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Abstract

Background: It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to
useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive
imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor
of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines
before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most
other members of this diverse and ubiquitous family lack defined functions.

Results: Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and
seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with
RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue
that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA
genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5'-phosphate-dependent enzymes,
which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes
specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed
that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests
indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of
Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.

Conclusions: Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have
imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal
5'-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate
metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze
imines and thus remain mysterious.
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Background
Many metabolites are prone to spontaneous and en-
zymatic side-reactions that form damaged compounds
– a phenomenon known as metabolite damage [1-3].
Damaged metabolites are often unusable and may
become toxic if they accumulate, so they must be dealt
with [4]. Two common solutions are (i) to repair the
damaged metabolite by reconverting it to its original
form [5], or (ii) to pre-empt damage by converting a
potentially harmful compound into a benign one before
damage occurs [5]. Cells may also simply excrete dam-
age products [6,7].
Certain members of the diverse and widely distributed

YjgF/YER057c/UK114 family were recently shown to
pre-empt metabolite damage by deaminating reactive in-
termediates of the branched-chain amino acid (BCAA)
biosynthesis pathway, and were accordingly named RidA
(reactive intermediate deaminase A). Specifically, the
isoleucine biosynthesis enzyme threonine dehydratase
produces enamines that tautomerize to imines (both of
which are very reactive), and RidA proteins catalyze
hydrolysis of the imines to 2-oxoacids (which are rela-
tively stable) [8,9]. In bacteria and plants, the serine-
derived enamine 2-aminoacrylate (2AA) can attack the
pyridoxal 5'-phosphate (PLP) cofactor of branched-chain
aminotransferase, which inactivates this enzyme and
perturbs BCAA synthesis; RidA proteins forestall this
damage by hydrolyzing the corresponding imine 2-
iminopropanoate (2IP) [9,10]. 2AA could in principle
attack any PLP-enzyme, and has been shown to inacti-
vate alanine racemase [11], serine hydroxymethyltrans-
ferase [12], and aspartate aminotransferase [13], so that
the protective effects of RidA likely extend beyond
BCAA biosynthesis.
A few other disparate activities have been assigned to

YjgF/YER057c/UK114 family members. These include
in vitro molecular chaperone activity for Drosophila
melanogaster DUK114 [14], endoribonuclease activity
for rat L-PSP [15], and specialist chorismatase [16] and
2-aminomuconate deaminase [17,18] activities in bacterial
aromatic metabolism.
Table 1 Rid subfamily nomenclature

subfamily Annotation in SEED database

RidA RidA/YER057c/UK114 superfamily protein

Rid1 RidA/YER057c/UK114 superfamily, group

Rid2 RidA/YER057c/UK114 superfamily, group

Rid3 RidA/YER057c/UK114 superfamily, group

Rid4 RidA/YER057c/UK114 superfamily, group

Rid5 RidA/YER057c/UK114 superfamily, group

Rid6 RidA/YER057c/UK114 superfamily, group

Rid7 RidA/YER057c/UK114 superfamily, group

Annotation of Rid subfamilies in the SEED and NCBI databases.
There is good reason to think that YjgF/YER057c/
UK114 family proteins have other – and widespread –
roles in metabolic processes. The family occurs in
nearly every organism in all domains of life, and some
species encode multiple members. Salmonella enterica,
for instance, has three YjgF/YER057c/UK114 family
genes, and Streptomyces coelicolor has eleven. Although
YjgF/YER057c/UK114 proteins or domains are uni-
formly small (~130 amino acids), their sequences are
diverse and some members share <8% sequence identity
[19,20]. The phylogenetic distribution pattern and
sequence diversity strongly imply multiple roles, and
several have been suggested in pyrimidine degradation
[21,22], mitochondrial maintenance [23,24], and meta-
bolic regulation [25].
To explore additional functional roles, we made phylo-

genetic and comparative genomic analyses of the YjgF/
YER057c/UK114 family. This work enabled prediction of
two novel roles for RidA proteins, for which experimen-
tal support was obtained by biochemical, genetic, and
metabolomic approaches.

Results
Phylogenetic analysis and nomenclature of the YjgF/
YER057c/UK114 family
YjgF/YER057c/UK114 family proteins are split into eight
subfamilies in the NCBI Conserved Domain Database
(see cd00448: YjgF_YER057c_UK114_family), which uses
a position-specific scoring matrix to determine con-
served domain footprints that imply potential functional
sites [26]. Each subfamily could accordingly have distinct
functional activities. We henceforth refer to the whole
family as the Rid family, to the subfamily containing the
characterized RidA proteins as the RidA subfamily, and
to the other seven subfamilies as Rid1 through Rid7
(Table 1). This nomenclature meshes with that used in
previous studies [8-11]. A subset of RidA proteins
(which we term 3x-RidA) has three RidA domains fused
in tandem (e.g. EF_0115 in Enterococcus faecalis V583).
As Rid proteins typically assemble into trimers [19]
(Figure 1A) the 3x-RidA proteins are presumably
Annotation in NCBI CDD

YjgF_YER057c_UK114_family

1 YjgF_YER057c_UK114_like_1

2, YoaB-like protein YjgF_YER057c_UK114_like_2

3 YjgF_YER057c_UK114_like_3

4 YjgF_YER057c_UK114_like_4

5 YjgF_YER057c_UK114_like_5

6 YjgF_YER057c_UK114_like_6

7, YjgH-like protein YjgH_like
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covalently linked trimer units. Other arrangements
such as fusions of two or four Rid domains occur, but
are rare and so were excluded from this study.
Crystal structures and mutagenesis studies have iden-

tified functionally important residues in the RidA
subfamily. The highly conserved Arg107 forms salt
bridges with the carboxylate oxygens of benzoate in
human hp14.5 [27] and the corresponding Arg105
hydrogen bonds with the carboxylate oxygens of serine,
threonine, and 2-oxobutanoate in Escherichia coli TdcF
(paralogous to S. enterica RidA) [28] (Figure 1B). Changing
Figure 1 Sequence features of Rid family members. (A) Typical trimeric
site with bound serine molecule. Residues of adjacent monomers are color
frequencies of residues in the archetypal RidA and seven subfamilies (Rid1-
to differentiate the subfamilies.
this arginine to alanine almost completely abolished
imine-hydrolyzing activity in plant and S. enterica RidA
proteins [8,9]. It has been suggested that conserved
Tyr17 and Glu120 residues of E. coli TdcF also play a
role in substrate binding and positioning of a water
molecule used for imine hydrolysis, but replacing the
corresponding residues with alanine had little effect on
the activity of S. enterica RidA [8].
We analyzed residue conservation for all the Rid

family proteins listed in the NCBI Conserved Domain
Database, paying particular attention to the predicted
organization of a RidA protein, Escherichia coli TdcF. (B) TdcF active
ed red or blue. (C) Sequence logos show the conservation and relative
Rid7). The six regions shown correspond to the footprint regions used
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active site residues (Figure 1C). The Rid1, Rid2, and
Rid3 subfamilies retain the conserved arginine and
glutamate residues found in RidA. The Rid4, Rid5,
Rid6, and Rid7 subfamilies have the glutamate residue
but the arginine residue is replaced by tryptophan in
Figure 2 Phylogenetic distribution of the Rid family. Phylogenetic dist
mapped onto a Tree of life (http://itol.embl.de). This phylogenetic tree of
[29] using the alignment of a concatenation of 31 orthologous proteins o
Bar size indicates the number of RidA gene copies per subfamily present
the size of the outermost gray bars (excluding eukaryotes).
Rid4 and Rid7, and is variable in Rid5 and Rid6. The
tyrosine is conserved, or conservatively replaced by
phenylalanine, in all subfamilies except Rid3 where it is
replaced by isoleucine and Rid2 where it is variable.
The presence or absence of the critical arginine residue
ribution of the Rid family. Occurrence of Rid family members is
all three domains of life was constructed by Ciccarelli et al., 2006
ccurring in ~200 representative species with sequenced genomes.
in each of the genomes shown. Relative genome size is indicated by

http://itol.embl.de/


Figure 3 Rid family member genes cluster on prokaryotic
chromosomes with genes encoding various PLP-dependent
enzymes. Gene models show the orientation of clustered genes in
representative prokaryotic genomes. Pie charts show the relative
frequency with which clustering occurs with various Rid subfamilies.
The color scheme for Rid subfamilies is the same as in Figure 2. Genes
in white have unrelated functions.
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thus separates Rid subfamilies into two groups: (i)
subfamilies RidA and Rid1-Rid3 that have this residue
and are predicted to hydrolyze imines, and (ii) subfamilies
Rid4-Rid7 that lack it and presumably serve other func-
tions. Finally, it should be noted that a small minority
(~10%) of RidA proteins have a serine residue instead of
arginine, suggesting there may be functional diversity even
within the RidA subfamily (Figure 1C).
To assess their phylogenetic distribution, we mapped

Rid family members onto a phylogenetic tree containing
almost 200 sequenced organisms representing all three
domains of life [29] (Figure 2). This mapping showed that
the RidA subfamily is widely distributed among all do-
mains of life whereas the other seven subfamilies occur
primarily in bacteria, especially proteobacteria. This pat-
tern suggests that the RidA subfamily is archetypal and
gave rise to the other subfamilies. We also mapped gen-
ome size onto the phylogenetic tree and found that it cor-
related positively (r = 0.69) with the number of Rid genes
per genome (Additional file 1). Similar correlations have
been observed for other large gene families [30].

Comparative genomic analysis of the Rid family
We used comparative genomic analysis to explore the
possibility that Rid family proteins have functions besides
hydrolysis of threonine dehydratase-derived imines, as
suggested by their sequence diversity and phylogenetic
distribution. The analysis was made on a representative
set of 981 prokaryotic genomes (Additional file 1) (see
Methods for details) using the SEED database and its
tools, which enable ready detection of gene clustering pat-
terns [31]. Gene clustering in prokaryotes strongly implies
a functional relationship, particularly when clusters occur
in more than one configuration and in diverse organisms
[32]. Full results of the analysis are available at the SEED
database (see Methods).
Because RidA can pre-empt damage to various PLP-

dependent enzymes by hydrolyzing the reaction products
of threonine dehydratase, we expected clustering between
the corresponding genes. Indeed, RidA genes were found
to cluster consistently with threonine dehydratase genes in
bacteria and archaea (Figure 3). Aspartate aminotransfer-
ase, which is prone to damage by 2AA (13), also clusters
with Rid genes in diverse bacteria – usually with RidA
and less often with Rid1 (Figure 3). L-Cysteine desulfur-
ase and D-cysteine desulfhydrase likewise cluster in di-
verse bacteria with RidA, or sometimes Rid1 (Figure 3).
Like threonine dehydratase, these enzymes can form
the damaging intermediate 2AA [33,34]. RidA, Rid1, or
Rid2 genes also cluster with the PLP enzymes cystathio-
nine β-lyase and tryptophanase, both of which can pro-
duce 2AA [35,36] (Figure 3). The above instances of
clustering, while expected, clearly confirm that gene
clustering patterns can reflect Rid gene function.
We were therefore intrigued to find two additional
clustering patterns in bacteria. First, RidA or sometimes
Rid3 genes frequently cluster with FAD-dependent amine
oxidase family genes (Figure 4). As FAD-dependent amine



Figure 4 Rid family member genes cluster on bacterial
chromosomes with genes belonging to the amine oxidases
(AOX) family. The layout and color scheme are as in Figure 3.
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oxidases produce an imine intermediate that spontaneously
hydrolyzes to a 2-oxoacid [37,38] it is possible that RidA
and Rid3 accelerate the hydrolysis of these imines, as RidA
does for imines produced by threonine dehydratase.
Second, RidA and occasionally other Rid genes cluster with
genes of arginine or pyrimidine metabolism (Figure 5A).
About 80% of clustering occurred with RidA genes; Rid7
genes were the next most common but >70% of these
occurred in a cluster that also contained RidA.
To home in on functional associations, we mapped the

frequency with which Rid genes cluster with individual
arginine and pyrimidine metabolism genes. This analysis
showed that clustering centered on genes for carbamoyl
phosphate-related enzymes, none of which have a PLP
cofactor or are known to form enamines or imines
(Figure 5B). This association suggests a novel role for Rid
proteins in carbamoyl phosphate metabolism.
RidA hydrolyzes reactive imines produced by amino acid
oxidases
To assess the ability of Rid family proteins to hydrolyze im-
ines produced by FAD-dependent amine oxidases we used
an assay based on the ability of imines to react rapidly with
semicarbazide to produce semicarbazones, which absorb in
the UV range [9,39]. The competition between semicarba-
zone formation and Rid-mediated hydrolysis of the enzy-
matically produced imines can thus be monitored
spectrophotometrically. We chose to assay the three Rid
proteins of S. enterica because S. enterica RidA is well stud-
ied and so can serve as a benchmark for imine-hydrolyzing
activity, and because S. enterica Rid2 (YoaB) has the cata-
lytically important arginine residue and S. enterica Rid7
(STM1549) does not.
Purified L-amino acid oxidase (LOX) from Crotalus
adamanteus venom was used as a model FAD-
dependent amine oxidase because it has been used
previously in assays containing semicarbazide [39].
Recombinant S. enterica RidA, Rid2, and Rid7 were
purified to near-homogeneity by Ni2+-affinity chroma-
tography (Additional file 2: Figure S1). Rapid semicar-
bazone formation was observed when LOX was
incubated with leucine and semicarbazide (Figure 6A).
Addition of 10 μM RidA, Rid2, or Rid7 caused a 93%,
46%, or <3% decrease in the rate of semicarbazone
formation, respectively (Figure 6A, B). To better assess
the ability of the three S. enterica proteins to
hydrolyze the leucine-derived imine, we varied the
concentrations of the Rid proteins included in the
assay. RidA was the most active, reducing the rate of
semicarbazone formation by 50% at less than 1 μM
compared to about 10 μM for Rid2 (Figure 6B). Rid7
did not significantly reduce semicarbazone formation
even at 100 μM, showing that it cannot hydrolyze the
leucine-derived imine (Figure 6B).
We then tested the ability of the S. enterica

proteins to hydrolyze other amino acid-derived im-
ines. First, the rate of semicarbazone formation was
determined in assays containing LOX and various
amino acid substrates without Rid proteins (Additional
file 2: Table S1). Amino acids with polar and charged
side groups proved to be very poor substrates, and
thus non-charged methionine, phenylalanine, and
glutamine were chosen to test further. The amount of
LOX in the assay was adjusted so that the rate of
semicarbazone formation was the same for each
amino acid substrate, thus allowing direct comparison
of imine-hydrolyzing capabilities. At 10 μM, Rid7 did
not significantly reduce semicarbazone formation for
any amino acid tested, indicating that it cannot
hydrolyze any of the amino acid-derived imines
(Figure 6C). RidA hydrolyzed the methionine-derived
imine nearly as effectively as the leucine-derived
imine, reducing the rate of semicarbazone formation
by 91% compared to 93%, and was only slightly less
effective (86% reduction in rate of semicarbazone
formation) in hydrolyzing the glutamine-derived
imine (Figure 6C). Rid2 hydrolyzed the glutamine-
and leucine-derived imines at similar rates (44% and
46% reduction in semicarbazone), and hydrolysed the
methionine-derived imine more slowly (23% reduction
in semicarbazone). RidA and Rid2 also hydrolyzed
the phenylalanine-derived imine, although relatively
slowly, reducing semicarbazone formation by 35% and
12%, respectively. These results show that RidA and
to a lesser extent Rid2, but not Rid7, can hydrolyze
several imino acids and that RidA and Rid2 differ in
substrate preference.



Figure 5 Rid family genes cluster on bacterial chromosomes with pyrimidine and arginine metabolism genes, particularly those
related to carbamoyl phosphate. (A) The layout is the same as in Figure 3. (B) The metabolic pathways of pyrimidine and arginine synthesis
(black arrows) and breakdown (light blue arrows) are shown. Dark blue bars under each enzyme indicate the relative proportion of genomes (in
the set of 981 genomes analyzed) in which each gene of pyrimidine or arginine metabolism is clustered on the chromosome with a Rid family
gene. The longest bar (ACT in the pyrimidine pathway) corresponds to 58 instances of clustering.
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Genetic evidence supports a RidA-carbamoyl phosphate
connection
To explore the functional connection between Rid pro-
teins and carbamoyl phosphate predicted by comparative
genomics, we engineered S. enterica to accumulate car-
bamoyl phosphate, and ablated genes encoding each of
the three Rid family proteins. S. enterica is particularly
appropriate for this experiment because its RidA gene
clusters with the arginine metabolic genes encoding
ornithine carbamoyltransferase and Arg deiminase, the
regulatory gene argR, the pyrimidine metabolic gene
encoding Asp carbamoyltransferase, and carbamate
kinase, suggesting that S. enterica RidA plays a role in
carbamoyl phosphate metabolism. The arginine biosyn-
thesis pathway was blocked by disrupting the gene
encoding ornithine carbamoyltransferase (ArgI), and an
expression plasmid containing the gene encoding the
CarB subunit of carbamoyl phosphate synthetase (CPS)
was introduced. This subunit is sufficient to produce
carbamoyl phosphate provided that the medium
contains ammonium [40]. The plasmid used (pCA24N-
carB) was isopropyl β-D-thiogalactopyranoside (IPTG)-
inducible [41]. We reasoned that an IPTG-inducible
growth defect in strains lacking a Rid family member
would confirm a role for this Rid protein in carbamoyl
phosphate metabolism.
We compared the growth of the control strain con-

taining all three native rid genes with strains lacking
ridA, Rid2, or Rid7. All strains grew similarly in nutrient
broth at 37°C in the absence of IPTG (Figure 7A). When
IPTG was included, growth of the control strain,
and strains lacking Rid2 or Rid7, was indistinguishable



Figure 6 S. enterica RidA and Rid2, but not Rid7, accelerate
hydrolysis of imine products of L-amino acid oxidase. (A)
Semicarbazone formation in assays containing leucine with or
without 10 μM Rid protein. (B) Semicarbazone formation in assays
containing leucine and various amounts of Rid protein. (C)
Semicarbazone formation in assays containing various amino acid
substrates and 10 μM Rid protein. Error bars indicate SE from at
least three replicate assays. Data in B and C represent the amount
of semicarbazone formation as a percent of control assays
containing no Rid protein.
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from that in medium without IPTG but the strain lacking
ridA had a substantial growth defect (Figure 7B). These
results indicate that accumulation of carbamoyl phosphate
is detrimental to S. enterica cells lacking a functional
RidA protein, and thus point to a role for RidA in con-
trolling damaged caused directly or indirectly by carba-
moyl phosphate.

Metabolomic analysis indicates division of labor among S.
enterica Rid proteins
Two different analytical techniques, LC-MS and GC-
MS, were used to explore the metabolic consequences
deleting Rid family genes. Wild type and triple (ridA
Rid2 Rid7) knockout S. enterica cells were first profiled
using a hydrophilic interaction liquid chromatography-
time-of-flight mass spectrometry (HILIC-TOF-MS; i.e.
LC-MS) platform to favor detection of highly polar com-
pounds. Samples were collected as they entered late log
phase; this harvesting point was selected to maximize
the difference between wild-type and triple knockout
cells (Additional file 2: Figure S2). Only two metabolites
showed significant (P ≤ 0.05) accumulations of ≥1.5-fold
in knockout cells. Of these, the larger accumulation
(10.5-fold) was of dihydroorotate, a pyrimidine synthe-
sis intermediate located one step downstream of the
carbamoyl phosphate-dependent step in the pathway
(Figure 8A). The smaller accumulation (2.8-fold) was of
4-aminobutyrate, a general stress metabolite. The speci-
ficity and size of the dihydroorotate pool size change
suggest a role for the Rid family in pyrimidine synthe-
sis, possibly in countering an adverse effect of carba-
moyl phosphate (or its breakdown product isocyanate)
on dihydroorotate dehydrogenase.
The more general metabolic impact of ablating Rid fam-

ily members was surveyed using a gas chromatography-
time-of-flight mass spectrometry (GC-TOF-MS) metabo-
lomics platform. We compared single ridA and triple ridA
Rid2 Rid7 knockout strains with wild-type S. enterica. In
total, 277 compounds were detected in all three strains, of
which 144 were positively identified. We then calculated
the relative -fold change for each compound between the
mutant strains and wild-type. About 22% of compounds in
the single RidA knockout had significant (P ≤ 0.05) -fold
changes (60 of 277 total compounds; 37 of 143 identified
compounds), while ~31% of compounds in the triple
knockout showed significant -fold changes (87 of 277 total
compounds; 52 of 143 identified compounds) (Figure 8B).
Besides confirming that Rid2 and Rid7 cannot replace
RidA, these data suggest that Rid2 and Rid7 have roles
of their own, i.e. that there is division of labor among
S. enterica Rid proteins. There was much overlap in
the profiles of the two knockout strains; 78% of the
compounds that changed significantly in the single
knockout also did so in the triple knockout (Figure 8B).



Figure 7 S. enterica cells lacking ridA are sensitive to induction
of carbamoyl phosphate synthetase. Cells were grown at 37°C in
nutrient broth with (A) no additions or (B) supplemented with
0.1 mM IPTG. Growth was monitored by optical density at 650 nm.
All strains contain an insertion in argI, the gene encoding ornithine
carbamoyltransferase, and harbor plasmid-encoded CarB under the
control of an IPTG-inducible promoter. Strains are represented in
the figure legends by the Rid protein they lack. Strain names and
relevant genotypes are RidA (DM14200), Rid2 (DM14307), Rid7
(DM14223), and control (DM14203). Data shown are representative
of at least three independent experiments done in biological triplicate
on separate days.
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Furthermore, the changes in overlapping compounds
were always in the same direction (increase or
decrease), and were generally of similar magnitude
(Figure 8C).
The compounds showing significant -fold changes

came from diverse sectors of metabolism. One sector
was sulfur metabolism; cysteine showed the largest
change of any identified compound – almost 14-fold in
the triple knockout (Figure 8C). A second sector was
BCAA metabolism; isoleucine and leucine changed in
both knockouts, as did other BCAA pathway metabo-
lites (Figure 8C). Several compounds involved in arginine,
proline, and pyrimidine metabolism changed, possibly
due to a lesion in carbamoyl phosphate metabolism
(Figure 8C). Purine-related metabolites were also
affected, as were various sugars and sugar derivatives
(Figure 8C).

Discussion
Separating the Rid family into subfamilies, and analyzing
patterns of residue conservation and chromosomal clus-
tering in these subfamilies, led to one finding that was
broadly predictable from previous work, and two that
were not. The broadly predictable finding was that the
largest and most widely distributed subfamily, RidA,
most probably pre-empts damage by hydrolyzing 2IP
(the tautomer of 2AA) that comes from other PLP-
dependent enzymes besides the known source threonine
dehydratase. 2AA is formed in the normal catalytic or
side-reactions of L-cysteine desulfurase [33] and D-
cysteine desulfhydrase [34], cystathionine beta-lyase [35],
and tryptophanase [36], with each of which RidA clus-
ters (Figure 3).
The first novel finding was that the RidA subfamily,

the Rid2 subfamily, and probably the Rid1 and Rid3
subfamilies, which all retain the arginine residue shown
to be essential for 2IP hydrolysis [8,9], can hydrolyze
imines produced by FAD-dependent amine oxidases.
This finding extends the known imine-hydrolyzing
function of Rid proteins to a wider range of imines that
are formed by enzymes in pathways very different to
those involving the imine-forming PLP enzymes. The
imine compounds formed by amine oxidases could po-
tentially react with, and hence damage, various cellular
components [39,42]. Thus, the physiological implica-
tions are that enamine/imine damage to metabolism is
not restricted to that from 2AA/2IP and that, collectively,
Rid family proteins with the conserved arginine residue
could act as wide-spectrum enamine/imine damage-
pre-emption enzymes.
The second novel finding was that the RidA subfamily,

and possibly other Rid subfamilies, are closely connected
to carbamoyl phosphate metabolism. Under physio-
logical conditions, carbamoyl phosphate breaks down
spontaneously and rapidly (half-life ~5 min at 37°C) to
phosphate and isocyanate, which tautomerizes to
cyanate [43]. Isocyanate is a potent damage agent
because it reacts readily with amino, thiol, carboxyl, and
other groups, and so carbamoylates amino acids, pro-
teins and other molecules [44]. Because isocyanate and
carbamoyl groups have some similarity to imines, and
RidA proteins have imine hydrolase activity, it is reason-
able to infer that this subfamily can pre-empt carbamoy-
lation damage in an analogous way to its action in pre-
empting imine damage. In this connection, it may be
noted that a simple possibility – that RidA proteins



Figure 8 Metabolomic analysis of S. enterica Rid knockouts reveals widespread metabolic disturbances. Wild-type S. enterica and triple
Rid KO (ridA Rid2 Rid7; DM14100), and for GC-MS also single RidA KO (ridA; DM3480), cultures were grown, harvested, and analyzed as described
in Methods. (A) HILIC-TOF-MS identified dihydoorotate as having a significant 10.5-fold change in the triple KO. Part of the pyrimidine metabolic
pathway is shown (see Figure 5 for abbreviations) with bars indicating the relative amount of dihydroorotate in each sample. (B) Venn diagrams
summarize the significant (P < 0.05; t test) -fold changes (KO/wild-type) for GC-TOF-MS identified and unknown peaks. (C) GC-TOF-MS identified
compounds with significant -fold changes found in one or both knockouts are listed in order of -fold change (for shared compounds, triple (T) or
single (S) Rid KO is indicated) and colored yellow or green to indicate increased or decreased levels in the knockout, respectively. p-values are
shown to the left of -fold changes. Colored bars adjacent to compound names mark intermediates of metabolic pathways shown in the legend.
Data represent six (A, LC-MS) or twelve (B and C, GC-MS) independent cultures for each treatment.
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hydrolyze carbamoyl phosphate or isocyanate to release
ammonia – was not supported by pilot experiments with
S. enterica RidA (Additional file 2: Figure S3). Another
possibility is that Rid proteins protect a carbamoyl
phosphate-related enzyme or metabolite from damage
caused by 2AA or another enamine/imine-containing
compound.

Conclusions
The Rid protein family comprises a large, widely dis-
tributed – and probably archetypal – subfamily (RidA)
and seven smaller subfamilies (Rid1 through Rid7)
found mainly in bacteria. The RidA through Rid3
subfamilies share a catalytically critical arginine residue
and apparently serve to hydrolyze the reactive imines
generated by PLP-dependent enzymes or FAD-dependent
amine oxidases, thereby pre-empting the damage these
imines would otherwise cause. The RidA subfamily most
probably has an additional damage-pre-emption role in
carbamoyl phosphate metabolism that has yet to be
biochemically defined.
The biochemical activities and physiological functions

of the Rid4 through Rid7 subfamilies remain completely
unknown. Thus far it is clear that these four subfamilies
are most likely not imine hydrolases since they lack the
arginine residue on which imine hydrolase activity
depends, and because no imine hydrolase activity was
detected for S. enterica Rid7. And although the Rid1
through Rid3 subfamilies are predicted – and in the case
of S. enterica Rid2, demonstrated – to have imine hydro-
lase activity in vitro, nothing is known about the in vivo
substrates for these three subfamilies.
In sum, the Rid family as a whole still has only a few

known functions, and additional functions surely
remain to be discovered. It is nonetheless clear that
RidA proteins are iconic examples of the emerging
principle of metabolite damage pre-emption [5]; the
same seems likely to prove true of proteins from other
Rid subfamilies.

Methods
Bioinformatics
Sequences were from GenBank or the SEED database
[31]. Sequences were analyzed with the NCBI CDD
database and CDTree tool. To analyze residue conserva-
tion, protein alignments were taken from NCBI CDD,
trimmed with Galaxy tools (https://usegalaxy.org/root),
and used to create graphics with WebLogo (http://

https://usegalaxy.org/root
http://weblogo.berkeley.edu/
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weblogo.berkeley.edu/) [45,46]. Crystal structure ana-
lysis and graphics were made with PyMol (http://
www.pymol.org/). Comparative genomic analyses were
made with SEED [31]. Figure 2 was created using iTOL
tools [47,48].
A set of 981 representative genomes was chosen as

follows. The algorithm for computing molecular oper-
ational taxonomic units (MOTUs) based on DNA bar-
code data [49,50] was used to group ~12,600 prokaryotic
genomes available in the SEED database in January 2014
into ~1000 such groups. One representative genome
from each MOTU was then selected based on the
amount of published data (when available) and the level
of research interest for different microorganisms within
the MOTU. The resulting set of 927 eubacterial and 54
archaeal genomes is a convenient set that accurately
represents the diversity of sequenced prokaryotes, and is
not skewed by the overabundance of genomes for med-
ically or industrially important organisms (e.g. E. coli).
The Rid family was analysed in the SEED database
within the functional and genomic contexts provided
by SEED subsystem ‘RidA family in 981 representative
prokaryotes’ available at http://pubseed.theseed.org//
SubsysEditor.cgi?page=ShowSubsystem&subsystem=
RidA_family_in_981_representative_prokaryotes.
The small size and sequence variability of Rid family

proteins preclude accurate detection and annotation of
this family in public genome databases. We therefore
performed an exhaustive global search for members of
this family in all prokaryotic genomes in the SEED data-
base (~8,150 at the time of this work). To do so, 24
diverse representative Rid family DNA sequences were
selected (Additional File 3) and used as queries for a glo-
bal BLAST search of prokaryotic genomes with relaxed
search parameters (E-value of e-4) to ensure detection of
all relevant targets, including RidA domains in fusions
with other proteins. A list of raw BLAST hits was gener-
ated (179,483 total) and mapped to the corresponding
open reading frames in each of the SEED genomes. The
resultant preliminary list of potential RidA-related
ORFs (26,879 total) was analyzed and filtered by cross-
mapping with the NCBI Conserved Domain Database
collection using custom software tools (available upon
request) with the goals (i) to filter out false positives
(erroneously detected ORFs unrelated to the Rid family);
(ii) to classify the Rid family into coherent subgroups ; (iii)
to detect fusion events of Rid domains with other protein
families; and (iv) to assign accurate consistent annotations
to all identified bona fide members of the Rid family in
the SEED database (20,658 ORFs total). Based on this
analysis, each of the identified Rid family proteins (stand-
alone or fused) was assigned to one of eight subfamilies
according to the NCBI Conserved Domain Database
classification (see cd00448: http://www.ncbi.nlm.nih.gov/
Structure/cdd/cddsrv.cgi?uid=100004) and uniformly
annotated with one of the Role names from the SEED
controlled vocabulary as shown in Table 1.

Chemicals
Chemicals and enzymes were from Sigma Aldrich (St.
Louis, MO).

cDNAs and expression constructs
For expression of C-terminal His-tagged proteins in E. coli,
sequences encoding predicted proteins without their
stop codons were PCR-amplified (RidA, primers catgcc
atggctatgagcaaaactattgcgacgg and tccgctcgaggcgacgaac
agcgatcgcttcaatc; STM1549, primers catgccatggctatgac
gcaxacgtatcgcggtttttcc and tccgctcgagggggattcgggcaata
acctttatttcg; YoaB, primers catgccatggctatgtctatcgtgcgt
attgatxgc and tccgctcgagtaccgccgcgacaatcttaatctc) from
genomic DNA of S. enterica subsp. enterica serovar
Typhimurium str. LT2. Amplicons were digested with
NcoI and XhoI and ligated into the matching sites of
pET28b. All constructs were sequence-verified. The
ASKA plasmid pCA24N-carB was used for CarB overex-
pression [41]. This plasmid features an IPTG-inducible
promoter that controls expression of carB, and confers
chloramphenicol resistance.

Bacterial strains
The strains in this study were derivatives of S. enterica
subsp. enterica serovar Typhimurium str. LT2, unless
specified otherwise. Complete genotypes are listed in
Table 2. MudJ refers to the Mud1734 transposon [51].
Insertion-deletion mutants of yoaB::cat and STM1549::kan
were generated using a previously described method using
the pKD3 and pKD4 plasmids, respectively, and the
yoaB::cat insertion was resolved using the pCP20 plasmid
[52]. Mutant strain construction also involved the use of
the high frequency general transducing mutant of
bacteriophage P22 (HT105/1 int-201) [53], and standard
genetic techniques.

Protein expression and isolation
Proteins were expressed and purified as previously
described [9]. Briefly, E. coli strain BL21 (DE3) RIPL har-
boring each expression construct was grown in 200 mL
of LB medium with 50 mg/L kanamycin at 37°C until
OD at 600 nm reached 0.8. Cultures were then cooled to
22°C and isopropyl-3-D-thiogalactoside and ethanol were
added to final concentrations of 0.5 mM and 4% v/v,
respectively. Cultures were incubated for a further 20 h at
22°C and cells were collected and stored at -80°C. Proteins
were purified from bacterial lysates with Ni-NTA super-
flow resin (Qiagen, Valencia, CA) columns according to
the manufacturer’s protocol. Proteins were passed through
PD-10 columns (GE Healthcare, Cleveland, OH)

http://weblogo.berkeley.edu/
http://www.pymol.org/
http://www.pymol.org/
http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSubsystem&subsystem=RidA_family_in_981_representative_prokaryotes
http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSubsystem&subsystem=RidA_family_in_981_representative_prokaryotes
http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSubsystem&subsystem=RidA_family_in_981_representative_prokaryotes
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=100004
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=100004
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equilibrated with 5 mM triethanolamine-HCl, pH 7.6, 10%
(v/v) glycerol, then concentrated to 80-120 mg/mL with
Amicon Ultra-4 3,000 NMWL centrifugal filters
(Millipore, Billerica, MA). Aliquots (5 μL) were frozen
in liquid nitrogen and stored at -80°C.

Enzyme assays
To assess the ability of Rid proteins to hydrolyze the
imine derived from leucine, asays (100 μL) contained
50 mM potassium pyrophosphate, pH 8.7, 10 mM
semicarbazide-HCl (neutralized), 1 μg (3.5 units) bovine
liver catalase, 0.5 μg (3 units) Crotalus adamanteus
LOX, and the indicated amount of S. enterica RidA,
Rid2, or Rid7. Reactions were started by adding L-
leucine (final concentration 5 mM), and absorbance at
248 nm was monitored at 22°C. To assess activity
against imines derived from other amino acids, assays
were as above except that the amount of LOX was ad-
justed so that the rate of semicarbazone formation was
constant (leucine, 1 μg; methionine, 1.25 μg; phenyl-
alanine, 2 μg; glutamine, 5 μg).

Growth experiments with S. enterica
Cultures were grown at 37°C with shaking in nutrient
broth (Difco) containing 20 μg/mL chloramphenicol
until stationary phase and then diluted 1:100 in 5 mL of
the same medium in 18 x 150 mm borosilicate culture
tubes. When present, IPTG was added to a final concen-
tration of 0.1 mM. Growth was monitored by optical
density at 650 nm, and analyzed using GraphPad Prism
Software (version 6.0).

Metabolomic analyses
Bacterial cultures were grown overnight in M9 minimal
medium plus 0.2% glucose and used to inoculate 2 mL
of fresh medium to an optical density of 0.05 at 600 nm.
Cultures were grown at 37°C with shaking for 5-6 h until
optical density reached 1.7 ± 0.1 at 600 nm, then an
equivalent of 1 mL culture at an optical density of 2.0
was collected in 1.5-mL Eppendorf tubes, centrifuged at
16,000 × g for 15 s; the pellet was frozen in liquid
Table 2 Bacterial Strains

Strain Genotypea,b

DM14200 argI833::tn10 ridA3::MudJ pCA24N-carB (-gfp)

DM14203 argI833::tn10 pCA24N-carB (-gfp)

DM14223 argI833::tn10 STM1549-26::kan pCA24N-carB (-gfp)

DM14307 argI833::tn10 ΔyoaB626 pCA24N-carB (-gfp)

DM3480 ridA3::MudJ

DM14100 ridA3::tn10 ΔyoaB624::cat STM1549-26::kan
aMudJ refers to the Mud1734 transposon [1].
bpCA24N-carB is from the ASKA collection of Escherichia coli clones [4].
Strains listed are derivatives of S. enterica serovar Typhimurium LT2.
nitrogen. The harvesting procedure was completed in
<30 s. Samples were stored at -80°C. Either six (LC-MS)
or 12 (GC-MS) independent cultures for each strain were
analyzed. Extraction for LC-MS was conducted by adding
1.1 mL cold, degassed methanol: water (3:1) to each sam-
ple and vortexing for 20 sec prior to sonicating for 5 min.
Samples were vortexed for another 20 sec then kept at
-20°C for 30 min, followed by centrifugation at 14,000 × g
for 5 min. The resulting supernatant was transferred to
1.5 mL Eppendorf tubes and dried with a LabConco
Centrivap Concentrator (LabConco Corporation, Kansas
City, MO) overnight. The dried material was dissolved
in 100 μL of 5 mM ammonium acetate, 0.2% (v/v) acetic
acid and analyzed by LC-MS. Chromatography was per-
formed on an Agilent 1290 Infinity LC System (Agilent
Technologies, Santa Clara, CA) using a Waters Acquity
1.7 μm BEH HILIC 150 x 2.1 mm HPLC column as
previously described [54]. Extraction for GC-MS ana-
lysis was conducted by adding 1 mL of cold, degassed
acetonitrile:isopropanol:water (3:3:2) and vortexing for
10 sec. Samples were placed on shaker at 4°C for 4 min
then centrifuged at 14000 × g for 2 min. Aliquots
(450 μL) were transferred to 1.5 mL Eppendorf tubes
and dried as above. As previously described [55], the
dried material was derivatized with methoxyamine hydro-
chloride in pyridine followed by N-tert-butylmethylsilyl-N-
methyltrifluoroacetamide and then analyzed by GC-MS.
Raw data are available at metabolomicsworkbench.org.

Additional files

Additional file 1: A supplemental table that shows the presence or
absence of Rid family genes in 981representative prokaryotic
genomes used for the comparative genomics analysis.

Additional file 2: A file that contains material supplemental to this
study Figure S1. Shows purified proteins used in this study. Table S1.
Lists the relative LOX enzyme activity for various substrates. Figure S2.
Shows growth of strains used in metabolomics experiments. Figure S3.
Shows pilot data that suggests Rid proteins cannot hydrolyze carbamoyl
phosphate or cyanate.

Additional file 3: A supplemental table that lists the 24 diverse Rid
family sequences used to query bacterial genomes to identify Rid
family genes.
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