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Abstract
In this paper, we present a new method for integration of 3-D medical data by
utilizing the advantages of 3-D multiresolution analysis and techniques of variational
calculus. We first express the data integration problem as a variational optimal control
problem where we express the displacement field in terms of wavelet expansions
and, secondly, we write the components of the displacement field in terms of wavelet
coefficients. We solve this optimization problem with a blockwise descent algorithm.
We demonstrate the registration of 3-D brain MR images in the size of 257× 257× 65
as an application of the present method. Experimental results indicate that the
method can integrate 3-D MR images better than only variational or only
wavelet-based methods.
MSC: 68U10; 65D18; 65J05; 97N40

Keywords: inverse problems; variational optimization; multiresolution; image
integration

1 Introduction
The main purpose of this paper is to present an efficient -D medical data (image) inte-
gration technique. Image integration (sometimes called registration or matching) can be
described as finding a spatial correspondence between pixels (or voxels) of two images
that maximizes the similarity between the two images. The images could be of the same
or different objects and imaging modalities and possibly be taken at different distances,
angles, and times. Detecting tumors, locating diseased areas, monitoring changes in an
individual, drug discovery, image fusion, feature matching, and motion tracking are some
of the important applications of the image registration problem. So far a general theory
for image matching has yet to be established. Each application venue has developed its
own approaches and implementations. As a result, a single standard method for image
integration has not emerged. Therefore, finding reliable and efficient image integration
techniques along with fast implementation methods is significantly important and active
research area. Some of the well-known image integration algorithms can be seen in [–]
and in the references therein.
Structure of this paper is as follows. In Section , we present an algorithm for integra-

tion of -D medical data by utilizing the advantages of -D multiresolution analysis and
techniques of variational calculus. In Section , we present some experimental results re-
garding the integration of MR images as an application of the present method. We com-
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plete the paper with a final section where we briefly summarize the paper and discuss the
future extensions.

2 Multiresolution approach for deformation field
Assume that both the template T(x) and reference R(x) images are defined on the same
domain � ⊂ R

. Because reference and template images are obtained from different dis-
tances, angles, times, sensors, and sometimes even by different individuals, a displacement
field may occur between the reference and template images. One of the major goals of this
paper is to compute the deformation field in a systematic way.
A deformation field is a vector image that maps reference image pixel coordinates to the

coordinates of the corresponding template image pixels. Consider the deformations of the
form

φu(x) := x + u(x), x = (x,x,x) ∈ �,u(x) =
(
u(x),u(x),u(x)

)
, ()

where u(x) denotes a displacement field. Because both the template T(x) and reference
R(x) images are almost surely ‘the same’ images, we can write

R(x,x,x) ≈ T
(
(x,x,x) + u(x,x,x)

)
= T

(
x + u(x),x + u(x),x + u(x)

)
. ()

In this paper, we exploit -D Haar wavelets. When expanding the displacement field
u(x) in terms of a wavelet decomposition, it is necessary to take into account the wavelet
parameters (coefficients) α, which yields that

φu(x) =

⎡
⎢⎣x + u(x,x,x,α)
x + u(x,x,x,α)
x + u(x,x,x,α)

⎤
⎥⎦ .

The major goal of this paper is to compute the displacement field u(x) in a systematic way.
We express each of ui, i = , , , in terms of wavelet coefficients. Therefore, computing
these wavelet coefficients will be enough to obtain the displacement field u(x).
A multiresolution analysis of L(�), � = R

 is a partially ordered set of closed linear
subspaces

{
Vn ⊂ L(�)

}
n∈Z

with properties:
()

⋂
nVn = {}; ⋃nVn ⊂dense L(�);

() f (x) ∈ Vn ⇐⇒ f (mx) ∈ Vn+m, for every n ∈ Z
,m ∈ E;

() f (x) ∈ Vn ⇐⇒ f (x – –k) ∈ Vn, for every k ∈ Z
, n ∈ E;

() There exists � ∈ V such that {�(x – k)}k∈Z is a Riesz basis for V.
Here n = (n,n,n), n = (n , n , n ),  = (, , ) ∈ N

, x = (x,x,x) ∈ R
, n =

(nx, nx, nx). The function �(x) is called the scaling function of the multiresolu-
tion analysis. Detailed information about multiresolution analysis and wavelets might be
seen in []. Let � = (, ) ⊂ R

 be the open unit cube. For any n ∈ Z
, we introduce the

function space Vn: the space of piecewise constant functions on a uniform grid with mesh
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size h = (–n , –n , –n ). These grids are uniformly spaced in each of the three coordinate
directions, but possibly with a different mesh size in the different directions. The volume
of these cells is denoted by h = –(n+n+n). The functions in Vn are all constant in each
cell defined by

�n,k :=
[
k–n , (k + )–n

] × [
k–n , (k + )–n

] × [
k–n , (k + )–n

]
. ()

A basisVm may be generated from a scaling function�. In order to deal with -Ddeforma-
tion field, to each component of the displacement field, a multiresolution decomposition
is applied. At scalem, i.e., in the space Vm, the displacement field um = (um ,um ,um ) will be
parameterized by the vector

αm :=
[
αm
x,i,j,k ,α

m
x,i,j,k ,α

m
x,i,j,k

]
as

um(x,x,x,α) =

⎡
⎢⎣um (x,x,x,α)
um (x,x,x,α)
um (x,x,x,α)

⎤
⎥⎦ =

⎡
⎢⎣

∑
i,j,k αm

x,i,j,k�
m
i,j,k(x,x,x,α)∑

i,j,k αm
x,i,j,k�

m
i,j,k(x,x,x,α)∑

i,j,k αm
x,i,j,k�

m
i,j,k(x,x,x,α)

⎤
⎥⎦ . ()

Elements (scaling functions) of a basis Vm are -D functions that are translated across
the cubical grid �n,k. These functions are a tensor product of the -D scaling and wavelet
functions as

� = φ
(
–jx – k

)
φ
(
–jx – k

)
φ
(
–jx – k

)
,

� = φ
(
–jx – k

)
φ
(
–jx – k

)
ψ

(
–jx – k

)
,

� = φ
(
–jx – k

)
ψ

(
–jx – k

)
φ
(
–jx – k

)
,

� = φ
(
–jx – k

)
ψ

(
–jx – k

)
ψ

(
–jx – k

)
,

� = ψ
(
–jx – k

)
φ
(
–jx – k

)
φ
(
–jx – k

)
,

� = ψ
(
–jx – k

)
φ
(
–jx – k

)
ψ

(
–jx – k

)
,

� = ψ
(
–jx – k

)
ψ

(
–jx – k

)
φ
(
–jx – k

)
,

� = ψ
(
–jx – k

)
ψ

(
–jx – k

)
ψ

(
–jx – k

)
.

3 Optimal control formulation of data integration
The state-of-the-art image registration problem can be expressed as an optimal control
problem by

min
φ∈�

J [R,T;φu] ()

for the functional

J [R,T;φu] = Csim[R,T;φu] + λCreg[u], ()

http://www.boundaryvalueproblems.com/content/2012/1/115
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where Csim[R,T;φu] denotes a similarity measure between the template image T and the
reference image R, φu(x) := x+ u(x) is the deformation field, u is the displacement field, �
is the set of all possible admissible transformations, Creg[u] is a regularization term, and λ

is a regularization constant.
We choose the L-norm type similarity measure defined as

Csim
[
R(x),T(x);φu(x)

]
:=

∫
�

∇ · (T(
x + u(x)

)
–R(x)

)
dx. ()

Note that some other similarity measures might be selected depending on the problem.
We choose () because, as of our best knowledge, this similarity measure has not been
associated with any volumetric image registration algorithm in the literature and to test
the convenience of this measure in these types of applications.
Without the regularizing term in functional (), the image registration problem () is

ill-posed []; furthermore, imaging data usually is not smooth due to edges, folding, or
other unwanted deformations. Ill-posed problems are widely used in PDE-based image
processing problems and inverse problems. An optimization problem is said to be well
posed if the solution of the problem uniquely exists and the solution depends continu-
ously on the data of the problem. If one of these two conditions is not satisfied, it is called
an ill-posed problem. Image registration is an ill-posed optimal control problem. In or-
der to overcome the ill-posedness of the optimization problem () and to assure smooth
solutions, we introduce additional regularization terms. The main idea behind adding a
regularization term is to smoothen the problem with respect to both the functional and
the solution so that well-posedness is assured and efficient computational methods can be
defined to determine minimizers. Typical regularization terms associated with image reg-
istration problems include curvature, diffusion, elasticity, and fluid. Details about each of
these regularization approaches can be seen, for example, in [] and the references therein.
In this paper, we introduce a regularization term that consists of summation of two dif-

ferent terms defined as follows:

Creg
[
u(x)

]
:= λ

∫
�

√
|∇u(x)| + β dx + λ

∫
�

log
(
u(x)

)
dx. ()

Let us further point out that the regularization term () has not also been associated with
any volumetric data integration problem in the literature. The term

∫
�

√|∇u(x)| + β dx
is known as a perturbed total-variation model and has been used in image restoration
problems. This model was obtained by modifying the regularization term mostly known
as the Dirichlet regularization term given by

∫
�

√
|∇u(x)| dx, ()

which penalizes non-smooth images. Major shortcomings of () is that some image fea-
tures, like edges of the original image, may show up blurred in the reconstructed image.
To overcome this drawback, Rudin, Osher, and Fatemi (ROF) proposed replacing () with
so-called total-variation (TV) seminorm

∫
�

√|∇u(x)|dx. In the solution of the optimal
control problem (), in order to prevent the degeneracy of the resulting Euler-Lagrange
equations, wemodify theTV-model as

∫
�

√|∇u(x)| + β dx, where β is an arbitrarily small

http://www.boundaryvalueproblems.com/content/2012/1/115
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perturbation parameter. Another regularization term that we use is
∫
�
log(u(x))dx. This

term is added to make the regularization term original and to see its impact on the volu-
metric data integration problems.
Having said these, we can express the cost function of the optimization problem () as

J [R,T;φu] =
∫

�

∇ · (T(
x + u(x)

)
–R(x)

)
dx

+ λ

∫
�

√
|∇u(x)| + β dx + λ

∫
�

log
(
u(x)

)
dx.

This is a variational [] convex optimization problem. Necessary and sufficient conditions
for the existence and uniqueness of the solutions was given in []. Because we set up a
connection between this variational optimization problem and -D wavelet transforms,
for a given scale m, the optimal control problem can be expressed as

α̂m = argmin
αm∈Am

J
[
Csim(x),Creg(x),φu

(
x,αm)]

,

where Am stands for the admissible parameter set. We apply a blockwise descent algo-
rithm. During theminimization, the cost functionalJ needs to be evaluated only on�m

i,j,k ,
defined as

�m
i,j,k :=

[
i – 
m

,
i + 
m

]
×

[
j – 
m

,
j + 
m

]
×

[
k – 
m

,
k + 
m

]
,

which is the support of�m
i,j,k . Inside the block, the direction of descent d ∈R

 is computed
as the opposite of the gradient ∂J

∂αm of the cost function J where

∂J
∂αm =

∫
�

�
(
Tu(x) –Ru(x)

)∇Tu(x)
(

∂u(x)
∂(αm)t

)t

dx

+ λ

∫
�

∇u(x)√|∇u(x)|
(

∂u(x)
∂(αm)t

)t

dx + λ

∫
�

∇u(x)′

∇u(x)

(
∂u(x)
∂(αm)t

)t

dx.

4 Experimental results
In this section, we demonstrate the registration of brain MR images in the size of  ×
× as an application of the present method. The template, reference, and integrated
images are shown in Figure . Duration of the registration is about  minutes, which is
quite fast for -D medical image integration. We applied the presented method to some
other brain MR images and obtained similar results.

5 Conclusion
In this paper, we present a method for integration of -D medical data by utilizing the ad-
vantages of -D multiresolution analysis and techniques of variational calculus. We first
express the data integration problem as a variational optimal control problem where we
express the displacement field in terms ofwavelet expansions and, secondly, we express the
components of the displacement field in terms of wavelet coefficients. We solve the afore-
mentioned optimization problem with a blockwise descent algorithm. We demonstrate
the registration of -D brain MR images in the size of  ×  ×  as an application
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Figure 1 Template (top), reference (bottom left) and integrated (bottom right) images.

of the present method. Experimental results indicate that the method can integrate -D
MR images better than only variational or only wavelet based methods. In a related work
[], a -D wavelet based method was presented for deformable image registration where
different similarity measure, different regularization term, and different types of wavelets
were used.
In future work, we will investigate the applications of this image matching technique

to the registration of noisy and blurred images. Furthermore, we plan to compare the
strength of these registration techniques with some well-known image registration meth-
ods in terms of speed, quality, and effectiveness in detail.
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