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Abstract
In this paper, we derive necessary and sufficient optimality conditions for a general
minimax programming problem involving some classes of generalized convexities
with the tool-right upper-Dini-derivative. Moreover, using the concept of optimality
conditions, Mond-Weir type duality theory has been developed for such a minimax
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1 Introduction
The minimax approach to optimization theory certainly is not new. It takes its origins in
von Neumann’s game theory. The broad spectrum of existing results and applications of
minimax theory in the field of optimization is captured in the book edited by Du et al.
[]. Starting with work of Schmittendorf [], minimax programming problems have been
studied by several authors; for example, see [–] and the references cited therein.
Convexity is a sufficient but not necessary condition formany important results ofmath-

ematical programming, since there are diverse extensions of the notion of convexity bear-
ing the same properties. Moreover, it is well known that a function is convex iff its re-
striction to each line segment in its domain is convex. This property inspired Ortega and
Rheinboldt [] to introduce an important generalization of convex functions by replacing
a line segment joining two points by a continuous arc and called them arcwise connected
functions defined on arcwise connected sets.
Following the idea of arcwise convexity, Avriel and Zang [] introduced Q-connected

(QCN) functions and P-connected (PCN) functions and also they have discussed neces-
sary and sufficient local-global minimum properties of these functions. Some elementary
properties of these functions in terms of their directional derivatives have been studied by
Bhatia and Mehra []. Bhatia and Mehra [] also established optimality conditions for
scalar-valued nonlinear programming problems involving these functions.
To relax the definition of arcwise convexity in terms of directional derivative recently

Yuan and Liu [] introduced the concept of (α,ρ)-right upper-Dini-derivative locally ar-
cwise connected with respect to the arc H and established optimality and duality results
for a nonlinear multiobjective programming problem. In this paper, we use generalized
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convex functions, in terms of the right upper-Dini-derivative to derive necessary and suf-
ficient optimality conditions for a general minimax programming problem and duality
results for its Mond-Weir type dual model.
This paper is structured as follows: Some preliminary concepts and properties regarding

generalized convex functions are given in Section . In Section , we establish necessary
and sufficient optimality conditions for a general minimax programming problem involv-
ing generalized convex functions. In Section , we establish appropriate duality theorems
for a Mond-Weir type dual problem. Finally, in Section  we summarize our main results
and also point out some further research opportunities.

2 Preliminaries
Let Rn denote the n-dimensional Euclidean space, Rn

+ its nonnegative orthant and X ⊂ Rn.
For a nonempty set Q in a topological vector pace E, Q̄ denote the closure of Q and

Q∗ =
{
ν ∈ E∗|ν(q)≥ ,∀q ∈Q

}

denotes the dual cone of Q, where E∗ is the dual space of E.
For some nonempty subset Y , letRY =�YR denote the product space in a product topol-

ogy. Then the topological dual space of RY is the generalized finite sequence space consist-
ing of all the functions u : Y → R with finite support []. The set RY

+ = �YR+ denote the
convex cone of all nonnegative functions on Y . Then the topological dual of RY

+ is given
by

(
RY
+
)∗ = ∧

=
{
λ = (λy)y∈Y |∃ a finite set Y ⊆ Y such that λy = ,∀y ∈ Y \ Y

and λy ≥ ,∀y ∈ Y
}
.

Now, we recall some well-known results and concepts which will be used in the sequel.

Definition . [] A set X ⊂ Rn is said to be an arcwise connected set if, for every x ∈ X,
x ∈ X, there exists a continuous vector-valued function Hx,x : [, ] → X, called an arc,
such that

Hx,x () = x, Hx,x () = x.

Definition . [] Let ϕ be a real-valued function defined on an arcwise connected set
X ⊂ Rn. Let x,x ∈ X, and Hx,x be the arc connecting x and x in X. The right upper-
Dini-derivative of ϕ with respect to Hx,x (t) at t =  is defined as follows:

(dϕ)+
(
Hx,x

(
+

))
= lim

t→+
sup

ϕ(Hx,x (t)) – ϕ(x)
t

. ()

Using this upper-Dini-derivative concept, Yuan and Liu [] introduced a class of func-
tions, which called (α,ρ)-right upper-Dini-derivative function. For convenience, we use
the following notations.
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Definition . [] A set X ⊂ Rn is said to be locally arcwise connected at x̄ if for any
x ∈ X and x �= x̄ there exist a positive number a(x, x̄), with  < a(x, x̄) ≤ , and a continuous
arc Hx̄,x such that Hx̄,x(t) ∈ X for any t ∈ (,a(x, x̄)).
The setX is locally arcwise connected onX ifX is locally arcwise connected at any x ∈ X.

Definition . [] Let X ⊂ Rn be a locally arcwise connected set and ϕ : X → R be a
real function defined on X. The function ϕ is said to be (α,ρ)-right upper-Dini-derivative
locally arcwise connectedwith respect toH at x̄, if there exist real functions α : X×X → R,
ρ : X ×X → R such that

ϕ(x) – ϕ(x̄)≥ α(x, x̄)(dϕ)+
(
Hx̄,x

(
+

))
+ ρ(x, x̄), ∀x ∈ X.

If ϕ is (α,ρ)-right upper-Dini-derivative locally arcwise connectedwith respect toH at x̄
for any x̄ ∈ X, then ϕ is called (α,ρ)-right upper-Dini-derivative locally arcwise connected
with respect to H on X.

Remark . It revealed by an example given in [] that there exists a function, which is
(α,ρ)-right upper-Dini-derivative locally arcwise connected but neither d-ρ-(η, θ )-invex
[] nor d-invex [] nor directional differentially B-arcwise connected [].

Now we define the notions of ρ-generalized-pseudo-right upper-Dini-derivative locally
arcwise connected, strictly ρ-generalized-pseudo-right upper-Dini-derivative locally arc-
wise connected and ρ-generalized-quasi-right upper-Dini-derivative locally arcwise con-
nected functions.

Definition . The function ϕ : X → R is said to be ρ-generalized-pseudo-right upper-
Dini-derivative locally arcwise connected (with respect to H) at x̄, if there exists a real
function ρ : X ×X → R such that

(dϕ)+
(
Hx̄,x

(
+

)) ≥ –ρ(x, x̄) ⇒ ϕ(x)≥ ϕ(x̄), ∀x ∈ X,

equivalently

ϕ(x) < ϕ(x̄) ⇒ (dϕ)+
(
Hx̄,x

(
+

))
< –ρ(x, x̄), ∀x ∈ X.

The function ϕ : X → R is said to be ρ-generalized-pseudo-right upper-Dini-derivative
locally arcwise connected (with respect to H) on X if it is ρ-generalized-pseudo-right
upper-Dini-derivative locally arcwise connected (with respect to H) at any x̄ ∈ X.

The following example shows that there exists a function which is ρ-generalized-
pseudo-right upper-Dini-derivative locally arcwise connected but not (α,ρ)-right upper-
Dini-derivative locally arcwise connected with respect to the arc H .

Example . Let X = (–, ) and the function ϕ : X → R be defined by

ϕ(x) =

⎧⎨
⎩|x| sin 

x ; if x ∈ (–, )∪ (, ),

; if x = .
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For any, x, y ∈ R, defining the arc H : [, ] → R by

Hy,x(t) = tx + ( – t)y, t ∈ [, ].

Note that, by the definition of right upper-Dini-derivative by (), for x ∈ (–, )∪ (, ) we
have

(dϕ)+
(
H,x

(
+

))
= |x|.

Let ρ : X ×X → R be defined by

ρ(x, y) =

⎧⎨
⎩|x|; if x ∈ (–, )∪ (, ),

; if x = .

Now, for x̄ = , it follows that

(dϕ)+
(
Hx̄,x

(
+

)) ≥ –ρ(x, x̄) ⇒ ϕ(x)≥ ϕ(x̄), ∀x ∈ X.

This means that ϕ is ρ-generalized-pseudo-right upper-Dini-derivative locally arcwise
connected (with respect to H) at x̄ = . But ϕ is not a (α,ρ)-right upper-Dini-derivative
locally arcwise connected with respect to same arc H and ρ at x̄ =  because for x ∈
(–, )∪ (, ) and α(x, x̄) = , we can see that

ϕ(x) – ϕ(x̄) – α(x, x̄)(dϕ)+
(
Hx̄,x

(
+

))
– ρ(x, x̄) < .

Definition . The function ϕ : X → R is said to be strictly ρ-generalized-pseudo-right
upper-Dini-derivative locally arcwise connected (with respect to H) at x̄, if there exists a
real function ρ : X ×X → R such that

(dϕ)+
(
Hx̄,x

(
+

)) ≥ –ρ(x, x̄) ⇒ ϕ(x) > ϕ(x̄), ∀x ∈ X,x �= x̄,

equivalently

ϕ(x)≤ ϕ(x̄) ⇒ (dϕ)+
(
Hx̄,x

(
+

))
< –ρ(x, x̄), ∀x ∈ X,x �= x̄.

The function ϕ : X → R is said to be strictly ρ-generalized-pseudo-right upper-Dini-
derivative locally arcwise connected (with respect toH) on X if it is strictly ρ-generalized-
pseudo-right upper-Dini-derivative locally arcwise connected (with respect to H) at any
x̄ ∈ X.

Definition . The function ϕ : X → R is said to be ρ-generalized-quasi-right upper-
Dini-derivative locally arcwise connected with respect toH at x̄, if there exists a real func-
tion ρ : X ×X → R such that

ϕ(x)≤ ϕ(x̄) ⇒ (dϕ)+
(
Hx̄,x

(
+

)) ≤ –ρ̄(x, x̄), ∀x ∈ X,

http://www.journalofinequalitiesandapplications.com/content/2014/1/326
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equivalently

(dϕ)+
(
Hx̄,x

(
+

))
> –ρ̄(x, x̄) ⇒ ϕ(x) > ϕ(x̄), ∀x ∈ X.

The function ϕ : X → R is said to be ρ-generalized-quasi-right upper-Dini-derivative
locally arcwise connected (with respect toH) onX if it is ρ-generalized-quasi-right upper-
Dini-derivative locally arcwise connected (with respect to H) at any x̄ ∈ X.
The next example shows that there exists a function which is ρ-generalized-quasi-

right upper-Dini-derivative locally arcwise connected but neither (α,ρ)-right upper-
Dini-derivative locally arcwise connected nor ρ-generalized-pseudo-right upper-Dini-
derivative locally arcwise connected with respect to the arc H .

Example . Let X = (–π
 ,

π
 ) and the function ϕ : X → R be defined by

ϕ(x) =

⎧⎨
⎩π |x| sin π

x – π |x|; if x ∈ (–π
 , )∪ (, π

 ),

; if x = .

For any, x, y ∈ R, defining the arc H : [, ] → R by

Hy,x(t) = tx + ( – t)y, t ∈ [, ].

Clearly, for x ∈ (–π
 , )∪ (, π

 ) we have

(dϕ)+
(
H,x

(
+

))
= –π |x|.

Let ρ : X ×X → R be defined by

ρ(x, y) =

⎧⎨
⎩π |x|; if x ∈ (–π

 , )∪ (, π
 ),

; if x = .

Now, we can easily verify that ϕ is ρ-generalized-quasi-right upper-Dini-derivative locally
arcwise connected (with respect toH) at x̄ = . However, for x ∈ (–π

 , )∪ (, π
 ), α(x, x̄) = 

and x̄ = , we can deduce that

ϕ(x) – ϕ(x̄) – α(x, x̄)(dϕ)+
(
Hx̄,x

(
+

))
– ρ(x, x̄) < ,

and

ϕ(x) – ϕ(x̄) <  implies (dϕ)+
(
Hx̄,x

(
+

))
+ ρ̄(x, x̄) = .

Hence, ϕ is neither (α,ρ)-right upper-Dini-derivative locally arcwise connected nor ρ-
generalized-pseudo-right upper-Dini-derivative locally arcwise connected with respect
to same arc H and ρ at x̄ = .
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Definition . [] A function f : X → R is called preinvex (with respect to η : X × X →
Rn) on X if there exists a vector-valued function η such that

f
(
u + tη(x,u)

) ≤ tf (x) + ( – t)f (u)

holds for all x,u ∈ X and any t ∈ [, ].

Definition . [] A function f : X → R is said to be convexlike if for any x, y ∈ X and
 ≤ θ ≤ , there is z ∈ X such that

f (z) ≤ θ f (x) + ( – θ )f (y).

Remark . The convex and the preinvex functions are convexlike functions.

In the next section we will use the following version of Theorem . from [].

Lemma . Let G : X × Y → R and ψ : X → R, where X and Y are arbitrary nonempty
sets. Let the pair (G,ψ) be convexlike on X. Assume that for some neighborhood U of  in
RY and a constant ν > , the set � ∩ Ū × (–∞,ν] is a nonempty closed subset of RY × R,
where

� =
{
(u, r)|u : Y → R and ∃x ∈ X such that ψ(x)≤ r,G(x, y)≤ u(y),∀y ∈ Y

}
.

Then exactly one of the following systems is solvable:
(I) G(x, y) ≤ , ∀y ∈ Y , ψ(x) < ,
(II) ∃ an integer s > , scalars λi ≥ , ≤ i≤ s, μ ≥  and vectors yi ∈ Y , ≤ i≤ s, such

that (λ, . . . ,λs,μ) �=  and
∑s

i= λiG(x, yi) +μψ(x)≥ .

3 Optimality conditions
Consider the following general minimax programming problem:

Minimize max
y∈Y

f (x, y)

subject to g(x)≤ ,x ∈ X,
(P)

where f : X × Y → R, g = (g, g, . . . , gm) : X → Rm, X is an open arcwise connected subset
of Rn, Y is a compact subset of Rm and f (x, ·) is continuous on Y for every x ∈ X. X = {x ∈
X|gj(x)≤ ,∀≤ j ≤m} denote the set of feasible solutions of (P).
For x ∈ X, we define

I(x) =
{
j|gj(x) = 

}
,

J(x) = {, , . . . ,m} \ I(x),
Y (x) =

{
y ∈ Y

∣∣f (x, y) = sup
z∈Y

f (x, z)
}
.

In view of the continuity of f (x, ·) on Y and compactness of Y , it is clear that Y (x) is
nonempty compact subset of Y , ∀x ∈ X. Throughout this paper we assume that the right

http://www.journalofinequalitiesandapplications.com/content/2014/1/326
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upper-Dini-derivatives of the functions f (·, y), gj(·), j ∈ {, , . . . ,m} with respect to an arc
Hx̄,x at t =  exist ∀x̄, x ∈ X, ∀y ∈ Y , and (df )+(Hx̄,x(+), ·) is continuous on Y , ∀x̄, x ∈ X.
Also assume that gj(·), ≤ j ≤m is continuous on X.
The following lemma can be proved without difficulty on the same lines as in Lemma .

(Mehra and Bhatia []).

Lemma . Let x̄ be an optimal solution of (P). Then the system
⎧⎨
⎩(df )+(Hx̄,x(+), y) < , ∀y ∈ Y (x̄),

(dgj)+(Hx̄,x(+)) < , ∀j ∈ I(x̄)
()

has no solution x ∈ X.

We now prove the following theorem by using Lemmas . and ., which gives the
necessary optimality conditions for an optimal solution of problem (P).

Theorem . (Necessary optimality conditions) Let x̄ be an optimal solution of (P). Fur-
ther, let (df )+(Hx̄,x(+)), (dgj)+(Hx̄,x(+)), j ∈ I(x̄) be convexlike functions of x on X and
let there exist a neighborhood U of  in RY (x̄) and a constant ν = (νj)j∈I(x̄) such that
�(x̄)∩ Ū × �j∈I(x̄)(–∞,νj] is a nonempty closed set, where

�(x̄) =
{
(u, r)|r = (rj)j∈I(x̄),u : Y → R and ∃x ∈ X such that f (x, y)≤ u(y),∀y ∈ Y (x̄),

gj(x)≤ rj, j ∈ I(x̄)
}
.

Then there exist an integer s > , scalars λi ≥ ,  ≤ i ≤ s, μj ≥ ,  ≤ j ≤ m, and vectors
yi ∈ Y (x̄), ≤ i≤ s, such that

s∑
i=

λi(df )+
(
Hx̄,x

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hx̄,x

(
+

)) ≥ , ∀x ∈ X,

μjgj(x̄) = , ∀≤ j ≤m,
s∑
i=

λi +
m∑
j=

μj �= .

Proof If x̄ is an optimal solution of (P) then, by Lemma ., the system () has no solution
x ∈ X. But the assumption of Lemma . also holds and since the system () has no solution
x ∈ X, we obtain the result that there exist an integer s > , scalars λi ≥ ,  ≤ i≤ s, μj ≥ ,
j ∈ I(x̄), and vectors yi ∈ Y (x̄), ≤ i≤ s, such that

(λ,λ, . . . ,λs,μj)j∈I(x̄) �= , ()

and

s∑
i=

λi(df )+
(
Hx̄,x

(
+

)
, yi

)
+

∑
j∈I(x̄)

μj(dgj)+
(
Hx̄,x

(
+

)) ≥ , ∀x ∈ X. ()

If we put μj = , for j ∈ J(x̄), by () and () we obtain the required result. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/326
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Now,we prove the following sufficient optimality conditions for the consideredminimax
problem (P) under generalized convexity with upper-Dini-derivative concept.

Theorem. (Sufficient optimality conditions) Let x̄ ∈ X and there exist an integer s > ,
scalars λi ≥ ,  ≤ i ≤ s,

∑s
i= λi �= , μj ≥ ,  ≤ j ≤m, and vectors yi ∈ Y (x̄), ≤ i ≤ s, such

that α(x, x̄) > ,

s∑
i=

λi(df )+
(
Hx̄,x

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hx̄,x

(
+

)) ≥ , ∀x ∈ X, ()

μjgj(x̄) = , ∀≤ j ≤m. ()

Also, assume that
(i) for ≤ i≤ s, f (·, yi) is (α, ρ̄i)-right upper-Dini-derivative locally arcwise connected

(with respect to H) at x̄,
(ii) for ≤ j ≤m, gj(·) is (α, ρ̆j)-right upper-Dini-derivative locally arcwise connected

(with respect to H) at x̄,
(iii)

∑s
i= λiρ̄i(x, x̄) +

∑m
j= μjρ̆j(x, x̄) ≥ .

Then x̄ is an optimal solution of (P).

Proof Suppose to the contrary that x̄ is not an optimal solution of (P). Then there exists
an x̃ ∈ X such that

sup
z∈Y

f (x̃, z) < sup
z∈Y

f (x̄, z).

Further, as yi ∈ Y (x̄), we have

sup
z∈Y

f (x̄, z) = f
(
x̄, yi

)
, ≤ i ≤ s.

Also, yi ∈ Y , ≤ i≤ s, we have

f
(
x̃, yi

) ≤ sup
z∈Y

f (x̃, z),  ≤ i ≤ s.

Thus, from the above three inequalities, we get

f
(
x̃, yi

)
< f

(
x̄, yi

)
, ≤ i ≤ s.

Using λi ≥ , ≤ i ≤ s and
∑s

i= λi �= , we obtain

s∑
i=

λif
(
x̃, yi

)
<

s∑
i=

λif
(
x̄, yi

)
. ()

For x̃ ∈ X, μj ≥ ,  ≤ j ≤m, we have μjgj(x̃)≤ , which in view of () implies that

m∑
j=

μjgj(x̃) ≤
m∑
j=

μjgj(x̄). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/326
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Now, by () and () we obtain

s∑
i=

λif
(
x̃, yi

)
+

m∑
j=

μjgj(x̃) <
s∑
i=

λif
(
x̄, yi

)
+

m∑
j=

μjgj(x̄). ()

On the other hand, from the assumptions that f (·, yi),  ≤ i ≤ s and gj(·),  ≤ j ≤ m are
(α, ρ̄i) and (α, ρ̆j)-right upper-Dini-derivative locally arcwise connected (with respect to
H) at x̄, we have

f
(
x̃, yi

)
– f

(
x̄, yi

) ≥ α(x̃, x̄)(df )+
(
Hx̄,x̃

(
+

)
, yi

)
+ ρ̄i(x̃, x̄),  ≤ i≤ s, ()

gj(x̃) – gj(x̄) ≥ α(x̃, x̄)(dgj)+
(
Hx̄,x̃

(
+

))
+ ρ̆j(x̃, x̄),  ≤ j ≤m. ()

From () and () together with λi ≥ ,  ≤ i≤ s, and μj ≥ ,  ≤ j ≤m, we get

{ s∑
i=

λif
(
x̃, yi

)
+

m∑
j=

μjgj(x̃)

}
–

{ s∑
i=

λif
(
x̄, yi

)
+

m∑
j=

μjgj(x̄)

}

≥ α(x̃, x̄)

{ s∑
i=

λi(df )+
(
Hx̄,x̃

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hx̄,x̃

(
+

))}

+
s∑
i=

λiρ̄i(x̃, x̄) +
m∑
j=

μjρ̆j(x̃, x̄).

By () and using α(x̃, x̄) > ,
∑s

i= λiρ̄i(x̃, x̄) +
∑m

j= μjρ̆j(x̃, x̄) ≥ , it follows that

{ s∑
i=

λif
(
x̃, yi

)
+

m∑
j=

μjgj(x̃)

}
–

{ s∑
i=

λif
(
x̄, yi

)
+

m∑
j=

μjgj(x̄)

}
≥ ,

which is a contradiction to (). Hence x̄ is an optimum solution for (P) and the theorem is
proved. �

Theorem. (Sufficient optimality conditions) Let x̄ ∈ X and there exist an integer s > ,
scalars λi ≥ ,  ≤ i≤ s,

∑s
i= λi �= , μj ≥ ,  ≤ j ≤m and vectors yi ∈ Y (x̄), ≤ i≤ s, such

that the conditions () and () of Theorem . hold. Also, assume that
(i)

∑s
i= λif (·, yi) is ρ̄-generalized-pseudo-right upper-Dini-derivative locally arcwise

connected (with respect to H) at x̄,
(ii)

∑m
j= μjgj(·) is ρ̆-generalized-quasi-right upper-Dini-derivative locally arcwise

connected (with respect to H) at x̄,
(iii) ρ̄(x, x̄) + ρ̆(x, x̄) ≥ .

Then x̄ is an optimal solution of (P).

Proof Suppose to the contrary that x̄ is not an optimal solution of (P) and following the
proof of Theorem ., we have

s∑
i=

λif
(
x̃, yi

)
<

s∑
i=

λif
(
x̄, yi

)
,
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which by ρ̄-generalized-pseudo-right upper-Dini-derivative locally arcwise connected
(with respect to H) of

∑s
i= λif (·, yi) at x̄, we have

s∑
i=

λi(df )+
(
Hx̄,x̃

(
+

)
, yi

)
< –ρ̄(x̃, x̄). ()

For x̃ ∈ X, μj ≥ ,  ≤ j ≤m, we have μjgj(x̃)≤ , which in view of () implies that

m∑
j=

μjgj(x̃) ≤
m∑
j=

μjgj(x̄),

which by ρ̆-generalized-quasi-right upper-Dini-derivative locally arcwise connected (with
respect to H) of

∑m
j= μjgj(·) at x̄, we have

m∑
j=

μj(dgj)+
(
Hx̄,x̃

(
+

)) ≤ –ρ̆(x̃, x̄). ()

By () and (), we get

s∑
i=

λi(df )+
(
Hx̄,x̃

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hx̄,x̃

(
+

))
< –ρ̄(x̃, x̄) – ρ̆(x̃, x̄) ≤ ,

where the last inequality is according to ρ̄(x̃, x̄) + ρ̆(x̃, x̄) ≥ . Therefore,

s∑
i=

λi(df )+
(
Hx̄,x̃

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hx̄,x̃

(
+

))
< ,

which is a contradiction to (). Hence x̄ is an optimum solution for (P) and the theorem is
proved. �

Theorem. (Sufficient optimality conditions) Let x̄ ∈ X and there exist an integer s > ,
scalars λi ≥ ,  ≤ i ≤ s,

∑s
i= λi �= , μj ≥ ,  ≤ j ≤m, and vectors yi ∈ Y (x̄), ≤ i ≤ s, such

that the conditions () and () of Theorem . hold. Also, assume that
(i)

∑s
i= λif (·, yi) is strictly ρ̄-generalized-pseudo-right upper-Dini-derivative locally

arcwise connected (with respect to H) at x̄,
(ii)

∑m
j= μjgj(·) is ρ̆-generalized-quasi-right upper-Dini-derivative locally arcwise

connected (with respect to H) at x̄,
(iii) ρ̄(x, x̄) + ρ̆(x, x̄) ≥ .

Then x̄ is an optimal solution of (P).

Proof The proof follows along similar lines as the proof of Theorem . and hence is omit-
ted. �

Theorem. (Sufficient optimality conditions) Let x̄ ∈ X and there exist an integer s > ,
scalars λi ≥ ,  ≤ i ≤ s,

∑s
i= λi �= , μj ≥ ,  ≤ j ≤m, and vectors yi ∈ Y (x̄), ≤ i ≤ s, such

that the conditions () and () of Theorem . hold. Also, assume that

http://www.journalofinequalitiesandapplications.com/content/2014/1/326
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(i)
∑s

i= λif (·, yi) is ρ̄-generalized-quasi-right upper-Dini-derivative locally arcwise
connected with respect to H at x̄,

(ii) for j ∈ I(x̄), j �= l, gj(·) is ρ̆j-generalized-quasi-right upper-Dini-derivative locally
arcwise connected and gl(·) is strictly ρ̆l-generalized-pseudo-right
upper-Dini-derivative locally arcwise connected with respect to H at x̄, with μl > ,

(iii) ρ̄(x, x̄) +
∑m

j= μjρ̆j(x, x̄) ≥ .
Then x̄ is an optimal solution of (P).

Proof Suppose to the contrary that x̄ is not an optimal solution of (P) and following the
proof of Theorem ., we have

s∑
i=

λif
(
x̃, yi

)
<

s∑
i=

λif
(
x̄, yi

)
,

which by ρ̄-generalized-quasi-right upper-Dini-derivative locally arcwise connected of∑s
i= λif (·, yi) with respect to H at x̄, we have

s∑
i=

λi(df )+
(
Hx̄,x̃

(
+

)
, yi

) ≤ –ρ̄(x̃, x̄). ()

Since for x̃ ∈ X and for j ∈ I(x̄), we have

gj(x̃) ≤  = gj(x̄),

which by ρ̆j-generalized-quasi-right upper-Dini-derivative locally arcwise connected of
gj(·), j ∈ I(x̄), j �= l and strictly ρ̆l-generalized-pseudo-right upper-Dini-derivative locally
arcwise connected of gl(·) with respect to H at x̄, we have

(dgj)+
(
Hx̄,x̃

(
+

)) ≤ –ρ̆j(x̃, x̄), for j ∈ I(x̄), j �= l, ()

(dgl)+
(
Hx̄,x̃

(
+

))
< –ρ̆l(x̃, x̄). ()

Since μj ≥ , ∀j ∈ I(x̄), μl > , and μj =  for j ∈ J(x̄), from () and (), we get

m∑
j=

μj(dgj)+
(
Hx̄,x̃

(
+

))
< –

m∑
j=

μjρ̆j(x̃, x̄). ()

By () and (), we get

s∑
i=

λi(df )+
(
Hx̄,x̃

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hx̄,x̃

(
+

))
< –ρ̄(x̃, x̄) –

m∑
j=

μjρ̆j(x, x̄) ≤ ,

where the last inequality is according to ρ̄(x̃, x̄) +
∑m

j= μjρ̆j(x, x̄) ≥ . Therefore,

s∑
i=

λi(df )+
(
Hx̄,x̃

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hx̄,x̃

(
+

))
< ,

which is a contradiction to (). Hence x̄ is an optimum solution for (P) and the theorem is
proved. �
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4 Duality
This section deals with the duality theorems for the following Mond-Weir type dual (D)
of minimax problem (P):

max
(s,λ,y)∈K

sup
(z,μ)∈H(s,λ,y)

s∑
i=

λif
(
z, yi

)
, (D)

where K = {(s,λ, y)|s is an integer, λ ∈ Rs
+,

∑s
i= λi = , y = (y, y, . . . , ys), yi ∈ Y (x) for some

x ∈ X, ≤ i≤ s}, and H(s,λ, y) denotes the set of all (z,μ) ∈ X × Rm
+ satisfying

s∑
i=

λi(dfi)+
(
Hz,x

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hz,x

(
+

)) ≥ , for all x ∈ X, ()

m∑
j=

μjgj(z) ≥ . ()

If for a triplet (s,λ, y) in K the set H(s,λ, y) is empty then we define the supremum over it
to be –∞.

Theorem . (Weak duality) Let x and (z,μ, s,λ, y) be feasible solutions of (P) and (D),
respectively. Assume that

(i)
∑s

i= λif (·, yi) is ρ̄-generalized-pseudo-right upper-Dini-derivative locally arcwise
connected (with respect to H) at z,

(ii)
∑m

j= μjgj(·) is ρ̆-generalized-quasi-right upper-Dini-derivative locally arcwise
connected (with respect to H) at z,

(iii) ρ̄(x, z) + ρ̆(x, z)≥ .
Then

sup
y∈Y

f (x, y)≥
s∑
i=

λif
(
z, yi

)
.

Proof Suppose to the contrary that

sup
y∈Y

f (x, y) <
s∑
i=

λif
(
z, yi

)
.

Thus, we have

f
(
x, yi

)
<

s∑
i=

λif
(
z, yi

)
, for all yi ∈ Y (x), ≤ i≤ s.

It follows from λi ≥ ,  ≤ i≤ s, and
∑s

i= λi = , that

s∑
i=

λif
(
x, yi

)
<

s∑
i=

λif
(
z, yi

)
,
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which by ρ̄-generalized-pseudo-right upper-Dini-derivative locally arcwise connected
(with respect to H) of

∑s
i= λif (·, yi) at z, we have

s∑
i=

λi(df )+
(
Hz,x

(
+

)
, yi

)
< –ρ̄(x, z). ()

For x ∈ X, μj ≥ ,  ≤ j ≤m, we have μjgj(x)≤ , which in view of () implies that

m∑
j=

μjgj(x)≤
m∑
j=

μjgj(z),

which by ρ̆-generalized-quasi-right upper-Dini-derivative locally arcwise connected (with
respect to H) of

∑m
j= μjgj(·) at z, we have

m∑
j=

μj(dgj)+
(
Hz,x

(
+

)) ≤ –ρ̆(x, z). ()

By () and (), we get

s∑
i=

λi(df )+
(
Hz,x

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hz,x

(
+

))
< –ρ̄(x, z) – ρ̆(x, z)≤ ,

where the last inequality is according to ρ̄(x, z) + ρ̆(x, z) ≥ . Therefore,

s∑
i=

λi(df )+
(
Hz,x

(
+

)
, yi

)
+

m∑
j=

μj(dgj)+
(
Hz,x

(
+

))
< ,

which is a contradiction to (). Hence the theorem is proved. �

Theorem . (Strong duality) Let x∗ be an optimal solution of (P). Assume that the
conditions of Theorem . are satisfied. Then there exist (s∗,λ∗, y∗) ∈ K, and (x∗,μ∗) ∈
H(s∗,λ∗, y∗) such that (x∗,μ∗, s∗,λ∗, y∗) is a feasible solution of (D) and the two objectives
have same values. If, in addition, the assumption of weak duality Theorem . hold for all
feasible solutions of (D), then (x∗,μ∗, s∗,λ∗, y∗) is an optimal solution of (D).

Proof Since x∗ is an optimal solution for (P) and all the conditions of Theorem . are
satisfied, there exist (s∗,λ∗, y∗) ∈ K, and (x∗,μ∗) ∈ H(s∗,λ∗, y∗) such that (x∗,μ∗, s∗,λ∗, y∗)
is a feasible solution of (D) and the two objective values are equal. The optimality of
(x∗,μ∗, s∗,λ∗, y∗) for (D) thus follows from Theorem .. �

Theorem . (Strict converse duality) Let x∗ and (z∗,μ∗, s∗,λ∗, y∗) be optimal solutions
of (P) and (D), respectively. Assume that the hypothesis of Theorem . is fulfilled. Also,
assume that

(i)
∑s∗

i= λ
∗
i f (·, y∗i) is strictly ρ̄-generalized-pseudo-right upper-Dini-derivative locally

arcwise connected (with respect to H) at z∗,
(ii)

∑m
j= μ

∗
j gj(·) is ρ̆-generalized-quasi-right upper-Dini-derivative locally arcwise

connected (with respect to H) at z∗,
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(iii) ρ̄(x∗, z∗) + ρ̆(x∗, z∗) ≥ .
Then z∗ = x∗.

Proof Suppose to the contrary that z∗ �= x∗. According to Theorem ., we know that there
exist (s∗,λ∗, y∗) ∈ K, and (x∗,μ∗) ∈ H(s∗,λ∗, y∗) such that (x∗,μ∗, s∗,λ∗, y∗) is a feasible so-
lution of (D) and

sup
y∗∈Y

f
(
x∗, y∗) = s∗∑

i=

λ∗
i f

(
z∗, y∗i).

Thus, we have

f
(
x∗, y∗i) ≤

s∗∑
i=

λ∗
i f

(
z∗, y∗i), for all y∗i ∈ Y

(
x∗), ≤ i≤ s∗.

It follows from λ∗
i ≥ ,  ≤ i ≤ s∗, and

∑s∗
i= λ

∗
i = , that

s∗∑
i=

λ∗
i f

(
x∗, y∗i) ≤

s∗∑
i=

λ∗
i f

(
z∗, y∗i). ()

Now proceeding on the same lines as in Theorem ., we get

s∗∑
i=

λ∗
i (df )

+(Hz∗ ,x∗
(
+

)
, y∗i) + m∑

j=

μ∗
j (dgj)

+(Hz∗ ,x∗
(
+

))
< ,

which is a contradiction to (). Hence the theorem is proved. �

5 Conclusion
In this study we have established necessary and sufficient optimality conditions under
generalized convexity using the tool-right upper-Dini-derivative for a general minimax
programming problem. Mond-Weir type duality theory is also obtained. These results
can be extended to the following semiinfinite minimax programming problem (SIP) with
the tool-right upper-Dini-derivative:

Minimize max
y∈Y

f (x, y)

subject to

Gj(x, t)≤ , for all t ∈ Tj, j ∈ q = {, , . . . ,q},
Hk(x, s) = , for all s ∈ Sk ,k ∈ r = {, , . . . , r},

x ∈ X,

(SIP)

where X ⊂ Rn is a nonempty open arcwise connected set, Y is a compact metrizable topo-
logical space, f (·, y) is a real-valued function defined on X. Tj and Sk are compact subsets
of complete metric spaces, for each j ∈ q, Gj(·, t) is a real-valued function defined on X
for all t ∈ Tj, for each k ∈ r, Hk(·, s) is a real-valued function defined on X for all s ∈ Sk ,
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for each j ∈ q and k ∈ r, Gj(x, ·), and Hk(x, ·) are continuous real-valued functions defined,
respectively, on Tj and Sk for all x ∈ X. We shall investigate this semiinfinite programming
problem in subsequent papers.
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