

we can conclude that there is a zero frequency delta function peak. However even if the

delta function peak remains, how its residue (weight), ω×Imσ changes as we vary q is very

nontrivial. We will see through the numerical analysis that the weight, which is ω × Imσ,

decreases as we increase q.

2.3 Explicit examples for AC conductivities at low frequency limit

In order to work on some explicit examples, let us consider examples where we take

V0 = d1u
2(1 + d2u

2) , δV = u2 . (2.68)

Now we numerically calculate the conductivity σ(0)(ω), σ(1)(ω), σ̄(2)(ω), given by the for-

mula (2.57) and (2.62) for various q in the two typical cases, (i) d1 = 5, d2 = 0 and (ii)

– 11 –



J
H
E
P
1
1
(
2
0
1
2
)
1
1
7

0.0002 0.0004 0.0006 0.0008 0.0010
Ω

10 000

20 000

30 000

40 000

50 000

ImΣ0

Figure 1. Im[σ(0)] is plotted for various ω (red) in the case (i). The best fitting curve (blue) is

Im[σ(0)(ω)] ' −9.4× 10−4 + 3.1/ω.
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Figure 2. Re[σ(0)] is plotted for various ω in the case (i). There is a delta function peak at ω = 0.

d1 = 5, d2 = 2, respectively. We have chosen the power for V0 as u2 and u4. These choices

are due to the fact that the asymptotic behaviors of the background charged scalar, which

condensates, behaves as Ψbackground ∼ u or Ψbackground ∼ u2, see eq. (8) of [9].

By imposing regularity condition at the horizon,

ξ(0)x (1) = regular, (2.69)

we obtain the conductivity σ(0)(ω) by numerically solving (2.31). Figure 1–4 show σ(0)(ω).

As is seen from the figures for the Re[σ(0)(ω)], for the both cases, the gap appears. The

energy gap in figure 4 is larger than the one in figure 2 because the “condensation” V0(u) ∼
|Ψbackground|2 in the case (ii) is larger than the one in the case (i). As we mentioned

in the introduction, these results for conductivities are quite similar to the conductivity

calculations for the holographic superconductor [9]. Especially there are energy gaps and

delta function peak at Re[σ(0)(ω)] = 0, which is seen from the imaginary parts of σ0 behave

as 1
ω . For in figure 2 and 4, both Re[σ(0)(ω)] approaches small but nonzero value at ω → 0,

corresponding to the existence of the mass gap.

By Kramers-Kronig relation (2.67), the real part of the conductivity contains a delta

function peak such as Re[σ(0)(ω)] ' πC(0)δ(ω) if the imaginary part of the conductivity

contains a pole such as Im[σ(0)(ω)] ' C(0)/ω. Figure 1 and 3 show that the pole exists at

ω = 0 for both cases (i) and (ii). The best fitting curves determine the coefficients C(0) as

C(0) = 3.1 (the case (i)) and C(0) = 3.25 (the case (ii)).
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Figure 3. Im[σ(0)] is plotted for various ω (red) in the case (ii). The best fitting curve (blue) is

Im[σ(0)(ω)] ' −8.4× 10−5 + 3.25/ω.
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Figure 4. Re[σ(0)] is plotted for various ω in the case (ii). There is a delta function peak at ω = 0.

The first order conductivity σ(1)(ω) is obtained by numerically solving the following

equations from (2.53) and (2.54);

h
d2

du2
ξ
(1)
t +

[
−q2 − 2d1(1 + d2u

2)
]
ξ
(1)
t (2.70)

= iqωξ(1)x −
iωhq

q2 + 2d1(1 + d2u2)

d2ξ
(1)
x

du2
+

4iωhqd1d2u

(q2 + 2d1(1 + d2u2))2
dξ

(1)
x

du
+O(ω2) ,

h
d2

du2
ξ(1)x +

(
h′ + 2iω

) dξ(1)x

du
− 2d1(1 + d2u

2)ξ(1)x

=

(
q (iqω + qh′)

q2 + 2d1(1 + d2u2)
− 4d1d2hq

2u

(q2 + 2d1(1 + d2u2))2

) (
dξ

(1)
x

du
+
iω

h
ξ(1)x

)

+
q2h

q2 + 2d1(1 + d2u2)

(
d2ξ

(1)
x

du2
+
iω

h

dξ
(1)
x

du

)
− iωq2h′

h (q2 + 2d1(1 + d2u2))
ξ(1)x

+2ξ(0)x +O(ω2) , (2.71)

To obtain the solution, we need to impose boundary conditions both at the horizon and

the infinity. As we mentioned, in real-world experiments, we usually apply a homogeneous

electric field and measure the conductivity. Therefore we shall impose a constant electric

field condition at infinity. Since O(ε) part of the flux has cos qx dependence, we require
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Figure 5. (Color online) Im[σ(ω)(1)] in the case (i) for q = 2. The best fitting curve is σ(1) '
9.2× 10−5 + 0.41/ω.
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Figure 6. (Color online) Im[σ(ω)(1)] in the case (i) for q = 5. The best fitting curve is σ(1) '
0.0024 + 0.78/ω.

that

E(1)
x (0) =

(
iωa(1)x (0) + qa

(1)
t (0)

)
cos qx = 0 , (2.72)

for arbitrary x. We have chosen ξ
(1)
x (0) = ξ

(1)
t (0) = 0 as (2.61), therefore (2.72) is satisfied.

We also require that the regularity condition for ξ
(1)
x and ξ

(1)
t at the horizon, which yield

the ingoing condition for a
(1)
x and a

(1)
t .

Figure 5–10 show Im[σ(1)(ω)] for various wavenumbers q = 2, 5, 10 for each case. Let us

define the coefficient C̃(q) as Im[σ(1)(ω)] = C̃(q)/ω+O(1) near ω = 0. Then, the coefficient

C̃(q) can be read from the best fitting curves in figure 5–10 as C̃(2) = 0.41, C̃(5) = 0.78, and

C̃(10) = 1.6 for the case (i), while C̃(2) = 0.38, C̃(5) = 0.73, and C̃(10) = 1.58 for the case

(ii). This implies that the coefficient C̃(q) increases as q increases.

Finally, we show q-dependence of σ(ω)(2) in figures 11–16. σ(ω)(2) is numerically

obtained by solving eq. (2.35) under the regularity condition for ξ̄
(2)
x at the horizon and

the constant electric field condition. Let us expand the imaginary part of the spatially

averaged conductivity σ as

Im[σ] =
C(q)

ω
=
C(0) + εC(1)(q) + ε2C(2)(q) + · · ·

ω
+O(1) (2.73)
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Figure 7. (Color online) Im[σ(ω)(1)] in the case (i) for q = 10. The best fitting curve is σ(1) '
0.72 + 1.6/ω.
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Figure 8. (Color online) Im[σ(ω)(1)] in the case (ii) for q = 2. The best fitting curve is σ(1) '
2.7× 10−4 + 0.38/ω.
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Figure 9. (Color online) Im[σ(ω)(1)] in the case (ii) for q = 5. The best fitting curve is σ(1) '
0.0024 + 0.73/ω.

near the origin, ω = 0. Then, by definition, we immediately obtain C(1)(q) = 0. Therefore,

the coefficient C(q) is given by

C(q) = C(0) + ε2C(2)(q). (2.74)

The coefficient C(2)(q) can be read from the best fitting curves as in figure 11–16

as C(2)(2) = −0.010, C(2)(5) = −0.014, and C(2)(10) = −0.020 for the case (i), while

C(2)(2) = −0.0067, C(2)(5) = −0.010, and C(2)(10) = −0.015 for the case (ii). Therefore,
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Figure 10. (Color online) Im[σ(ω)(1)] in the case (ii) for q = 10. The best fitting curve is

σ(1) ' 0.49 + 1.58/ω.
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Figure 11. (color online) Im[σ(ω)(2)] in the case (i) for q = 2. The best fitting curve is σ(2) '
−1.3× 10−6 − 0.010/ω.
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Figure 12. (Color online) Im[σ(ω)(2)] in the case (i) for q = 5. The best fitting curve is σ(2) '
−2.5× 10−6 − 0.014/ω.

the lattice effects reduce the coefficient C(q) for any wavenumber q. Furthermore, we find

that as q increases, the coefficient C(2)(q), and therefore C(q), decreases.

By Kramers-Kronig relation, the real part of the conductivity contains a delta function

peak if the imaginary part of the conductivity contains a pole. All these results suggest

that, the magnitudes of the zero frequency delta function peak decrease by the lattice

effects. This implies that in the holographic superconductor, the “superfluid component”

of the conductivity decreases by the lattice effects.
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Figure 13. (Color online) Im[σ(ω)(2)] in the case (i) for q = 10. The best fitting curve is σ(2) '
−3.9× 10−6 − 0.020/ω.
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Figure 14. (Color online) Im[σ(ω)(2)] in the case (ii) for q = 2. The best fitting curve is σ(2) '
−5.6× 10−7 − 0.0067/ω.
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Figure 15. (color online) Im[σ(ω)(2)] in the case (ii) for q = 5. The best fitting curve is σ(2) '
3.5× 10−7 − 0.010/ω.

3 Conclusion and discussion

We studied the lattice effects on the toy model of holographic superconductor (superfluid-

ity), massive U(1) gauge boson model. Especially we studied how the zero frequency delta

function peak on the real part of the conductivity is influenced by the lattice effects. Our

analysis suggests that even though its weight reduces, the delta-function peak still remains

even after the lattice effects are taken into account. This implies that the superfluid com-

ponent remains with the lattice. We have seen also that, as the wavenumber of the lattice

increases, the weight of the delta function peak decreases.
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Figure 16. (Color online) Im[σ(ω)(2)] in the case (ii) for q = 10. The best fitting curve is

σ(2) ' 0.00015− 0.015/ω.

However in order to get conclusive results, clearly we need to study things in more great

detail. In our toy holographic superconductivity (superfluidity) model, we have neglected

two important ingredients, the dynamics of the charged scalar field and also the gravity.

For the charged scalar field, instead of treating it as a dynamical field, we have given its

VEV by hand as an input. This nonzero VEV corresponds to the U(1) symmetry breaking

and yields the mass term for the gauge boson. Even though we vary this VEV and its

radial profile through the several parameters of our system, we have seen that the zero

frequency delta function peak remains. Therefore, we expect that the results will not be

modified much even after we have taken into account the charged scalar dynamics. However

of course, it is better to confirm this point in more explicitly by taking into account the

dynamics of the charged scalar field.

We have also neglected the effects of the gravity. There are two important effects

associated with the gravity dynamics; The first one is the back reaction of the lattice effects

to the geometry, since we have used the background geometry which does not possess the

lattice effects. This correction can be calculated perturbatively, as is studied, for example,

in [15]. This induces the perturbative corrections to the background geometry, and how

the perturbative correction appears on the geometry depends on how we introduce it.

Suppose the lattice effects are O(ε), then, depending on the lattice effects which appear

to the energy-momentum tensor at either O(ε) or O(ε2), the order of back reaction to

the geometry is different. If we introduce the perturbative lattice effects on the chemical

potential as [15] to the background with nonzero chemical potential background, then the

back reaction of the lattice effects appear as O(GN ε), then it cannot be neglected unless we

take the probe limit. On the other hand, if we introduce the perturbative lattice effects by

introducing neutral scalar field as [16], then its back reaction appears as O(GN ε
2) therefore

it can be neglected at the leading order in ε without taking the probe limit.

There is also gravity effects on the conductivity calculations. As we quote in the

introduction, the delta function peak does not appear in the normal phase, where U(1)

symmetry is preserved. This can be seen for example, by the fact that without gravity

effect, on the normal phase, the equations of motion for the gauge boson Aµ admits only

trivial constant solution.4 Once we take into account the gravity, we can see the delta

4In fact if we re-write the equations of motion for the gauge boson Aµ as Schrodinger equation and
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Figure 17. (Color online) Re[σ(ω)(1)] in the case of d1 = 5, d2 = 0, q = 2.

function peak, originated from the translational invariance of the system. In [16], by

taking into account the gravity effect, it is shown that the zero frequency delta function

peak becomes flatten once we take into account the lattice effects. It is interesting to see

how the results in this paper are influenced if we take into account the gravity effect.

Finally even if we take into account all of above effects, it is not clear if the perturbative

analysis, as we have done in this paper, is enough to give us conclusive results. It is possible

that there are non-perturbative corrections to the conductivity by the lattice effects, which

significantly influence the delta function peak. In such cases, we may have to rely fully on

the numerical analysis. We left these open questions for the future projects.
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A A real part of the conductivity

In this appendix, we summarize the numerical data for the real part of the conductivity. In

figures 2 and 4, we show the Re[σ(ω)(0)] in the case of d1 = 5, d2 = 0 and d1 = 5, d2 = 2,

respectively. It is clear that there is an energy gap approximately in the region 0 ≤ ω ≤ 3

for both cases.

In figures 17–22, Re[σ(ω)(i)] (i = 1, 2) are plotted in the case of d1 = 5, d2 = 0 and

d1 = 5, d2 = 2, respectively for each q = 2, 5. In any case, the real part approaches a

constant in the limit ω → 0.

Note that even though Re[σ(ω)(i)] < 0 (i = 1, 2), since we have small but nonzero

Re[σ(ω)(0)] > 0, as long as we consider the perturbative analysis, the real part of the

conductivities are always positive.

treating the calculation for the conductivity as scattering problem [18], the potential vanishes if we neglect

the gravity effect on the normal phase. Therefore the conductivity is always unity, and we cannot see any

delta function peak.
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Figure 18. (Color online) Re[σ(ω)(1)] in the case of d1 = 5, d2 = 0, q = 5.
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Figure 19. (Color online) Re[σ(ω)(1)] in the case of d1 = 5, d2 = 2, q = 2.
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Figure 20. (Color online) Re[σ(ω)(1)] in the case of d1 = 5, d2 = 2, q = 5.
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Figure 21. (Color online) Re[σ(ω)(2)] in the case of d1 = 5, d2 = 0, q = 2.
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Figure 22. (Color online) Re[σ(ω)(2)] in the case of d1 = 5, d2 = 0, q = 5.
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Figure 23. (Color online) Re[σ(ω)(2)] in the case of d1 = 5, d2 = 2, q = 2.
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Figure 24. (Color online) Re[σ(ω)(2)] in the case of d1 = 5, d2 = 2, q = 5.
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