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Abstract

Mitochondrial ferritin is a functional ferritin that localizes in
the mitochondria. It is expressed in the testis, heart, brain, and
cells with active respiratory activity. Its overexpression in
cultured cells protected against oxidative damage and reduced
cytosolic iron availability. However, no overt phenotype was
described in mice with inactivation of the FtMt gene. Here, we
used the doxorubicin model of cardiac injury in a novel strain
of FtMt-null mice to investigate the antioxidant role of FtMt.
These mice did not show any evident phenotype, but after
acute treatment to doxorubicin, they showed enhanced mor-
tality and altered heart morphology with fibril disorganization
and severe mitochondrial damage. Signs of mitochondrial
damage were present also in mock-treated FIMt ™ mice. The
hearts of saline- and doxorubicin-treated FtMt '~ mice had
higher thiobarbituric acid reactive substance levels, heme
oxygenase | expression, and protein oxidation, but did not
differ from FtMt"" in the cardiac damage marker B-type
natriuretic peptide (BNP), ATP levels, and apoptosis. Howev-
er, the autophagy marker LC3 was activated. The results show
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that the absence of FtMt, which is highly expressed in the
heart, increases the sensitivity of heart mitochondria to the
toxicity of doxorubicin. This study represents the first in vivo
evidence of the antioxidant role of FtMt.

Key message

*  Mitochondrial ferritin (FtMt) expressed in the heart has a
protective antioxidant role.

* Acute treatment with doxorubicin caused the death of all
FtMt "~ and only of 60 % FtMt™* mice.

*  The hearts of FtMt~ mice showed fibril disorganization
and mitochondrial damage.

* Markers of oxidative damage and autophagy were in-
creased in FtMt '~ hearts.

* This is the first in vivo evidence of the antioxidant role of
FtMt.

Keywords Ferritin - Oxidative damage - Mitochondria -
Doxorubicin

Introduction

Mitochondrial ferritin (FtMt) is a recently identified ferritin
type that accumulates specifically in the mitochondria [1].
Human FtMt, which is encoded by an intronless gene, is
synthesized as a precursor with a long N-terminal targeting
sequence that is cleaved in the mature protein. The mature
FtMt has a functional ferroxidase center and forms stable
ferritin shells that readily accumulate iron [2]. Its 3D structure
is analogous to that of the H-ferritin [3]. The FtMt transcript
does not contain a functional iron responsive element (IRE)
sequence, and thus, FtMt expression is not controlled by
intracellular iron levels. In humans, FtMt was found to be
expressed in the testis [4], neurons [5], and in the erythroblasts
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of subjects with genetic or acquired sideroblastic anemia [6],
where it is responsible of the mitochondrial iron deposits of
the sideroblasts. Since human FtMt is not detectable in cul-
tured cells, most of the data on its function have been obtained
by analyzing the phenotype of overexpressing cells. These
studies showed that, by virtue of its ferroxidase activity, FtMt
actively sequesters iron inside the mitochondria at the expense
of cytosolic iron [7]. It also reduces iron-mediated oxidative
damage of mitochondria [8] and rescues some defects caused
by frataxin deficiency in yeast [9] and HeLa cells [10]. More
recently, it has been shown that overexpression of FtMt in
K562 erythroid cells reduced Jak/STAT signaling and in-
creased apoptosis [11]. In sideroblasts, erythroid progenitors
FtMt expression occurred at the early stage of cell differenti-
ation and was accompanied by reduced iron availability and
increased apoptosis [12, 13]. Moreover, FtMt expressing cells
transplanted in nude mice grew more slowly than their control
counterpart [ 14]. Altogether, FtMt seems to protect mitochon-
dria against iron-dependent oxidative damage and also mod-
ifies cellular iron distribution by attracting iron from the
cytosol to mitochondria [15]. Specific antibodies have been
raised against mouse FtMt that were used to study its distri-
bution in mouse organs. It was found that FtMt is strongly
expressed in the testis, particularly in the spermatocytes, and
also in the heart, kidney, Purkinje cells, and some neurons, and
generally in cells with high respiratory activity that actively
use iron enzymes and produce reactive oxygen species (ROS)
[16]. In line with the results obtained in the cell lines, FtMt
was also found to decrease the sensitivity of mitochondria to
oxidative damage in SLA mice [17] and to protect neuronal
cells from oxidative damage [18-20]. The role of FtMt in
neurodegenerative diseases has been recently reviewed [21].
However, the recently described FtMt-deficient mice in the
C57BL/6J strain did not show any evident phenotype and
produced siderocytes/sideroblasts similar to the control
FtMt"" even under conditions of vitamin B6 deficiency
[22]. It is unlikely that the lack of phenotype in FtMt deficien-
cy is due to redundancy of the function, since FtMt is the only
known mitochondrial iron storage protein. Although FtMt
appears dispensable under physiological conditions, it may
protect against damages under specific conditions. FtMt is
highly expressed in the heart; thus, we considered that it
may protect its mitochondria against oxidative damage, in
particular from the injury induced by doxorubicin (Dox), a
well-characterized anthracycline whose extensive use for the
cure of a variety of tumors is hampered by a recognized
cardiotoxicity [23-25]. Anthracyclines, including Dox, pos-
sess a high affinity for cardiolipin, a negatively charged phos-
pholipid of the inner mitochondrial membrane [26], and
hence, they are retained at high concentrations in the mito-
chondrial compartment. Confocal microscopy experiments
showed that in H9¢2 cardiomyocytes, Dox localized to mito-
chondrial sites of redox cycling and ROS formation [27].
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Therefore, mitochondria have been repeatedly suggested as
the most important target for anthracyclines cardiotoxicity
[24]. In this context, the availability of intracellular reactive
iron, which catalyzes ROS formation, appears to be determi-
nant for Dox cardiotoxicity, as shown by the protective effect
of iron chelation in patients and in experimental models [28],
whereas iron overload have been shown to exacerbate the
cardiotoxic effects of the drug [29-32]. In particular, mito-
chondrial iron may play a significant role in leading to elevat-
ed mitochondrial ROS formation, and it has been recently
shown that overexpression of FtMt can protect HeLa cells
from Dox toxicity [33] and that Dox treatment strongly in-
duces FtMt expression in neonatal rat cardiomyocytes [34].
Moreover, a recent study showed that Dox cardiotoxicity is
mediated by mitochondrial iron accumulation and that heart-
specific deletion of mitochondrial iron exporter ABCBS in-
creased mice sensitivity to Dox cardiotoxicity, whereas its
overexpression was protective [34].

In this study, we tested the hypothesis that the heart of
FtMt-deficient animals might be more sensitive to cardiotoxic
drugs; with this aim, we used a model of acute Dox
cardiotoxicity in a novel strain of FtMt-null mice to evaluate
the role of FtMt in heart protection from anthracycline-
dependent oxidative injury.

Materials and methods

Animals All the procedures followed animal protection laws
and institutional guidelines of the European Convention for
the Protection of Laboratory Animals. The study was ap-
proved by the Institutional Animal Care and Use Committee
of'the University of Brescia and the Italian Ministry of Science
and Research.

Gene targeting construct A 5,030-bp cassette that included
the Lac-Z gene followed by the hybrid pGK-EM7 promoter
and the Neo gene was cloned into the pBluescript-SK (pBSK)
plasmid. The cassette was flanked by a 5’ homology arm of
275 bp upstream the FtMt start codon and a short 3" arm of
270 bp downstream the FtMt stop codon. The construct
named pBSK+5-b-n-3 was verified by DNA sequencing
and then used together with the vector pBSK+moMtF of
21.5 kbp containing the full mouse gene and flanking se-
quences in the recombineering system [35] to obtain the gene
targeting vector that had homology arms at 5’ and 3’ of about
8 kbp. The construct was then used for electroporation of
mouse ES cells, which were then selected in G418 medium,
and one clone was microinjected in embryos. The born mice
showed about 50 % chimerism and were crossed with
C57BL/6J mice, and the newborn genotyped by PCR as
described below. Mice were bred in mixed C57BL/6J x 129
genetic background.
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Genotyping The mice were genotyped by PCR using a com-
mon Fwd-primer upstream the 5'-arm and two different Rev-
primers, one specific for the mouse mitochondrial ferritin
(moFtMt) gene (see Table 1), using the following PCR con-
ditions: 5 min at 95 °C, 5 cycles (30 s at 94 °C, 30 s at 50 °C,
45 s at 72 °C), 30 cycles (30 s at 94 °C, 30 s at 55 °C, 45 s at
72 °C), followed by 10 min at 72 °C.

DOX treatments To induce cardiotoxicity in the survival stud-
ies, 84-day-old female mice were injected intraperitoneally
with saline or a single dose (15 mg/kg of body weight) of
Dox (Sigma, Milan, Italy) and then, the mice were followed
for 30 days. In other experiments, female mice were treated as
above and sacrificed after 4 days for the analysis of the heart,
or male mice were sacrificed after 30 days for analysis of the
testis. The organs were harvested, weighted, frozen in liquid
nitrogen, and stored at —80 °C.

Quantitative real-time polymerase chain reaction (qRT-
PCR) Total heart or testis RNA purified using TRI reagent®
(Sigma) was reverse transcribed into cDNA with Proto Script
M-MuLV First Strand cDNA Synthesis Kit (New England
Biolabs, Italy), and the obtained cDNA served as a template
for real-time PCR, based on the TagMan methodology (Life
Technologies). Primers (Applied Biosystems) and parameters
are described in detail in Table 1. For evaluation of beta-

Table 1 Primers and Tagman assays used

Genotyping primers
B5-Fwd 5'-ACGCGTCGACCTTGTGTTAGTAATTC
AGCC-3'
mT4-Rev 5'-CAGAGTATGTAAGTCCAGCAGC-3’
LacZ-Rev 5'-GGGACGACGACAGTATCGGCCT-3'
RT-PCR primers

BGAL-FwdNew
BGAL-RevnNew

5-GCACGGTTACGATGCGCCCA-3'
5-GCGCTGGAGTGACGGCAGTT -3’

mT1-For 5-TATTTCCTTCGCCAGTCCCTG-3’
mT4R-Rev 5'-CAGAGTATGTAAGTCCAGCAGC-3'
mHPRT1-For 5'-GCTTGCTGGTGAAAAGGACCTCTC
GAAG-3'
mHPRT1-Rev 5-CCCTGAAGTACTCATTATAGTCAAGG
GCAT-3'
TagMan gene Assay ID
HO-1 Mm00516005_m1
BNP Mmo01255770 gl
pS3 Mm00519571_ml
Rnl18s Mm03928990 gl

The genotyping primers were used to verify the presence of FtMt gene or
of LacZ gene in the FtMt locus. RT-PCR primers were used for identifi-
cation of the transcripts of FtMt, 3-Gal, and HPRT1 in the testis of the
mice. The TagMan gene expression assays were used to quantify HO-1,
BNP, p53, and Rn18s transcripts in the heart of the treated mice

galactosidase (3-gal) and FtMt transcripts, we used RT-PCR
with the primers described in Table 1 and cycling conditions
as follows: 5 min at 95 °C, 30 cycles (30 s at 94 °C, 30 s at
60 °C, and 30 s at 72 °C), followed by 10 min at 72 °C.

Western blotting Tissue lysates were prepared in RIPA buffer,
incubated on ice for 30 min, and centrifuged at 13,000 rpm for
10 min. Proteins in supernatant were separated on non-
denaturing or SDS-PAGE and transferred onto nitrocellulose
membranes (GE Healthcare, Milan, Italy). Membranes were
processed and incubated with primary antibodies against
mouse FtMt, H and L ferritins [16], 3-gal, LC3 and GAPDH
(Sigma), and horseradish peroxidase (HRP)-conjugated sec-
ondary antibodies. The antigens were detected using an
immunodetection kit (ECL Basic, Amersham Biosciences).
For evaluation of ferritin iron, the non-denaturing gels were
stained with Prussian blue and then the color enhanced using
diaminobenzidine (DAB) and H,O, (Ft-iron). For visualiza-
tion and densitometry, we used the Kodak Image Station
440CF (Kodak).

Determination of ATP content Heart tissue samples (10 mg)
were homogenized in perchloric acid, and ATP was measured
by a colorimetric assay using a commercial kit (ATP Colori-
metric assay kit; Biovision, Italy) following manufacturer’s
instructions.

Immunohistochemistry Mouse testes were dissected accord-
ing to approved protocols. Mice were transcardially perfused
with saline buffer, and the organs were removed and stored in
4 % formaldehyde for 2 days and then paraffin embedded.
Four-micrometer sections of FtMt"* and FtMt "~ mouse testes
were deparaffinized in xylene and rehydrated through a
series of alcohol gradients. Sections underwent antigen
retrieval with 0.05 % protease type XIV digestion for
5 min at 37 °C, and endogenous peroxidase activity was
quenched by 0.3 % H,O, in methanol for 20 min. The
tissues were incubated for 1 h at room temperature with
rabbit anti-mouse FtMt antiserum [16] diluted 1:1,000
and then with Rabbit-on-Rodent HRP-Polymer
(BIOCARE Medical, CA, USA) for 30 min. Sections
were then incubated for 5 min with 3,3’-diaminobenzi-
dine (DAB), washed, counterstained with hematoxylin,
dehydrated, and coverslipped.

Light and electron microscopy Small blocks of heart were
fixed in 3 % glutaraldehyde (Acros Organics, Thermo Fisher
Scientific, Waltham, MA, USA) in Sorensen phosphate buffer
(0.1 M; pH 7.4) overnight at 4 °C, post-fixed with 1 %
osmium tetroxide in 0.1 M Sorensen phosphate buffer for
30 min, dehydrated, and embedded in Araldite (Fluka-Sigma
Aldrich). Semi-thin sections, 2-um thick, were stained with
toluidine blue. For electron microscopy, ultrathin sections
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(200 nm) were obtained with an Ultracut ultramicrotome
(Reichert-Jung, Leica, Microsystems GmbH, Wetzlar,
Germany), stained with uranyl acetate and lead citrate, and
observed with a JEM 1010 transmission electron microscope
(Jeol, Tokyo, Japan).

TBARS assay Lipid peroxidation was assessed using the thio-
barbituric acid reactive substance (TBARS) assay. Heart tissue
was homogenized in 150 mM KCI, and an aliquot was used
for the determination of protein concentration. A 100-pl ali-
quot of tissue homogenate in triplicate was mixed with 0.5 ml
of 0.22 M butylated hydroxytoluene (Sigma), 3 ml of 1 %
phosphoric acid, and 1 ml of 0.6 % thiobarbituric acid
(Sigma). Samples were incubated at 100 °C for 60 min and
then cooled at room temperature. Lipids were extracted using
5 ml of isopropanol:chloroform (11:7, v/v), centrifuged at
2,000xg for 10 min, and the absorbance of the upper layer
was read at 535 nm. The amount of TBARS was quantified
using a standard curve of malonaldehyde bis (dimethyl ace-
tal), (MDA, Sigma).

Caspase activity assay Caspase-3 activity was determined
using the ApoTarget Caspase Colorimetric Assay kit
(Invitrogen, Monza, Italy), following the manufacturer’s pro-
tocol. In brief, tissue samples were lysed in 100 ul of lysis
buffer and protein concentrations in samples determined using
the Bio-Rad protein assay. After incubation on ice for 10 min,
the samples were centrifuged at 16.000xg for 3 min at 4 °C.
Each supernatant was mixed with 50 pul of 2X reaction
buffer/DTT mix and 5 pul of 1 mM caspase-3 substrate
(DEVD-pNA, 50 uM final concentration), and then, the
samples were incubated for 2 h at 37 °C in the dark.
Developed color was measured at 405 nm, and caspase
activity was calculated in terms of absorbance units per
microgram protein.

Oxidized protein detection Hearts were homogenized in lysis
buffer (Tris HCI 20 mM, pH 7.4, 0.1 % SDS, and protease
inhibitor). After centrifugation at 13.000 rpm for 10 min at
4 °C, the supernatant was added with 50 mM DTT, frozen, and
stored at —20 °C. Oxidized proteins in protein extracts were
detected using the OxyBlot Protein Oxidation Detection Kit
(Millipore) following manufacturer’s instructions. In brief, the
samples were reacted with 2,4-dinitrophenylhydrazine
(DNPH) for derivatization to 2,4-dinitrophenylhydrazone
(DNP), then were loaded on SDS-PAGE, blotted, and incu-
bated with an anti-DNP antibody. The bound activity was
revealed by ECL (GE Healthcare).

Statistical analysis Differences were analyzed using a Stu-
dent’s 7 test for paired samples, and comparisons were made
using appropriate analysis of variance (ANOVA). The signif-
icance level was set to p<0.05.
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Results
Production of the FtMt "~ mice

The structure of the gene targeting construct is shown in
Fig. 1a. The intronless FtMt gene of 714 bp was replaced by
a 5,030-bp cassette that contained lac-Z gene under the control
of the FtMt promoter and the gene for neomycin resistance
under the control of the strong pGK promoter. Genotyping
was done by PCR using a common Fwd primer and specific
Rev primers for wild type (wt) or recombinant gene (Fig. 1).
This allowed to distinguish the FIMt™*, from FtMt”~ and
FtMt /"~ strains (Fig. 1b). To verify the absence of FtMt
expression, we initially analyzed the testis, where its level is
the highest [16]. RT-PCR analyses showed the absence of
FtMt transcript and the presence of 3-gal transcript encoded
by the Lac-Z gene in the FtMt "~ mice. The FtMt, but not the
B-gal transcript, was present in FtMt™*, while FtMt"~
displayed both transcripts, as expected (Fig. 1c); possibly
because of the low level of expression of FtMt, or of modifi-
cation of the methylation status, we could not observe any [3-
gal activity in the testis of the FtMt”~ mice or in any other
tissue (results not shown). Western blotting of testis homoge-
nates detected a FtMt band in the FtMt"" mice, but not in the
FtMt "~ mice, and a 3-gal band in FtMt ", but not in FtMt"*
mice (Fig. 1d). It confirmed also the absence of FtMt in the
kidney and, more important, in the cardiac tissue of FtMt /~
mice (Fig. le). As a further control, we performed immuno-
histochemical staining of slices from the testis. A stain was
evident in the seminiferous tubule of the FtMt™" mice that
corresponded to the spermatocytes, whereas no staining was
observed in the testis of FtMt '~ mice. (Fig. 1f, g). This also
confirmed the specificity of the antibody.

FtMt "~ phenotype

The FtM"™ and FtMt’~ mice did not show any evident
phenotype. They consumed the expected amount of food and
behaved normally, also after 16 months of age. We did not
observe any overt defect in fertility, both in males and females
FtMt . This corresponds to the description of FtMt '~ mice in
the C57B/6J strain [22]. FtMt is known to be preferentially
expressed in the testis, heart, kidney, and some neurons [16].
Being FtMt highly expressed in the heart, we suspected that
the heart of FtMt-deficient animals may be more sensitive to
cardiotoxic drugs. To test this hypothesis, we treated the mice
with Dox, which is a well-known cardiotoxic drug [23-25]. In
our experimental protocol, we used the same dose and time-
point recently used by us to investigate acute Dox
cardiotoxicity [36] and we treated 12-week-old (84-day) fe-
male mice with a single intraperitoneal injection of 15 mg/kg
to induce acute toxicity. The Kaplan-Meier survival plot re-
ported in Fig. 2 shows that upon Dox challenge, the mortality
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genotyping of FtMt™™ mice. a Gene > =
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targeting vector, the arrows
indicate the PCR primers for
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heterozygous (+/-), and ~8000 bp 3092bp 699 bp 1236 bp ~8000 bp
homozygous (_/_) for the Ta rgeti ng Vector
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lane, a DNA molecular weight
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indicated. ¢ RT-PCR analysis of 1000  s— . s il
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and homozygous (—/—) mice and e s s du ot bl =
amplified with primers for FtMt, 250 w— i , “ W B & HPRT1 117 bp
beta-galactosidase ([3-gal,
encoded by the Lac-Z gene), and

the housekeeping transcript
HPRTI1. d Immunoblotting of

protein extracts from the testis of
wild type (+/+), heterozygous (+/
—), and homozygous (—/—) mice
overlaid with antibodies for
mouse FtMt, 3-gal, and GAPDH C

as loading calibrator. e GAPDH-> N‘

Immunoblotting of protein

extracts from various tissues of

wild type (+/+) and homozygous +/+ /- +/+ -/- +/+ -/- e
(—/-) mice, overlaid with ,
antibodies for mouse FtMt. (f,g) FtMt> “ >
. . . L J L J L J
Immunohistochemical detection Testis Kidney Heart

of FtMt in the testis of wild type

(f) and FtMt(—/-) (g) mice. Bar
50 um

of FtMt”~ mice was much higher than that of wild type
animals. None of the mice without FtMt survived more than
6 days, whereas one third of FtMt"" animals was still alive
more than 3 weeks after treatment.

To further evaluate the role of FtMt in Dox-dependent
cardiotoxicity, wild type and FtMt ™~ female mice were treated
with saline or Dox (15 mg/kg) and sacrificed 4 days later; no
mortality was observed, in line with the findings of our pre-
vious study [36]. Transmission electron microscopy analysis
did not show evident differences between the hearts of control
wild-type mice before and after Dox treatment (Fig. 3a, b).
Both the fibril organization and the mitochondrial morpho-
logical features were comparable in these two groups. Also,

the histopathogical hallmarks of anthracycline cardiotoxicity
were absent in the treated FtMt™* group [37]. In contrast, the
hearts of FtMt "~ mice showed some defects: in the untreated
ones, scattered mitochondria had incomplete cristae (Fig. 3c,
arrowheads) although fibrils were regularly arranged (Fig. 3e).
After Dox treatment, the damage was more severe with con-
densation and fragmentation of most myofibrils in some fields
(arrows in Fig. 3f). Also, mitochondrial damage was more
evident with zones in which the cristac were absent (Fig. 3d,
arrowheads) and others with cristac completely disrupted
(Fig. 3f). This type of morphology was observed in all the
three animals analyzed in TEM. In no sample we could detect
evident morphological signs suggesting apoptosis, e.g.,
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Fig.2 Cumulative survival in mice treated with Dox. Kaplan-Meier plot
of animal survival. Twelve-week-old female mice (8 FtMt™" and 10
FtMt ") were subjected to a single intraperitoneal injection of 15 mg/kg
Dox

chromatin condensation, nuclear fragmentation, and apoptotic
bodies. Observation at the light microscopic level of toluidine
blue-stained heart semi-thin sections of FtMt™”* mice exposed
to Dox or saline, and untreated FtMt "~ mice did not show any
significant alteration, and the morphology resulted in line with

Fig. 3 Heart morphological
evaluation in mice treated with
Dox. Transmission electron
microphotographs of hearts from
wild type mice treated with saline
(a) or Dox (b), and FtMt ™~ mice
treated with saline (c and e) or
Dox (d and f). Arrowheads
indicate damage/absence of
cristae; arrows indicate fibril
disarrangement. Bars 500 nm.
Three animals for each group and
three sections for each sample
were examined, and
representative images are shown
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saline

the normal myocardial structure. Similarly, FtMt™" and un-
treated FEMt "~ mice showed a regular myofibrils appearance
(results not shown). Only in FtMt '~ mice fibril disorganiza-
tion was evident, in line with the results of electron microsco-
py in Fig. 3f (results not shown).

FtMt "~ biochemical analyses

Since ROS formation plays a role in Dox cardiotoxicity [23,
25, 37], we measured markers of oxidative stress in the hearts
ofthe mice. TBARS, index of lipid peroxidation and oxidative
damage, was significantly increased by Dox treatment in
FtMt™" mice, as expected, and it was also significantly higher
in untreated FtMt '~ mice, in which it was further increased,
but not to a significant level, by Dox treatment (Fig. 4a). Also,
heme oxygenase-1 mRNA (HO-1), which is a marker of
oxidative stress [38], was upregulated of about 2-fold in
FtMt ™ mice, and Dox induced a small, not significant in-
crease in HO-1 mRNA levels in both wild-type and FtMt
mice (Fig. 4b). The level of oxidized proteins, as assessed by
OxyBlot, was low in the hearts of wild-type animals and
increased progressively with Dox and loss of FtMt, with a
maximum in the FtMt /™ mice exposed to Dox (Fig. 4c). We

_Dox
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Fig. 4 Indices of oxidative stress a
and iron status in the heart of
Dox-treated mice. Heart extracts
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b HO-1 mRNA
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and FtMt-deficient mice (—/-) 100001
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saline and sacrificed after 4 days 50004
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was evaluated by measuring

cardiac lipid peroxidation with the 0-
TBARS assay (a), HO-1 mRNA

expression by qRT-PCR (b) and

oxidized proteins by oxyblot (c¢).

Ferritin was detected by Western

blotting of non-denaturing PAGE
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and then the color enhanced using
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analyzed also the ferritins, since they are upregulated by Dox
in H9¢2 cardiomyocytes and mouse heart [36, 39]. Both H
and L ferritins increased after exposure to Dox, as expected,
more interesting, the basal level of both ferritins was higher in
FtMt ™ than in FtMt"" (Fig. 4d). Ferritin iron, determined by
enhanced Prussian blue stain of non-denaturing PAGE, mir-
rored the level of ferritins (Fig. 4d).

The mitochondrial damage indicated by electron micros-
copy observations prompted us to evaluate ATP level as an
indicator of mitochondrial functionality (Fig. 5a). Treatment
with Dox resulted in a significant decrease in ATP levels
compared with the controls both in wild-type and FtMt-
deficient mice. No difference was found in basal levels of
ATP in the two mouse lines. We also analyzed the expression
of B-type natriuretic peptide (BNP), a marker of cardiac injury
[36, 40], and we found that BNP mRNA levels were similar in
both wild-type and FtMt "~ mice, and were changed by Dox
challenge in opposite way in the two strains, but the difference

Coomassie blue

was not significant (Fig. 5b). Given that DOX is a well-known
inducer of apoptosis [24], we investigated whether apoptosis
was preferentially induced in FtMt '~ mice; however, in FtMt-
deficient mice, caspase-3 activity was not different from that
of controls and was not significantly affected by Dox treat-
ment (Fig. 5¢); moreover, p53 mRNA levels were similar in
the four groups of animals (Fig. 5d). These results are in line
with the lack of morphological features of apoptosis (e.g.,
chromatin condensation) indicated by EM (see Fig. 3).
Autophagy is a cellular process that removes damaged
structures and thus provides a survival advantage to cells
experiencing stress or nutrient deprivation, but excessive au-
tophagy may cause cell death; thus, careful regulation of
autophagy is important, particularly in the myocardium.
Therefore, we investigated autophagic signaling by analyzing
LC3, a marker of autophagosome formation that has been
recently found to be induced in the skeletal muscle of rats
24 h after treatment with 15 mg/kg Dox [41]. Blotting of the
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Fig. 5 Indices of functionality,
apoptosis, and autophagy in the 6-
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heart extracts showed a proportional increase of the lipidated
LC3-1I band in the FtMt ™~ animals (50 % increase in LC3-1I/
LC3-I ratio), compared with the FtMt™" that was further
stimulated by Dox up to >2-fold increase (Fig. 5¢) suggesting
a higher autophagy activity. Dox did not affect LC3 in the
FtMt™" mice.

Dox is known to be toxic also to testis [42]; therefore, we
performed an initial morphological analysis of the testis of 8-
week-old mice sacrificed 30 days after Dox treatment. Histo-
logical examination of semi-thin slices showed that the testis
of Dox-treated FtMt ™" had a normal morphology with tubules
rich in spermatocytes, similar to those shown in Fig. 1f or g,
while the morphology of testis from Dox-treated FtMt '~ mice
was largely altered with complete absence of spermatocytes
(Fig. S1).

Discussion

FtMt occupies a strategic position in a site where the encoun-
ter between Fe(II) and ROS is very likely to occur and Fenton
reaction to develop [43]. FtMt with its capacity to remove both
Fe(Il) and H,0, is expected to protect the mitochondria from
the development of toxic-free radicals. This hypothesis was
confirmed by in vitro studies of cells that have been
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transfected to express FtMt at rather high levels [8]. However,
FtMt is expressed only in mammals, in Drosophila [44] and
also in plants [45], while it is absent in most vertebrates.
Moreover, in mammals, it is expressed only by a few cell
types, typically characterized by high oxidative activity. The
finding that FtMt-deficient mice [22] and also FtMt-deficient
Drosophila [44] are healthy and do not show any evident
phenotype suggested that the functionality of FtMt is not
essential under normal conditions. Moreover, a study on the
DNA variations of human FtMt in patients affected by
myelodysplastic syndromes and by movement disorders iden-
tified some variations, but no disabling mutations [46]. To
verify the role of this gene, we produced a novel strain of
FtMt-null mice, using a strategy slightly different from that
used previously [22]. We used Lac-Z as a reporter gene, but
we could not observe any B-gal activity in the testis of the
FtMt " mice or in any other tissue, possibly because of the
low level of expression of FtMt, or to modification of the
methylation status. Our mice are healthy and iron homeostasis
appears to be preserved, as described before in a different
FtMt " strain [22].

We hypothesized that FtMt may be required under stress
conditions by tissues expressing it. Heart is rich in FtMt, and
FtMt protects HeLa cells from Dox [33], a well-characterized
cardiotoxic agent. Moreover, Dox induces FtMt expression in
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cultured rat cardiomyocytes and causes mitochondrial iron
accumulation [34]. To challenge the protective activity of
FtMt in vivo in the heart, we tested a condition of acute
cardiotoxicity by treating the mice with a dose of 15 mg/kg
of Dox, as before [36]. Dox toxicity is strongly related to the
age and gender of the mice. Thus, we restricted to 12-week-
old (84 days) female mice and found that under these condi-
tions the treatment killed all the FtMt "~ mice, but only about
half of the control animals, suggesting that FtMt is protective
against Dox-mediated injury.

Histological examination under light (not shown) and elec-
tron microscopy (Fig. 3a, b) did not reveal morphologic
abnormalities in hearts of the Dox-treated FtMt”" mice. How-
ever, about half of these mice were expected to die in the week
after the treatment (Fig. 2). The lack of abnormalities is in
agreement with published data that cardiac morphological
alterations were evident after higher Dox dosages [47, 48],
longer treatments [49], or repeated doses [50]. On the other
hand, the FtMt "~ hearts showed mitochondrial defects even
when untreated, with loss of cristae in a part of mitochondria,
but the mice survived without evident health problem until
18 month of age. More important, the Dox treatment aggra-
vated the heart abnormalities causing major alterations of
mitochondrial cristac and myofibril damages in some heart
portions (Fig. 3c, d). Unfortunately we could not perform
direct studies on heart functionality, and thus, we could not
verify experimentally that cardiac failure was the cause of the
mortality of the three control mice and of the ten FtMt-
deficient mice described in Fig. 2. We are aware that this is a
major limitation to this study. However, we thought reason-
able to infer that mice exposed to toxic doses of a cardiotoxic
drug would die for heart problems. Therefore, we performed
biochemical analyses on the hearts. They revealed that FtMt '~
hearts have increased lipid peroxidation, protein oxidation, and
HO-1 expression, all indices of oxidative damages. We expect-
ed that the morphological alteration of the mitochondria in the
FtMt-null mice was associated with a reduced functionality, but
the level of ATP was very similar in the two strains. Also, the
expression of cardiac BNP, an index of heart failure, was
unchanged in the two strains, Moreover, we did not detect
differences in indices of apoptosis, caspase-3, and p53 mRNA
in the two hearts. The differences involved markers of iron
status (cytosolic ferritins) and an important index of autophagy,
LC3 [51]. Both increased in the FtMt-null mice. FtMt has a
strong iron withdrawing capacity; thus, its absence may in-
crease cytosolic iron and induce H and L ferritin expression, as
it occurs in cultured cells [7], and also reduce the stabilization
of HIF-1 and the expression of protective genes [52]. Appar-
ently, the increase of the antioxidant activity of H-ferritin is not
sufficient to compensate the loss of that associated with FtMt.
Probably more interesting was the increase of lipidated LC3.
Recently, it was shown that iron chelation is a strong inducer of
mitophagy in cells [53], and possibly, the local iron

deregulation caused by FtMt absence might favor this process.
Altogether, the data indicate that the absence of FtMt affects
mitochondrial morphology, increases oxidative damage and
possibly autophagy, and has an effect on cytosolic ferritins.

Dox treatment in the control mice increased oxidative damage
(TBARS and Oxyblot), reduced ATP, and induced cytosolic
ferritin expression, in agreement with previous studies [36].
Surprisingly, the absence of FtMt did not have a significant effect
on the response to the treatment, except for higher increases in
protein oxidation and LC3 induction. We found that both testes
and hearts were sensitive to the Dox treatments (supplemental
data), suggesting a role for FtMt in the protection against the
doxorubicin-induced mitochondrial iron accumulation that was
indicated responsible for cardiotoxicity [34]. In fact, mitochon-
drial iron accumulation occurs also in cellular models of
Freidreich’s ataxia where FtMt expression was protective [9, 10].

In conclusion, the present data indicate that the absence of
FtMt alters the morphology of heart mitochondria with signs
of oxidative damage. These mitochondria are more sensitive
to Dox-induced damage, which results in a dramatic reduction
of the mice survival, possibly due to heart failure. Notably,
under our experimental conditions, heart damage 4 days after
exposure to Dox is limited in wild-type mice, with no apopto-
sis and normal cardiac morphology. This suggests that FtMt
may play a protective role under a number of not particularly
severe pathophysiological conditions commonly experienced
by the heart. Finally, the results of this study represent the first
in vivo evidence for a function of FtMt.
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