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Abstract A good knowledge of the luminosity spectrum
is mandatory for many measurements at future e+e− col-
liders. As the beam-parameters determining the luminosity
spectrum cannot be measured precisely, the luminosity spec-
trum has to be measured through a gauge process with the
detector. The measured distributions, used to reconstruct the
spectrum, depend on Initial State Radiation, cross-section,
and Final State Radiation. To extract the basic luminosity
spectrum, a parametric model of the luminosity spectrum is
created, in this case the spectrum at the 3 TeV compact linear
collider. The model is used within a reweighting technique
to extract the luminosity spectrum from measured Bhabha
event observables, taking all relevant effects into account.
The centre-of-mass energy spectrum is reconstructed within
5 % over the full validity range of the model. The recon-
structed spectrum does not result in a significant bias or sys-
tematic uncertainty in the exemplary physics benchmark pro-
cess of smuon pair production.

1 Introduction

Small, nanometre-sized beams are necessary to reach the
required luminosity at future linear colliders. Together with
the high energy, the small beams cause large electromag-
netic fields during the bunch crossing. These intense fields at
the interaction point squeeze the beams. This so-called pinch
effect increases the instantaneous luminosity. However, the
deflection of the particles also leads to the emission of Beam-
strahlung photons—which reduce the nominal energy of col-
liding particles—and produces collisions below the nomi-
nal centre-of-mass energy [1–4]. The resulting spectrum of
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centre-of-mass energies is traditionally called the luminosity
spectrum1 [4–7].

The knowledge of the shape of this luminosity spectrum is
mandatory for the precision measurements in which a cross-
section has to be known. While the cross-section depends
on the centre-of-mass energy, the observables measured in
the lab frame also depend on the difference in energy of the
colliding electrons,2 which determines the Lorentz boost of
the system.

Unlike the electron structure functions [i.e, Initial State
Radiation (ISR)]—which can be calculated precisely—the
beam-beam forces, and therefore the Beamstrahlung, highly
depend on the geometry of the colliding bunches. The actual
beam-beam interaction taking place at the interaction point
cannot be precisely simulated, because the geometry of the
bunches cannot be measured. Therefore, the luminosity spec-
trum at the interaction point has to be measured using a
physics channel with well known properties, e.g., Bhabha
scattering.

The observables measured in the events are affected by
detector resolutions. The distributions used for the recon-
struction of the luminosity spectrum are also dependent on
the cross-section of the process, and initial and final state
radiation (FSR). All effects have to be taken into account for
the reconstruction of the luminosity spectrum.

It was pointed out by Frary and Miller [5] that a precise
reconstruction of the peak of the luminosity spectrum, neces-
sary for a top-quark threshold scan, can only be achieved with
a measurement of the angles of the outgoing electrons from
Bhabha scattering. The angles of the two particles are the
most precisely measurable observable [5]. The angles of the
outgoing electrons—or rather the acollinearity between the

1 The luminosity spectrum is a dimensionless probability density func-
tion that is mathematically equivalent to the use of electron structure
functions and parton density functions.
2 Unless explicitly stated, electron always refers to both electrons and
positrons.
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two particles—are sufficient to extract a relative centre-of-
mass energy, which gives access to the luminosity spectrum.

Toomi et al. [6] showed that the reconstruction of a param-
eterised luminosity spectrum is possible using a template
fit. Their parameterisation only used three parameters to
describe the effective centre-of-mass energy spectrum. How-
ever, as the boost of the initial system and correlation between
the energies of the two particles cannot be neglected [8], a
description of the energies of the pairs of colliding particles is
necessary. Correlations exist between the two particle ener-
gies because the probability to emit beamstrahlung depends
on the distance travelled in the field of the opposite bunch, and
the field strength depends on the position inside the bunch.
As two particles can only collide, when they are in similar
position in their respective bunches the energy between two
particles is correlated.

The relative centre-of-mass energy, that is reconstructed
from the acollinearity, is equal to unity for back-to-back par-
ticles, and always smaller than unity for larger acollinearity,
regardless whether one of the particles has a higher or lower
energy than nominal. Therefore, Shibata et al. [7] proposed
to calculate the distribution of the four-vectors of the Bhabha
electrons and extract the luminosity spectrum with the itera-
tive Expectation–Maximisation algorithm. They have, how-
ever, considered neither detector resolutions, nor Initial and
Final State Radiation. For a full description of the outgoing
Bhabha electrons, the luminosity spectrum would have to
be weighted with the Bhabha cross-section and convoluted
with the detector resolutions, which would require a huge
computational effort, when using their method.

A reconstruction of the energy of the particle pairs was
done for the 500 GeV ILC [9]. The acollinearity and the
energies of the electrons measured in the calorimeter were
used in a reweighting fit to reconstruct the luminosity spec-
trum. The parameterisation—necessary for the reweighting
fit—accounted for the correlation between the two beams
and the beam-energy spread.

This paper follows the approach of the 500 GeV ILC
study [9], extends it, and applies it to the luminosity spectrum
of the 3 TeV CLIC [10], which is the most challenging lumi-
nosity spectrum. This paper is structured as follows: in Sect. 2
the basic and cross-section scaled luminosity spectrum are
defined. The Bhabha scattering and observables used for the
reconstruction are also introduced. In Sect. 3 the model of
the luminosity spectrum, required to perform a reweighting
fit, is constructed. The reweighting technique is explained in
Sect. 4, and in Sect. 5 it is applied to first validate the model
against the luminosity spectrum at the 3 TeV CLIC; then all
the relevant effects leading to the measured observables are
included, and the luminosity spectrum is reconstructed from
these distributions. In Sect. 6 the impact of the reconstructed
luminosity spectrum on the measurement of the masses of
supersymmetric particles in a CLIC benchmark process is

estimated. The paper closes with a summary, conclusions,
and outlook in Sect. 7.

2 Luminosity spectrum, Bhabha scattering,
and the measurement

The nominal centre-of-mass energy
√

snom of a collider with
two beams with the nominal beam energy EBeam is given by√

snom = 2EBeam. If the two interacting particles carry only
a fraction of the nominal beam energy x1,2 = E1,2/EBeam,
the effective centre-of-mass energy is

√
s ′ = 2EBeam

√
x1x2. (1)

The basic luminosity spectrum L
(
x
)

describes either the
distribution of the fraction of centre-of-mass energies x =√

s ′/
√

snom. or the distribution of the fraction of energies
of colliding particles L

(
x1, x2

)
prior to hard collisions and

prior to initial state radiation. The two functions are con-
nected via the integral along the lines of constant centre-of-
mass energies, given by Eq. (1). Therefore,

L
(
x
) =

xmax∫∫

0

dx1dx2 δ
(
x − √

x1x2
)
L
(
x1, x2

)
. (2)

The luminosity spectrum affects all centre-of-mass energy
dependent observables. For example, the luminosity spec-
trum has to be used to predict the inclusive (i.e., observed)
cross-section σMachine

Eff at the machine. The principle is
the same as for the parton density functions at hadron
machines, except that the luminosity spectrum depends on
the machine and not only on the colliding particles. To calcu-
late the effective cross-section the differential cross-section
is weighted with the luminosity spectrum, either with the
one-dimensional luminosity spectrum

σMachine
Eff =

xmax∫

0

dx L
(
x
)
σ
(
x
√

snom
)
, (3)

or for the two-dimensional luminosity spectrum

σMachine
Eff =

xmax∫∫

0

dx1dx2 L
(
x1, x2

)
σ
(√

x1x2snom
)
. (4)

Bhabha scattering is the process of choice for luminos-
ity measurements. It can be calculated with high precision
and has a large cross-section. To first order, the differential
Bhabha cross-section is [11]
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dσBhabha

dθ
= 2πα2

s

sin θ

sin4 (θ/2)
, (5)

where α is the fine-structure constant and θ the polar scatter-
ing angle.

Because cross-sections σx
(√

s ′) depend on the centre-of-
mass energy, any process used to reconstruct the basic lumi-
nosity spectrum will inherently contain a scaled luminosity
spectrum

Lscaled (x) = σx
(
x
√

snom
)

∫ x ′
max

x ′
min

dx ′σx
(
x ′√snom

)L
(
x
)
. (6)

This means that it is not enough to reconstruct the observed
centre-of-mass energy spectrum, the luminosity spectrum
has to be extracted from the observed spectrum.

The observed centre-of-mass energy is further affected by
initial state radiation. It is impossible to distinguish between
energy loss from initial state radiation and Beamstrahlung
on an event-by-event basis. initial state radiation and Beam-
strahlung have to be disentangled statistically.

Finally, the scattered particles are recorded in the detector,
where their properties are reconstructed within the limits of
the resolution of the respective sub-detectors.

2.1 The basic luminosity spectrum

The luminosity spectrum distribution can be seen as a con-
volution of the beam-energy spread, which is inherent to the
accelerator, and the Beamstrahlung due to the Beam–Beam
effects. Figure 1 shows the beam-energy spread of the 3 TeV
CLIC machine. It is obtained from a simulation of the main
linear accelerator and the beam delivery system [12].

The energy of a particle depends on its longitudinal posi-
tion in the bunch (Fig. 1a). Due to intra-bunch wakefields,
particles in the front of the bunch gain more energy from
the RF cavities than particles in the back of the bunch [13].
This leads to the two distinct peaks near the minimal and
the maximal value of the beam-energy spread (Fig. 1b). The
energy spread is not following a Gaussian distribution. The

dependence of the particle energy on the longitudinal position
also leads to larger correlations between the particle energies.
The precise shape of the beam-energy spread depends on the
RF-phase and the bunch length [13]. To avoid a loss in the
luminosity, these parameters are not allowed to vary freely
and have to be precisely controlled [10]. Therefore, it can
be assumed that a limited knowledge of the shape of beam-
energy spread is available.

The distribution of particles is used as the input to the
beam-beam simulation. The simulation of the beam–beam
effects is done with GuineaPig [4]. During the bunch cross-
ing the intense electromagnetic fields—due to the oppos-
ing bunches—deflect the beam particles and cause Beam-
strahlung.

Figure 2 shows the full range and the region around the
maximal energy of the two-dimensional luminosity spec-
trum. The square region in the distribution of the two energies
is due to the beam-energy spread (see Fig. 1b). Events with
x1 < 0.995 or x2 < 0.995 were significantly affected by the
Beamstrahlung.

Figure 3a shows the basic luminosity spectrum with
respect to the effective centre-of-mass energy

√
s ′. The spec-

trum possesses a peak around the nominal centre-of-mass
energy and a long tail down to less than 5 % of the nominal
centre-of-mass energy. Figure 3b shows the peak of the lumi-
nosity spectrum as it is produced by GuineaPig. Because the
beam-energy spread is not Normally distributed, the centre-
of-mass energy peak is not Gaussian either. Figure 3b also
shows a spectrum obtained by randomly pairing the energies
of two particles, i.e., removing the correlation between the
energies of the two beams. There is a clear difference between
the two cases. If the correlation between the particle energies
is not taken into account, the luminosity spectrum cannot be
reconstructed properly.

To describe the beam-energy spread—and anchor the
luminosity spectrum—the absolute energy of the beam has
to be known. The average beam energy can be measured on a
level of 0.04 % [10] with a dipole and beam position monitor
in the beam delivery system of the accelerator. If the distri-
bution itself can be measured as well is still under study.

Fig. 1 Energy distribution of
the CLIC beams [12].
a Dependence of the particle
energy on the longitudinal
position of the particles along
the length of the bunch, where
the beam travels towards the
left. b The energy distribution of
all particles
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Fig. 2 a Energy spectrum of
colliding particles as simulated
with GuineaPig for 3 TeV
CLIC. b Zoom of the luminosity
spectrum around the nominal
beam energies
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Fig. 3 a Luminosity spectrum
for 3 TeV CLIC as simulated
with GuineaPig. b The peak of
the luminosity spectrum with
and without correlated particle
energies
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2.2 Cross-section-scaled luminosity spectrum

The observed events are distributed according to the scaled
luminosity spectrum (Eq. (6)), thus the events obtained
from GuineaPig have to be either weighted with very large
weights, or sampled with an accept–reject method [14]
to obtain events with constant weights. Because large
event-weights are undesirable, the accept–reject method is
chosen.

The 3 TeV CLIC luminosity spectrum extends over more
than three orders of magnitude of the Bhabha cross-section,
meaning the accept–reject method is very inefficient. If a
very large number of events for the basic luminosity spec-
trum were available, the scaled luminosity spectrum could
be directly sampled from them. To avoid storing the large
number of basic events the accept–reject method is directly
added in GuineaPig.

The differential cross-section of the Bhabha scattering
has to be known for the accept–reject method. Instead of
using Eq. (5) to calculate the Bhabha cross-section, it is
estimated with Bhwide [15]. Bhwide includes higher-order
effects and initial state radiation. Only events with the elec-
tron and positron polar angle inside the tracking acceptance
(7◦ < θ < 173◦) are accepted. The cross-section is esti-
mated at precise centre-of-mass energies from 10 GeV to
3000 GeV without any luminosity spectrum. Figure 4 shows
the cross-section as given by Bhwide.
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Fig. 4 Bhabha cross-section from Bhwide for electrons with a polar
angle 7◦ < θ < 173◦, and the basic luminosity spectrum from Guin-
eaPig (GP Basic), the luminosity spectrum scaled by bin-wise multipli-
cation with a normalised Bhabha cross-section (GP × cross-section),
and the luminosity spectrum scaled with an accept–reject method in
GuineaPig (GP Scaled). The lines of ‘GP × cross-section’ and ‘GP
Scaled’ are overlapping

Figure 4 shows the basic luminosity spectrum obtained
with GuineaPig, the bin-wise multiplication of the lumi-
nosity spectrum with the cross-section, and the scaled lumi-
nosity spectrum from GuineaPig with the cross-section used
in the accept–reject method. The last two curves are nearly
identical showing that the modified GuineaPig produces a
properly scaled luminosity spectrum with equally weighted
events.
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Fig. 5 Detector resolutions
obtained through full
reconstruction of Bhabha events
with overlay of γ γ → hadrons
events: a Energy resolution of
outgoing electrons and
resolution function according to
Eq. (8). b Angular resolution for
electrons
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2.3 Generation of Bhabha events

The different luminosity spectra are used in the Bhabha gen-
erator to create the events which are observed in the detector.
The Bhabha events are generated with Bhwide, where the
energies of the initial electron and positron can be defined
on an event-by-event basis, as implemented by Rimbault
et al. [16]. The polar angle θ of the final state electrons must
be 7◦ < θ < 173◦ to ensure they will be observable in the
tracker. Bhwide produces also Initial and Final State Radia-
tion photons and accounts for their effects during the Bhabha
scattering.

The cross-section—including the luminosity spectrum—
for events with a centre-of-mass energy above 1.5 TeV is
11 pb, which results in more than 1 million events for an inte-
grated luminosity of 100 fb−1. The expectation for the 3 TeV
CLIC is an integrated luminosity of 500 fb−1 per year [17].

2.4 Observables and detector resolutions

Three observables, which can be extracted from the final
state electrons, are used for the reconstruction of the lumi-
nosity spectrum: the relative centre-of-mass energy calcu-
lated from the polar angles of the outgoing electron and
positron

√
s ′

acol/
√

snom, the energy of the electron E1, and
the energy of the positron E2. The relative centre-of-mass
energy reconstructed from the acollinearity of the final state
electrons is [8,9]

√
s ′

acol√
snom

=
√

sin(θ1) + sin(θ2) + sin(θ1 + θ2)

sin(θ1) + sin(θ2) − sin(θ1 + θ2)
, (7)

where θ1 is the polar angle of the electron and θ2 that of
the positron.3

√
s ′

acol is equal to the effective centre-of-mass
energy

√
s ′, if only one of the particles radiated photons –

Beamstrahlung or Initial State Radiation. If both the electron
and the positron radiated photons, the reconstructed centre-
of-mass energy

√
s ′

acol will be larger than
√

s ′.

3 Strictly speaking, θ1 and θ2 are the angles with respect the positive or
negative z-axis. The angles have to fulfil θ1 + θ2 > π by construction.

The Geant4 simulation of tens of millions of electrons is
too time-consuming. To include the detector effects, resolu-
tion functions of the energy and angles have been obtained
from fully simulated and reconstructed Bhabha events using
the CLIC_ILD_CDR detector model [18]. The dominating
beam-induced background, the γγ → hadron events [19],
was accounted for.

The rate of electrons produced in Bhabha scattering falls
with an increasing polar angle θ (cf. Eq. (5)) and the events
will be predominantly at small polar angles. Because the
magnetic field is nearly collinear to those tracks, their cur-
vature does not allow for an accurate measurement of the
momentum. Therefore, the energy is reconstructed using
only the calorimeter information. The tracking information
is used to measure the angles. The energy resolution is shown
in Fig. 5a. It is modelled in the analysis with

σE

E
= 24.3 %√

E/GeV
⊕ 1.23 %, (8)

obtained from the reconstruction with overlaid CLIC 3 TeV
γγ → hadron background. The angular resolution needed
for the computation of the relative centre-of-mass energy
depends on the energy, shown in Fig. 5b. The angular res-
olution is better than 20 μrad for particle energies above
200 GeV.

The distributions of the particle energies and the relative
centre-of-mass energy are shown in Fig. 6. Figure 6a and
b show the distributions before and Fig. 6c and d after the
application of the resolution effects via four-vector smearing.
The relative centre-of-mass energy is hardly affected by the
resolution, due to the high angular resolution of the tracking
detectors. The energy of the particles is much more affected
by the detector resolution.

3 Modelling the luminosity spectrum

For the reconstruction of the basic luminosity spectrum with
the reweighting fit, a model or parameterisation of the lumi-
nosity spectrum is needed. If the beam energy were not
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Fig. 6 Energy of the final state
electrons and relative
centre-of-mass energy of the
final state before (a, b) and
after (c, d) application of the
resolution functions
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affected by beam-energy spread or Beamstrahlung, it could
simply be described by a Dirac delta-distribution

EBeam(x) = δ(x − 1), (9)

with the random variates for this function xEBeam = 1. The
nominal energy is modified by the contributions from beam-
energy spread �xSpread and Beamstrahlung �xStrahl which
change the beam energy away from its initial value. The func-
tions describing the two contributions will therefore describe
the difference to the nominal value, and the final random vari-
ate will be

xFinal = xEBeam + �xSpread + �xStrahl. (10)

Thus, the functions for the beam-energy spread and Beam-
strahlung should describe the energy change of particles due
to the respective effect.

The luminosity spectrum model will be built by describ-
ing the two particle energies. Using x1 and x2 as defined in
Sect. 2, the simplest description of a two-dimensional model
is L

(
x1, x2

) = f (x1) f (x2). However, a purely factoris-
ing Ansatz is insufficient to describe the correlation between
the particle energies. Therefore, the two-dimensional energy
distribution is divided into four regions (as shown in Fig. 7):
one region where neither particle radiated Beamstrahlung
(called the ‘peak’); two regions where one or the other par-
ticle radiated Beamstrahlung (called the ‘arms’); and one
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Fig. 7 Two-dimensional luminosity spectrum where the different
regions have been labelled. The beam-energy spread is included and
in principle all the regions are overlapping

region where both particles radiated Beamstrahlung (called
the ‘body’). This separation is only determined by whether
a particle produced Beamstrahlung or not and ignores the
beam-energy spread for the moment. The result of this divi-
sion is a piecewise function

L
(
x1, x2

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fPeak, for x1 = 1 and x2 = 1

fArm1, for x1 = 1 and x2 < 1

fArm2, for x1 < 1 and x2 = 1

fBody, for x1 < 1 and x2 < 1.

(11)

For each region, the resulting particle energies are described
by a product of the functions for the two particles
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Fig. 8 a The beam-energy
spread distribution from the
accelerator simulation [12] and
the best fit to the beam-energy
spread with Eq. (14). b Energy
spread after the simulation in
GuineaPig. The distribution of
the Peak requires that both
particles have E > 0.995EBeam,
and the distribution in the Arms
requires that one particle has
E < 0.995EBeam. The colour
bands in both plots indicate the
confidence interval at 99 %
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fRegion = f 1
Region(x1) · f 2

Region(x2), and the individual
functions are constructed from convolutions of the beam-
energy spread and Beamstrahlung functions, depending on
the region.

3.1 Parameterisation of the beam-energy spread

The function fPeak to describe the behaviour of the beam-
energy spread (Fig. 8a) has to rise very steeply at the two
extremities. A hyperbolic cosine, parabola, or higher order
polynomials – with a reasonable number of parameters – do
not describe this energy distribution well. A beta-distribution
b
(
t
) = 1

N tω
a
(1 − t)ω

b
is used to describe the beam-energy

spread. As the beta-distribution is limited between 0 and 1,
a variable transform

t = x − xmin

xmax − xmin
(12)

is used to describe the beam-energy spread between the two
endpoints xmin and xmax near the maximal values at the begin-
ning and end of the distribution. Here, the variable x is the
relative difference between a particle’s energy EParticle and
the nominal beam energy EBeam,

x = EParticle − EBeam

EBeam
= �E

EBeam
, (13)

which corresponds to �xSpread from Eq. (10). To also
describe the particles with energies below the xmin and above
xmax, the beta-distribution is convoluted with a Gaussian dis-
tribution g

(
x
)

with a mean μ = 0 and a width σ . The Beam-
Energy Spread (BES) function is

BES
(
x;ωa, ωb, σ

) = b(x;ωa, ωb) ⊗ g
(
x; σ

)
, (14)

where ⊗ is the convolution operator h(x) ≡ ( f ⊗ g) (x) ≡∫∞
−∞ f (τ )g(x − τ)dτ . Due to Fubini’s theorem the convo-

lution of two probability density functions always results in
another probability density function [20].

The beam-energy spread histogram is fitted by the func-
tion BES

(
x
)

with a binned log-likelihood fit with Root ver-
sion 5.34.01 [21]. Figure 8a shows the best fit to the beam-
energy spread with this model, and the resulting parameters
are given in Table 1. The histogram contains 300 000 entries.

The width of the Gaussian σ and the boundaries of the
beam-energy spread beta-distributions (xmin, xmax) are fixed
for all following fits. This assumes an existing knowledge of
the beam-energy spread coming from the accelerator. Fixing
these parameters can introduce a large systematic error, if
they are not measured correctly.

3.1.1 Luminosity weighted beam-energy spread

The correlation between the particle energy and its position
in the bunch causes a change in the effective beam-energy

Table 1 Parameters found by the fit of Eq. (14) to the beam-energy spread from the accelerator simulation and to the beam-energy spread for two
different regions of the luminosity spectrum

Parameter Factor Energy spread Peak Arms

Value Uncertainty Value Uncertainty Value Uncertainty

ωa −0.522 0.001 −0.333 0.002 −0.470 0.001

ωb −0.409 0.002 −0.298 0.002 0.405 0.004

xmin 10−3 −4.679 0.001 Fixed Fixed

xmax 10−3 5.495 0.002 Fixed Fixed

σ 10−4 1.367 0.010 Fixed Fixed

χ2/ndf 764/195 6032/198 3803/198
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spread. The probability to radiate Beamstrahlung photons,
and therefore the fraction of energy lost by particles,
increases with the distance travelled in the electromagnetic
field of the oncoming bunch.

Figure 8b shows two energy distributions, one of the Peak-
region, where both particles posses an energy of more than
99.5 % of the nominal beam energy, and one of the Arms-
region, where only one of the particle contains more than
99.5 % of the nominal beam energy. Both histograms contain
300 000 entries.

The energy spread of the Peak-region is clearly flatter
than the energy spread coming from the accelerator (Fig. 8).
In the column Peak, Table 1 lists also the parameters ωa and
ωb found by fitting Eq. (14) to the distribution. For this fit,
the limits and the Gaussian width are fixed. For the best fit
both ωa and ωb are closer to zero, but still negative, i.e.,
there are still two maxima at the lower and upper end of the
distribution. The peak at the lower end of the spectrum is
reduced, because the particles in the tail are less likely to
interact with particles that did not radiate Beamstrahlung.

The energy spread of the Arms-region, where one of the
particles radiated Beamstrahlung, shows a large peak at the
lower energy, and almost no peak at the upper end of the
spectrum. This is also caused by the correlation between the
energy and the position in the bunch. Particles in the tail are
more likely to collide with a particle that already radiated
Beamstrahlung, and therefore the peak at the lower edge of
the beam-energy spread is enhanced. Likewise, only very few
particles with the highest energy—located near the front of
the bunch—interact with particles from the tail of the bunch,
which leads to the disappearance of the peak at the high-
est energies. The beam-energy spread for the Arms-region
is described by a beta-distribution for which ωb > 0 (see
column Arms in Table 1).

The χ2/ndf becomes larger for the fits to the luminosity
weighted beam-energy spreads than for the fit to the initial
beam-energy spread. The chosen function cannot perfectly
model the distributions, however, the fits are only used to
check qualitatively if the model can represent the luminosity
spectrum at this stage. In addition, as there was only a single
input file available to run GuineaPig, the macro-particles
are re-used for luminosity events. This re-use means that the
fluctuations in the number of entries are larger than what
can be expected from the statistical uncertainties, which also
increases the χ2/ndf value.

3.2 Beamstrahlung

Following Ohl’s Circe model [22], the energy distribution
of the particles after the emission of Beamstrahlung pho-
tons is modelled with a beta-distribution. Beamstrahlung will
always reduce the energy of a particle, so that the random
variate �xStrahl would be between −1 and 0 (cf. Eq. (10)).

Beta-distributions are limited between 0 and 1, so that the
function describing the Beamstrahlung effect is convoluted
with the δ-distribution from Eq. (9), which moves the range
to 0 < xStrahl = 1 + �xStrahl < 1 and no further variable
transform is necessary for the probability density function.

The parameters of the beta-distributions used to describe
the energy distribution due to Beamstrahlung are called ηa

and ηb. The beta-distribution parameters must fulfil the con-
ditions 0 < ηa and −1 < ηb < 0 for the distribution to fall
towards x = 0 and rise towards x = 1.

Previous studies by Daniel Schulte have shown that the
tail of the CLIC centre-of-mass energy distribution is better
modelled by a sum of three beta-distributions. Therefore, the
energy distributions from Beamstrahlung are initially fitted
by linear combinations of NBeta incomplete beta-distribu-
tions

blinear(x) =
NBeta∑

i=1

pi b
(
x; [p]i , βLimit

)
, (15)

and the constraint

1
!=

NBeta∑

i=1

pi , (16)

where pi are the respective fractions of the individual beta-
distribution contribution and [p]i = {ηa

i , η
b
i } the parameter-

set for each beta-distribution. The beta-distributions are lim-
ited with an upper limit of βLimit = 0.995. Above 0.955
the beam-energy spread is dominant and would have to be
included for the fit.

Figure 9 shows the fits with NBeta = 1, 2, 3 to the distribu-
tion of the particle energy. In Fig. 9 the fit to the histogram is
performed in the range of 0.0 < x < 0.995; It is visible that
the function with three beta-distributions—with eight free
parameters—shows a better agreement with the distribution
than the other functions. As all the beta-distributions cover
the full range for the fit, there are large correlations between
the parameters of different beta-distributions.

Figure 9 shows the same fit of linear combinations with
a range limited to 0.5 < x < 0.995; all three fit-functions
overlap. Therefore, a single beta-distribution is enough to
describe the particle energy between half and 99.5 % of the
beam-energy. For the Model, the Beamstrahlung is described
by a single beta-distribution to reduce the number of free
parameters. However, this will also limit the energy range in
which our Model can be considered as valid.

3.3 The Model for the full luminosity spectrum

The individual contributions discussed in the previous sec-
tions are now used to create the Model of the basic two-
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Fig. 9 Fit of the linear
combination of one, two, and
three beta-distributions (Eq.
(15)) to the particle energy
spectrum after Beamstrahlung.
a Fit for 0.0 < x < 0.995, b fit
for 0.5 < x < 0.995

Beam
x=Particle Energy/E

dN
/d

x

-310

-210

-110

1

10

210
Particle Energy
1 Beta-Distribution
2 Beta-Distributions
3 Beta-Distributions

(a)
Beam

x=Particle Energy/E
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

dN
/d

x

-310

-210

-110

1

10

210
Particle Energy
1 Beta-Distribution
2 Beta-Distributions
3 Beta-Distributions

(b)
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dimensional luminosity spectrum. As was discussed in
Sect. 3.1 the beam-energy spread BES

(
x
)

is described by a
convolution of a Gaussian function g

(
x
)

and a beta-distribu-
tion b

(
x
)

BES
(
x
) = (b ⊗ g) (x). (17)

The beta-distribution for the beam-energy spread has a very
narrow range. The particle energy distribution including the
energy loss due to Beamstrahlung is described by a convo-
lution of the beam-energy spread with an incomplete beta-
distribution with the upper limit of βArm

Limit = 0.9999,

BB
(
x
) = (b ⊗ BES) (x). (18)

The upper limit is chosen to be close to 1, so that the convo-
lution with beam-energy spread causes an overlap with the
Peak-region (cf. Fig. 10).

To describe particle energy distributions only negligibly
affected by the beam-energy spread, a beta-distribution with
an upper limit of β

Body
Limit = 0.995 convoluted with a Gaussian

function is used

BG
(
x
) = (b ⊗ g) (x). (19)

This upper limit separates the distribution from those more
significantly affected by the beam-energy spread. This func-
tion is different from (17) due to the different ranges of the
beta-distributions.

As described in Eq. (11), the distributions in the four
different regions are described by the product of two func-
tions, one for each particle. The explicit piecewise descrip-
tion shown in Eq. (11), however, is replaced by the use of
delta-distribution and implicit ranges of the individual func-
tions. The Peak region is described by two pure beam-energy
spread functions (Eqs. (14) or (17)) and delta-distributions to
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signify the absence of Beamstrahlung; the Arms are modelled
by one beam-energy spread function and a delta distribution,
and one function describing Beamstrahlung convoluted with
the beam-energy spread (Eq. (18)); the Body is described by
two functions describing only the Beamstrahlung (Eq. (19)).

L
(
x1, x2

) = pPeakδ(1 − x1) ⊗ BES
(
x1; [p]1

Peak

)

δ(1 − x2) ⊗ BES
(
x2; [p]2

Peak

)

+pArm1δ(1 − x1) ⊗ BES
(
x1; [p]1

Arm1

)

BB
(
x2; [p]2

Arm1, β
Arm
Limit

)

+pArm2BB
(
x1; [p]1

Arm2, β
Arm
Limit

)

δ(1 − x2) ⊗ BES
(
x2; [p]2

Arm2

)

+pBodyBG
(
x1; [p]1

Body, β
Body
Limit

)

BG
(
x2; [p]2

Body, β
Body
Limit

)
, (20)

with βArm
Limit = 0.9999, β

Body
Limit = 0.995. In addition, the con-

straint

pBody = 1 − pPeak − pArm1 − pArm2 (21)

has to be fulfilled, which results in

∫
L
(
x1, x2

)
dx1dx2 = 1, (22)

as required for a probability density function. The function
given in Eq. (20) will be used to describe the luminosity spec-
trum. The random variates according to the individual parts
of Eq. (20) are shown in Fig. 10. Each summand of Eq. (20)
corresponds to one of the distributions. Due to the convolu-
tion of beam-energy spread and Beamstrahlung functions, the
region around the nominal beam energies (x1 ≈ 1, x2 ≈ 1)
is described by a superposition of individual contributions.

4 Reweighting fit

The separate one-dimensional parts of the luminosity spec-
trum were fitted to the parts of the Model. Now the complete
Model has to be fit to the two-dimensional spectrum.

It is possible to fit Eq. (20) to the basic luminosity
spectrum. The convolutions with the δ-distribution can be
performed explicitly. The other convolutions have to be
performed numerically, because the convolution between
the beta-distribution and the Gaussian function cannot be
expressed in a closed form.4

4 We have no formal proof of this statement. However, neither the
integral of the Gaussian function (resulting in the error-function) nor
the integral of the beta-distribution (yielding Gamma-functions) can be
expressed in a closed form with a finite number of elementary functions.

For the implementation of the function the numerical
convolutions are evaluated with the QAG5 integration algo-
rithm [23] interfaced via the GSLIntegrator from Root
MathMore. The evaluation of the function takes about 160 s
for the full range. A direct fit with the function, requiring
multiple iterations, would be slow. The fitting procedure can
be sped up by using a reweighting fit and by exploiting the
fact that the random variates according to Eq. (20) can also be
described by the sum of the random variates of the individual
functions [24].

The principle of the reweighting technique is shown in
Fig. 11.

A χ2 minimization, utilizing Minuit [25] implemented in
Root, is used to fit a sample of Model events to the Guin-
eaPig sample. The procedure starts with the generation of a
large number of events according to the Model. This produces
events consisting of pairs of beam energies (xi

1, xi
2) and the

corresponding probability L
(
xi

1, xi
2; [p]0

)
to obtain a given

event. The probability depends on the initial set of parameter
values [p]0.

The minimizer is used to obtain a new set of parameter
values [p]N that results in new probabilities L

(
xi

1, xi
2; [p]N

)

for each event. The event weight

wi = L
(
xi

1, xi
2; [p]N

)

L
(
xi

1, xi
2; [p]0

) (23)

is used to weight each event of the Monte Carlo distribution.
For every set of parameter values [p]N a reweighted Monte
Carlo distribution is obtained. The minimum χ2 between the
distribution of the Model and the distribution from Guinea-
Pig corresponds to the optimal parameter values matching
the GuineaPig sample.

The χ2 between the two histograms is calculated from the
number of entries in bin j of the GuineaPig sample N j

GP

and its uncertainty σ
j

GP, the sum of the weights in bin j of

the Model sample N j
Model, and the uncertainty σ

j
Model, which

are calculated from the event samples according to

N j
GP =

∑

GP Events i in Bin j

1 ,

σ
j

GP =
√

N j
GP,

N j
Model =

∑

Model Events i in Bin j

wi ,

σ
j

Model =
√ ∑

Model Events i in Bin j

(wi )2.

(24)

5 Quadrature Adaptive General integrand.
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Fig. 11 Flowchart diagram of
the reweighting fit procedure.
The dashed arrows indicate the
different event samples used for
the different fits
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The χ2 to be minimized is then calculated with

χ2 =
∑

Bins j

(
N j

GP − fS · N j
Model

)2

(σ
j

GP)2 + ( fS · σ
j

Model)
2
, (25)

where

fS =
∑

GP Events 1
∑

Model Events i wi
(26)

is a scaling factor that takes into account the difference in
the sample sizes and the normalisation of the event weights
due to the limited number of Model-events. The entire pro-
cedure has the advantage that only one sample of Model-
events is needed, contrary to traditional template-fit proce-
dures that require generating new Monte Carlo samples for
every parameter-set.

However, by itself this requires even more evaluations of
Equation (20)—one for every Monte Carlo event used in the
generated sample—but the random variates according to this
function can also be described by the sum of the random
variates of the individual functions. The particle energy can
be built up from the individual contributions

xParticle = xStrahl + xSpread + xG, (27)

where xStrahl is the random variate from the beta-distribution
for the Beamstrahlung, xSpread the random variate from the
beta-distribution for the beam-energy spread, and xG the ran-
dom variate from the Gaussian-function of the beam-energy
spread. Each random variate can be generated according to

its probability density function. Equation (27) is connected
to Eq. (10): xStrahl = xEBeam + �xStrahl, and xSpread + xG =
�xSpread. During the generation of events, the combination of
functions is chosen according to the probability given by the
parameters for each region pPeak/Arm1/Arm2/Body. The proba-
bility for a particle’s energy in an event is given by the product
of all individual probabilities

P(xStrahl, xSpread, xG) = b
(
xStrahl

) · b
(
xSpread

) · g
(
xG

)
, (28)

and the product of the probabilities for the individual par-
ticles multiplied by the probability for the region gives the
probability for the event

L
(
x1

Strahl, x1
Spread, x1

G, x2
Strahl, x2

Spread, x2
G

)

≡ pRegion · P(x1
Strahl, x1

Spread, x1
G) · P(x2

Strahl, x2
Spread, x2

G).

(29)

Thus Eq. (23) becomes

wi = pN
regionb

(
xi,1

Strahl, [p]N
)
b
(
xi,1

Spread, [p]N
)
g
(
xi,1

G , [p]N
)

p0
regionb

(
xi,1

Strahl, [p]0
)
b
(
xi,1

Spread, [p]0
)
g
(
xi,1

G , [p]0
)

×b
(
xi,2

Strahl, [p]N
)
b
(
xi,2

Spread, [p]N
)
g
(
xi,2

G , [p]N
)

b
(
xi,2

Strahl, [p]0
)
b
(
xi,2

Spread, [p]0
)
g
(
xi,2

G , [p]0
)

(30)

and no numerical convolutions have to be calculated.
The probability for obtaining energies x1 and x2 is not the

same as the probability to obtain a specific group of variates,
even if x1

Strahl+x1
Spread+x1

G = x1 and x2
Strahl+x2

Spread+x2
G = x2.
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There are many combinations of the variates xSpread, xStrahl,
and xG, which can lead to the same x1 or x2. To estimate
the probability for any given pair of energies L

(
x1, x2

)
the

convolutions have to be performed either numerically or via
Monte Carlo generation.

4.1 Application of the reweighting fit to other distributions

The reweighting fit is also used to fit the distributions after
the inclusion of the Bhabha scattering, Initial and Final State
Radiation, and detector resolutions. The individual events are
passed through the Bhabha Monte Carlo generator and detec-
tor simulation, which can be understood as additional convo-
lutions of the existing distribution. As can be seen in Eq. (30),
if the parameter governing one of the contributions does not
change, the contribution does not affect the new weight. This
enables the use of the reweighting fit also for the reconstruc-
tion of the spectrum from the Bhabha events, because the
Bhabha scattering and detector resolutions D

(
Ok
)

are not
varied during the fit. A measured distribution f of Observ-
ables Ok can be approximately written as

f (O1, O2, . . .) ≈ σ(E1, E2; O1, O2, . . .) × L
(
E1, E2

)

⊗ISR
(
E1, E2

)⊗ FSR
(
O1, O2, . . .

)

⊗D
(
O1
)
D
(
O2
)
. . . , (31)

where σ represents the centre-of-mass energy dependence
of the Bhabha scattering and the observables, ISR

(
E1, E2

)

represents the probability for the energy distribution after
Initial State Radiation, and FSR

(
O1, O2, . . .

)
represents the

probability for the energy distribution after Final State Radi-
ation. If the cross-section and detector resolutions are well
enough known, the only difference between the measured
and generated distributions is the luminosity spectrum. For
this study the same Bhabha generator and detector simula-
tions are used for both samples, so the additional effects are
statistically the same. Any difference for the contributions

can lead to a systematic error in the reconstruction of the
luminosity spectrum.

4.2 Equiprobability binning

The χ2-fit requires binned histograms. To obtain an unbiased
estimator of the compatibility in a χ2-fit, all bins should
contain at least seven entries, and the number of events in
all bins should be similar [26, p. 304]. These requirements
can be fulfilled when an equiprobability binning is generated
based on the respective GuineaPig sample used in the fits.
With equal-size bins either a large number of bins could be
used—where most would contain very few or no entries and
would have to be rejected for the χ2 calculation—and the
peak substructure could be resolved, or fewer bins with larger
dimensions could be used, but then the peak could not be
resolved. Therefore, the equiprobability binning can make
better use of the available events.

Following the recipe of James [26, p. 305], the events
are first evenly separated along one axis, and then all events
falling in the range on this first axis are again evenly separated
in the second axis. If additional dimensions are used, the
separation is repeated. In this way each bin has different
dimensions along each axis, but the number of events per
bin is constant.

For the fit to the basic luminosity spectrum, as discussed in
Sect. 5.1, the distribution of the two particle energies is stored
in a two-dimensional histogram. For the reconstruction of the
spectrum from the Bhabha events the energy of the scattered
electron and positron, and the relative centre-of-mass energy
reconstructed from the acollinearity

√
s ′

acol/
√

snom are filled
into a three-dimensional equiprobability histograms. Fig-
ure 12 shows examples for a two- and three-dimensional
bin structure. It can be seen that around the nominal beam
energies the size of the bins becomes smaller. Because the
separation of events is done individually along each axis, the
bin structures are not symmetric.

Fig. 12 Example of the
equiprobability binning in a two
dimensions (zoomed to the peak
region) b and three dimensions.
The colours are arbitrary. By
construction every cell contains
a similar number of events
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4.3 Uncertainty estimation

In order to ensure that the Model is unbiased and consistent,
a large number of Model vs. Model fits were performed with
a varying number of bins. In each case, the procedure is as
follows: two sets of events are created according to the Model
of the basic luminosity spectrum. The samples are then used
in the fit procedure described before. In each fit a cut on the
centre-of-mass energy of

√
s ′ > 1.5 TeV is applied.

The pull distribution of every free parameter is obtained
and fitted with a Gaussian function. The Model is unbiased,
if the mean of every pull distribution is close to zero. The
uncertainty is correctly estimated, if the pull width is com-
patible with unity. This is called the Normality condition [26,
p. 310].

For all parameters the pull distributions are independent
of the binning. Most parameters are unbiased (i.e., the mean
is zero). Exceptions are the ηa

Body1 and ηa
Body2 parameters,

whose pulls are not normally distributed. These parameters
describe the behaviour of the beta-distribution at the lower
edge of the respective particle energy distribution. Therefore,
the bias is caused by the cut on the centre-of-mass energy,
which reduces the sensitivity to the lower energy part of the
Body. The lower limit of these parameters is zero, which is
often found by the minimizer instead of the nominal value.
When the cut on the centre-of-mass energy is removed, the
pulls are symmetric, and the parameters are correctly esti-
mated. It is also found that the width of the Gaussian func-
tion is consistent with unity, so the uncertainties are correctly
estimated by the minimization procedure.

5 Luminosity spectrum reconstruction

All ingredients for the reconstruction of the luminosity
spectrum—the Model and the reweighting procedure—are
now available.

The fits based on the basic luminosity spectrum (Sect. 5.1)
are used to assess the similarity between the Model and
the GuineaPig spectrum. The energies of the electron and
positron pairs are filled into the two-dimensional equiproba-
bility structure used in the reweighting fit. In the next step, the
cross-section scaling, the Bhabha scattering, and the smear-
ing for the detector-resolutions are applied and the reweight-
ing fit is done with the observables defined in Sect. 2.4.
The step-by-step inclusion of the intermediate steps and their
impact on the reconstruction is detailed elsewhere [27].

The initial values of the parameters, used to generate the
Model events, are given in Table 2. All the regions are chosen
to start with a similar number of events (25 %). The start-
ing ω parameters are taken from the fit to the beam-energy
spread before the collisions (Table 1). The other parameters
are chosen arbitrarily in a way to cause a behaviour similar

Table 2 Initial parameter values used for the generation of the events.
Also listed are the lower and upper bounds used in the reweighting fits

Parameter Lower Nominal value Upper

pPeak 0.0 0.250 0.4

pArm1 0.0 0.250 0.3

pArm2 0.0 0.250 0.3

ωa
Peak1 −1.0 −0.522 0.0

ωb
Peak1 −1.0 −0.409 0.0

ωa
Peak2 −1.0 −0.522 0.0

ωb
Peak2 −1.0 −0.409 0.0

ωa
Arm1 −1.0 −0.522 0.0

ωb
Arm1 −1.0 0.350 10.0

ωa
Arm2 −1.0 −0.522 0.0

ωb
Arm2 −1.0 0.350 10.0

ηa
Arm1 0.0 2.500 10.0

ηb
Arm1 −1.0 −0.750 0.0

ηa
Arm2 0.0 2.500 10.0

ηb
Arm2 −1.0 −0.750 0.0

ηa
Body1 0.0 0.150 10.0

ηb
Body1 −1.0 −0.550 0.0

ηa
Body2 0.0 0.150 10.0

ηb
Body2 −1.0 −0.550 0.0

to the GuineaPig luminosity spectrum. The position of the
two boundaries for the beam-energy spread (xmin and xmax)
are also taken from Table 1. Table 2 also lists the lower and
upper bounds limiting the values for the minimizer.

5.1 Fit to the basic luminosity spectrum

To verify that the Model can represent the basic luminos-
ity spectrum from GuineaPig, the distribution of the initial
particle energies are used in the χ2-fit. The data histogram is
shown in Fig. 2. The Monte Carlo sample is shown in Fig. 10.
The GuineaPig sample consists of 3 million events and the
Model provides 10 million events. Fits are done with a bin-
ning varied from 50 × 50 bins to 300 × 300 bins in steps
of 10 bins. Only events with

√
s ′ > 1.5 TeV are used in the

fit. The cut is applied because the Model has limited validity
range, and the events below half the nominal centre-of-mass
energy would have a negative impact on the fit result.

As an example for the result of the reweighting fit, Fig. 13
shows a small section of the histogram mapped onto one
dimension and the pull distribution for all the bins before
and after the fit. The data histogram has a constant number
of events per bin, as designed by the equiprobability binning.
The pull distribution after the fit converged is well centred
around 0 with a width of 2.3. The width of the pull distribution
is not equal to 1, because the χ2/ndf is larger than 1. This
means that the Model is not completely identical to the Guin-
eaPig distribution. Two of the differences are the limited
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Fig. 13 a Blow-up of a small section of the bins used in the re-
weighting fit of the initial electron energies. The histogram for Guin-
eaPig (black) has, by construction, a constant number of events per
bin. Also shown are the histograms for the Model with the initial
parameter values before the fit and after the fit. b Distribution of the

pulls � = (
N j

GP − fS N j
Model

)
/
(
(σ

j
GP)2 + ( fSσ

j
Model)

2
)1/2 (symbols

are defined in Eqs. (24) and (26)) between the GuineaPig and Model
samples before and after the re-weighting fit. A Gaussian function is
fitted to the distribution of pulls after the fit

number of beta-distributions used to model the tail of the
spectrum (see Sect. 3.2), where deviations appear, and the
differences in the peak of the spectrum (see Sect. 3.1), where
a much larger number of parameters would be needed. As
the χ2/ndf is not equal to unity, additional parameters would
enable a better description of the spectrum.

For one fixed binning, the fit to the luminosity spectrum
was done 198 times with the same GuineaPig sample and
independent Model samples. All the parameter values vary
within their uncertainties. Therefore, the Model and the fit
procedure are consistent.

5.2 Fits to the observables

The observables are defined in Sect. 2.4. Binnings6 from
10 × 10 × 10 bins to 80 × 50 × 50 bins were used in the
fits. The binning step is 5 bins for the relative centre-of-mass
energy and 10 bins for the particle energies.

For the last step, the Bhabha events generated with the
scaled luminosity spectrum are smeared with the detector
resolutions as described in Sect. 2.4. The selection cuts had
to be modified, and the cut is applied on the centre-of-mass
energy calculated from the smeared four-vectors

√
s ′

4-vec >

1.5 TeV and in addition on the individual particle energies
E1 > 150 GeV and E2 > 150 GeV. To recover Final State
Radiation, the energy of all photons in a 3◦ cone around an
electron is summed up.

5.3 Discussion of the results

For the two stages of the reconstruction multiple fits with
different binnings were done. However, as the reconstructed

6 For the number of bins given, the first number represents the number
of bins for the relative centre-of-mass energy, and the second and third
number represents the number of bins for the two particle energies.

spectra are fairly similar, only one reconstructed luminosity
spectrum per stage is shown in detail. In addition, the param-
eter dependence on the number of bins is shown. For the fits
to the basic and scaled luminosity spectrum the results with
100 × 100 bins are shown. For the reconstruction from the
observables the fits with 40 × 50 × 50 bins are shown.

In Table 3 the χ2/ndf and parameters extracted by the
selected fit stages are listed. The reconstructed parameters are
far away from the initial values of the parameters (cf. Table 2),
therefore the fit results are not artificially improved by using
a good starting point. The final values of the beam-energy
spread parameters ω are close to the values found by the
one-dimensional fit to the beam-energy spread distributions
detailed in Sect. 3.1. Because of the cut on the minimum
centre-of-mass energy, the sensitivity on the lower Beam-
strahlung parameter ηa is lost, and both fits give a result of
≈ 0 with large uncertainty for these parameters. The recon-
struction of the upper Beamstrahlung parameter ηb is con-
sistent.

The largest variation in the parameters is observed for the
beam-spread parameters ω. This increase is mostly due to
the detector effects. In total the uncertainty increases by a
factor ten, and the values are significantly different.

There are significant correlations between the parameters.
The largest correlations are between parameters from the
same beta-distribution. The correlations also increase when
the additional effects are taken into account. Some of the
changes of the parameter values could, therefore, be due to
increased correlations.

Table 4 lists the fraction of events with a centre-of-mass
energy larger than 0.99

√
snom from GuineaPig and from

selected fits of the different fit stages. The uncertainty of
the GuineaPig value is the statistical uncertainty from one
million events. The uncertainty for the fits is calculated from
the uncertainty of the individual parameters and accounts for
the correlation between them.
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Table 3 The parameter values
found in selected fits to the
initial electron and positron
energies (first rows) and to the
observables (second rows). The
details of the fits are given in the
text

χ2/ndf pPeak pArm1 pArm2

63832/10000 0.2387 ± 0.0004 0.2672 ± 0.0004 0.2659 ± 0.0004

100593/100000 0.2483 ± 0.0010 0.2681 ± 0.0009 0.2632 ± 0.0009

ωa
Peak1 ωb

Peak1 ωa
Peak2 ωb

Peak2

−0.2788 ± 0.0016 −0.3425 ± 0.0013 −0.2805 ± 0.0016 −0.3417 ± 0.0013

−0.3879 ± 0.0149 −0.3882 ± 0.0135 −0.3058 ± 0.0175 −0.3283 ± 0.0153

ωa
Arm1 ωb

Arm1 ωa
Arm2 ωb

Arm2

−0.4399 ± 0.0012 0.3243 ± 0.0037 −0.4399 ± 0.0012 0.3364 ± 0.0036

−0.4994 ± 0.0107 0.3054 ± 0.0305 −0.5501 ± 0.0098 0.1842 ± 0.0292

ηa
Arm1 ηb

Arm1 ηa
Arm2 ηb

Arm2

0.0000 ± 0.0008 −0.6253 ± 0.0011 0.0000 ± 0.0007 −0.6268 ± 0.0011

0.0000 ± 0.0003 −0.6054 ± 0.0027 0.0000 ± 0.0004 −0.6080 ± 0.0028

ηa
Body1 ηb

Body1 ηa
Body2 ηb

Body2

0.0000 ± 0.0002 −0.6640 ± 0.0012 0.0000 ± 0.0002 −0.6636 ± 0.0012
0.0000 ± 0.0004 −0.6421 ± 0.0029 0.0000 ± 0.0005 −0.6415 ± 0.0029

Table 4 Summary of the fraction of events with
√

s ′ > 0.99
√

snom
from GuineaPig and the reconstructed luminosity spectra from the
different fit stages

Fraction (%)

GuineaPig sample 35.41 ± 0.06

Basic luminosity spectrum 34.61 ± 0.01

With scaled spectrum and Det. Res. 34.72 ± 0.07

The difference of the fractions between GuineaPig and
the Model is less than one percentage point. Given the size of
the uncertainties the difference is significant. However, pro-
cesses with lower cross-section will effectively use smaller
samples from the luminosity increasing the uncertainty to
around one percentage point. The difference in the fraction
of events in the top 1 % might therefore be insignificant for
other measurements at 3 TeV.

The basic luminosity spectrum from GuineaPig com-
pared with the reconstructed basic luminosity spectra from
the two fit stages for the selected fits are shown in Figs. 14
and 16. For the ratios the green error bars show the statistical
uncertainty for one million GuineaPig events and the barely
visible red error bars show the uncertainty coming from the
parameterisation.

In both cases the luminosity spectrum is reconstructed
within 5 % between 0.55

√
snom and 0.995

√
snom. Close to

the peak, above 0.995
√

snom, the beam-energy spread is the
dominant effect and the difficulty of modelling this peak
becomes visible. Still, this difference is seen only, when look-
ing at small bin sizes (e.g., compare the bins around 1 in
Fig. 14d or e with Fig. 14f). As Table 4 shows, the average
fraction around the peak is reconstructed within one per-
centage point. Improved parameterisations should be able to

better describe and reconstruct the shape of the peak, at the
cost of longer run-time for the fit.

Below 0.5
√

snom, the Model is much more inconsistent
with GuineaPig, but this is given by the design of this Model
and the cut on the centre-of-mass energy applied for the fits.

Some of the reconstructed parameter values depend on the
number of bins used in the fit. Figure 15 shows the depen-
dence of the reconstructed parameters on the number of bins
used in the fit. Fits with a binning of 50×50 bins to 300×300
bins with the same number of events were done. In Fig. 15
the results are sorted by χ2/ndf, or increasing number of
bins. The Binning ID corresponds to the number of bins.

The parameters ηb
Arm1 and ηb

Arm2, which represent the
upper edge of the beam-energy spread of the Arms, show a
significant dependence on the binning. For the other parame-
ters the change is below one sigma. It is also visible that with
more bins the parameter pPeak rises, while the two parameters
pArm1 and pArm2 fall, which is also visible in the correlation
matrix and their correlation coefficient of about −0.4.

Figure 17 shows the parameters obtained in the fit to
the observables. The results are again sorted by decreas-
ing χ2/ndf, which defines the Binning ID. In the figure
the different markers give the number of bins used for the
energy observables. As the χ2/ndf falls with increasing num-
ber of bins the larger the Binning ID the large is also the
number of bins used for the relative centre-of-mass energy
observable.

The parameter values depend much stronger on the num-
ber of bins. This is mostly due to the inclusion of the detec-
tor resolutions. Without a minimum number of bins the peak
structure cannot be resolved, and the ω-parameters are com-
pletely different from the previous results and show large
fluctuations in their values. If a large enough number of bins

123



2833 Page 16 of 21 Eur. Phys. J. C (2014) 74:2833

noms’s /

dN
/d

x

-410

-310

-210

-110

1

10

210
Model    
GuineaPig

noms’s /

dN
/d

x

-310

-210

-110

1

10

210
Model    
GuineaPig

noms’s /

0 0.2 0.4 0.6 0.8 1 0.5 0.6 0.7 0.8 0.9 1 0.96 0.98 1 1.02

dN
/d

x

-310

-210

-110

1

10

210
Model    
GuineaPig

noms’s /

(M
C

-G
P

)/
G

P

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

noms’s /

(M
C

-G
P

)/
G

P

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

noms’s /

0.2 0.4 0.6 0.8 1 0.5 0.6 0.7 0.8 0.9 1 0.96 0.98 1 1.02

(M
C

-G
P

)/
G

P

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(a) 40 GeV Bins (b) 20 GeV Bins (c) 2 GeV Bins

(d) 40 GeV Bins (e) 20 GeV Bins (f) 2 GeV Bins

Fig. 14 Resulting spectra for the fit to the basic luminosity spectrum
and a binning of 100×100. a–c Basic luminosity spectrum from Guin-
eaPig compared to the Model after the fit. The integral over the full
range is normalized d–f Relative difference between GuineaPig and

the Model after the fit. The horizontal error bars mark the statistical
uncertainty from GuineaPig, the additional error bars mark the uncer-
tainty from the parameters

is used, the results are only a few sigma different from the
previous fit results. The detector resolutions have a strong
impact on resolving the structure of the luminosity peak.

6 Systematic impact on smuon mass measurement

There are significant differences between the reconstructed
luminosity spectrum and the one from GuineaPig when
looking at large event samples. Typical cross-sections for
New Physics phenomena will be much smaller than that of
Bhabha scattering, and the luminosity spectrum sampled for
a specific process will therefore have larger statistical fluc-
tuations, so that the difference between the reconstructed
and actual spectrum might not be significant. To estimate
the impact of the difference between GuineaPig and the
reconstructed spectrum, the measurement of the smuon mass
mμ̃± and neutralino mass mχ̃0 from smuon pair production
is used. In this model the masses are mμ̃± = 1011 GeV and
mχ̃0 = 340 GeV.

The smuon decays into a muon and a neutralino, so that
the energy spectrum of the muons f (Eμ) can be used to
extract the smuon and neutralino masses. The details of the
analysis are described elsewhere [28], here only the parts

directly concerning the systematic uncertainty from the lumi-
nosity spectrum are repeated. There are some differences in
the treatment of the statistical uncertainty between the ver-
sion of the fitting program used here, and the one used in the
original paper.

In an ideal situation—with a single centre-of-mass energy√
snom —the muon energy spectrum is a uniform distribution

U
(
Eμ

)
with the boundaries [29]

EH,L =
√

snom

4

(

1 −
m2

χ̃0

m2
μ̃±

)⎛

⎝1 ±
√

1 − 4
m2

μ̃±

snom

⎞

⎠ . (32)

The uniform distribution therefore depends on the smuon and
neutralino masses.

In reality, there is not a single centre-of-mass energy, and
for every centre-of-mass energy the uniform distribution has
different limits. Therefore, the measured muon-energy spec-
trum is affected by the basic luminosity spectrum, the ini-
tial state radiation, the cross-section, and the detector reso-
lution D

(
Eμ

)
. The luminosity spectrum L

(
x
)
, initial state

radiation ISR
(
x
)
, and cross-section σμ̃μ̃

(√
s
)

can be com-
bined into the number of events per centre-of-mass energy
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Fig. 15 Parameter variation with respect to the Binning ID for the fits to the basic luminosity spectrum. The entries are sorted by falling χ2

Neff(x). The initial state radiation and luminosity spectrum
are convoluted and the resulting function is multiplied with
the smuon-pair production cross-section and with the total
integrated luminosity L int

Neff(x) = L int ·
(
L ⊗ ISR

)(
x
) · σμ̃μ̃

(
x
√

snom
)
. (33)

The initial state radiation function ISR describes the distri-
bution of the energy after the radiation of initial state radia-
tion. In this case, the distribution is obtained from the Monte
Carlo generator used to generate the smuon events. It is here
assumed to be independent of the nominal centre-of-mass
energy. The function to fit the muon energy spectrum is
then the convolution of the uniform energy spectrum with
the detector resolution weighted by the respective number of
events

f (Eμ) =
∞∫

0

Neff(x) ×
EH

(√
s′
)

∫

EL

(√
s′
)

U
(
mμ̃±, mχ̃0 , x

√
snom, τ

)

×D
(
Eμ − τ

)
dτ dx . (34)

Figure 18a shows the background-subtracted signal sample
and an example fit with Eq. (34). To estimate the impact of the
reconstruction, the fit results when the luminosity spectrum
is taken directly from GuineaPig are compared with those,
when the spectrum is coming from the reconstruction.

The masses extracted from the fit with Eq. (34) become a
function of the parameters p from the spectrum reconstruc-
tion m = m(p) with the luminosity spectrum reconstructed
from the Bhabha events. To estimate the systematic uncer-
tainty due to the reconstruction of the spectrum, the fit is
performed with the nominal set of parameters p and with
each parameter pi increased or decreased by half of a stan-
dard deviation σpi

m+
i = m

(
p + ei

σpi

2

)
, m−

i = m
(

p − ei
σpi

2

)
. (35)

The systematic uncertainty on the fitted value is then given
by

σm =
⎛

⎝
∑

i, j

δi Ci jδ j

⎞

⎠

1/2

(36)

with δi = m+
i − m−

i , and the correlation matrix C .
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Fig. 16 Resulting spectra for the fit to the observables with the scaled
luminosity spectrum, detector resolutions, and a binning of 40×50×50.
a–c Basic luminosity spectrum from GuineaPig compared to the Model
after the fit. The integral over the full range is normalized d–f Relative

difference between GuineaPig and the Model after the fit. The hori-
zontal error bars mark the statistical uncertainty from GuineaPig, the
additional error bars mark the uncertainty from the parameters

Table 5 lists the smuon and neutralino masses from the
fit when the luminosity spectrum in Eq. (33) is directly
taken from GuineaPig and when the luminosity spectrum is
obtained from the reconstruction with the observables with
the scaled luminosity spectrum and detector resolutions with
a binning of 50 × 40 × 40 bins. The difference in the recon-
structed masses for these two luminosity spectra is smaller
than the statistical uncertainty. However, as the reconstructed
luminosity spectrum shows a dependence on the binning, so
do the reconstructed masses. Figure 18b shows the recon-
structed masses for the spectra reconstructed with different
binnings. There is a dependence of the reconstructed masses
on the number of bins, but the spread of the reconstructed
masses is smaller than the statistical uncertainty (cf. Table 5).

As the difference between the obtained masses and the
spread of masses is smaller than the statistical uncertainty, the
reconstruction of the luminosity spectrum does not introduce
a significant bias compared with the statistical uncertainty.
The systematic uncertainty due to the luminosity spectrum
reconstruction is also much smaller than the statistical uncer-
tainty, so that the total uncertainty on the reconstructed mass
is not increased significantly.

7 Summary, conclusions, and outlook

A framework has been developed for the reconstruction of
the basic luminosity spectrum at future linear colliders. The
spectrum can be reconstructed from Bhabha events measured
with the tracking detectors and calorimeters. All important
effects were included: the luminosity spectrum from beam-
beam simulations—including the non-Gaussian CLIC beam-
energy spread—the

√
s ′-dependence of the Bhabha cross-

section, Initial and Final State Radiation, and the detector
resolutions.

The Model of the 3 TeV CLIC luminosity spectrum,
required for the reweighting fit, has some limitations. For
technical reasons the energy range to describe the tail of the
Beamstrahlung is limited to

√
s ′ > 1500 GeV, and the pecu-

liar beam-energy spread cannot be modelled precisely with
few parameters. The reweighting fit itself does not impair
the reconstructed spectrum. The differences between Guin-
eaPig and the reconstructed spectrum do not significantly
change between the fit to the basic luminosity spectrum and
the fit to the observables with the scaled luminosity spectrum
and including detector resolutions. With an improved model,
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Fig. 17 Parameter variation with respect to the Binning ID for the fits to the observables with the scaled luminosity spectrum and including detector
resolutions. The entries are sorted by decreasing χ2 and the colours and markers give the number of bins used for the energy observables

Fig. 18 a Background
subtracted signal sample and the
best fit to extract the smuon and
neutralino mass.
b Reconstructed masses with the
luminosity spectra taken from
the fits to the Bhabha
observables with different
binnings. The dashed lines mark
the result obtained with the
GuineaPig spectrum
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and increased processing power, an improved reconstruction
of the CLIC 3 TeV spectrum should be possible.

The fraction of events above 99 % of the nominal centre-
of-mass energy is reconstructed within 1 percentage point.
The centre-of-mass energy distribution is reconstructed to
better than 5 % between the nominal and about half the nom-
inal centre-of-mass energy, the validity limit of our Model.

Table 5 Extracted smuon and neutralino masses from the fits to the
signal sample using different (effective) luminosity spectra

Spectrum Smuon results
(GeV)

Neutralino
results (GeV)

Mass σStat σSyst Mass σStat σSyst

GuineaPig-spectrum 1011.77± 3.05 342.86± 6.98

Fit 50 × 40 × 40 1011.56± 3.05 ±0.04 342.53± 6.82 ±0.07
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These results are obtained regardless of the included level of
details, so that one can conclude that the limitations of the
Model cause most of the discrepancies to the simulated spec-
trum, and if a better model is used, the discrepancies should
be reduced.

To estimate the systematic impact on other physics mea-
surements, the reconstructed spectrum was used in the study
of smuon decays, one of the CLIC 3 TeV benchmark pro-
cesses. The reconstructed spectrum does not induce a signifi-
cant bias on the measured mass, nor does it cause a significant
systematic uncertainty. The systematic uncertainty from the
spectrum reconstruction is two orders of magnitude smaller
than the statistical uncertainty.

The spectrum is well enough reconstructed for the chosen
physics channel. In this case a good reconstruction of the
tail of the spectrum is tested. The reconstruction of the peak
is less important, because the process is far above threshold
and the cross-section does not change significantly over the
peak region. More work is needed to evaluate and possibly
improve the reconstruction of the peak.

7.1 Outlook

The framework can also be applied for the reconstruction
of the luminosity spectrum at other centre-of-mass energies
and linear electron–positron colliders than CLIC. Depending
on the beam-energy spread and the demanded range of the
reconstruction, the Model has to be adapted, but this will not
increase the computational complexity of the reconstruction.

The energy range of the current Model can be increased by
replacing the single Beamstrahlung beta-distributions by lin-
ear combination of beta-distributions. Improving the descrip-
tion of the beam-energy spread is less obvious without a large
increase in the number of parameters.

The boundaries of the beam-energy spread—the param-
eters xmin and xmax—were fixed during the fit. It should
be evaluated how much the measurement is affected, when
these parameter values differ from those of the beam-energy
spread. It should also be tried to vary the boundaries of the
beam-energy spread during the re-weighting fit. For varying
these parameters during the reweighting fit the initial samples
have to be produced with overlapping regions. For example,
the peak region would be produced with an xmin smaller
than the upper limit of the arm or body regions. During the
re-weighting the value for xmin or xmax would be given by
the minimizer, and events in the peak below xmin or above
xmax would be dropped, as would events in the arm or body
above their respective upper limit.

The observables from the Bhabha events can also be
exchanged for other suitable choices, always keeping the
detector resolutions in mind. The impact of the detector res-
olutions on the reconstructed spectrum can be easily studied
by changing the resolutions used in the four-vector smearing.

The same detector resolutions and Bhabha generator were
used for the GuineaPig and Model events. Differences in
the predicted detector resolution and Bhabha scattering to the
actual events can introduce systematic errors into the recon-
struction. These effects could be studied by varying the detec-
tor resolutions or the Bhabha cross-section independently for
the two samples used in the fit.

Only Bhabha events—and no other physics processes—
were considered. It should be checked if multi-peripheral
two-photon events, in which the spectator electrons scatter
at large angles, are a background.

As the luminosity spectrum depends on the accelerator, the
impact of possible variations of the beam parameter on the
reconstruction of the luminosity spectrum should be studied
with realistic variations of the beam parameters.
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