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Abstract

Background: In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant
phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such
platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed,
and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The
raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches:
2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D)
dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous
potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time.

Result: In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant

phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes
previously reconstructed from multi-view images, the methodology involves several stages, including morphological
mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses

estimated.

features.

on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the
approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium
hirsutum (cotton) plants studied over four time-points. Manual measurements, performed for each plant at every
time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters

Conclusion: By directly comparing our automated mesh based quantitative data with manual measurements of
individual stem height, leaf width and leaf length, we obtained the mean absolute errors of 9.34%, 5.75%, 8.78%, and
correlation coefficients 0.88, 0.96, and 0.95 respectively. The temporal matching of leaves was accurate in 95% of the
cases and the average execution time required to analyse a plant over four time-points was 4.9 minutes. The mesh
processing based methodology is thus considered suitable for quantitative 4D monitoring of plant phenotypic

Background

In the coming decades, it is expected that mankind will
need to double the quantity of food and biofuel pro-
duced in order to meet global demand [1]. To achieve this
with existing resources, new plant characteristics need to
be identified, quantified, and bred to obtain more pro-
ductive plant varieties within existing environments. This
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will require a greater understanding of how the genetic
make-up of plants determines their phenotype (visible
traits) in high resolution and in high throughput. Perform-
ing plant phenomics involves screening large germplasm
collections to facilitate the discovery of new interesting
traits (forward phenomics), and analysing known pheno-
typic data in order to uncover the genes involved in their
evolution and use these genes in plant breeding (reverse
phenomics) [1]. Investigated plants are usually grown in
thoroughly controlled conditions (growth chambers or
glasshouses) and subjected to different environmental
conditions and stresses (e.g. drought, salt, heat, etc.) with
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the primary aim of monitoring their phenotypic response
using various measurements [2,3].

Common plant morphological traits of interest include
parameters such as main stem height, size and inclina-
tion, petiole length and initiation angle, and leaf width,
length, inclination, thickness, area, and biomass [1-4]. The
usual procedure to collect these data consists of many
laborious manual measurements, often requiring destruc-
tive harvests and thus multiple replicates of individual
plant genotypes or varieties to allow successive harvests
over time. A typical manual phenotypic analysis of 200
plants (daily objective) would require approximately 100
man-hours of work (>~ 30 minutes per plant depending
on the size and complexity), which is impractical. In light
of the importance of gene discovery and agricultural crop
improvement, the development of solutions to automate
such a tedious task is imperative.

High-throughput plant phenotyping aims to extend the
standard approach by growing, measuring and analysing
temporally thousands of plants [5]. In recent years, the
plant phenotyping research has seen the emergence of
high-throughput plant screening facilities [1,6]; how-
ever, few image and mesh processing solutions are avail-
able to analyse the large amount of data captured and
extract yield determinants (i.e. plant, leaf, or root char-
acteristics). Among existing solutions, PHENOPSIS [7]
and GROWSCREEN [8,9], provide 2D image-processing
based semi-automated solutions for leaf phenotyping (leaf
width, length, area, and perimeter) and root data mon-
itoring (number of roots, root area, and growth rate).
LAMINA [10], another 2D-image based tool for leaf shape
and size probing proposes a leaf analysis for various
plant species. Recent image-processing solutions, such as
TraitMill [11] and HTPheno [12], provide a more gen-
eral plant analysis and measure information such as plant
height, width, centre of gravity, projected area and bio-
volume, and provide colorimetric analysis (e.g. greenness-
differences between plants). Due to the importance of
rice as a primary food resource, image-based solutions
for rice phenotyping have been developed [6,13] and
involve the measurements of parameters such as grain
size (length, width, and thickness), panicle length, and
number of tillers. In the past 2 years, fully automated
imaging techniques for the high-throughput investiga-
tion of plant root characteristics (yield determinants) have
been developed [14-16] to analyse non-destructively phe-
notypic traits such as root average radius, area, maximum
horizontal width, and length distribution.

The latest applications have introduced a third dimen-
sion to the plant analysis. Stereo-imaging and mesh pro-
cessing based systems, such as GROWSCREEN 3D [17],
the 3D imaging and RootReader3D software platform [18],
or the solution proposed in [19], have pioneered the
explicit 3D analysis of leaves and roots, allowing more
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accurate measurements of leaf area, and extraction of
additional volumetric data.

To date, the literature is distinctly dominated by 2D
image-processing techniques for high-throughput pheno-
typing of plants [6-16]. The major limitation of these
2D solutions is the loss of crucial spatial and volumetric
information (e.g. thickness, bending, rolling, orientation)
when transposing available data from 3D to 2D. The
recent introduction of new tools for plant analysis based
on explicit 3D reconstructions [17-19] (as opposed to
inferred 3D based analysis [20,21], widely used since the
1960’s) promises to increase potential of high-throughput
studies in terms of accuracy and exhaustiveness of the
measured features, but available three-dimensional solu-
tions are currently focussed on a specific organ (e.g. leaves
[17,19] or roots [18]), tailored to a particular image acqui-
sition system [22], and tend to be qualitative (or applied)
rather than providing quantitative information and esti-
mates of accuracy. Hence, a clear need exists for a more
generalised plant analysis based on increasingly explicit
3D models and in which the reliability of the measure-
ments is questioned and quantitatively assessed.

In this paper, we present a novel mesh-based technique
developed for the high-throughput 3D analysis of plant
aerial-parts. A focus is made on the feasibility of accu-
rately extracting plant phenotypic parameters from a 3D
mesh acquired for the dicotyledonous crop cotton. In
this initial study, meshes were reconstructed using a low
cost commercial 3D reconstruction system [23]. The pro-
posed methodology aims at a non-exhaustive, accurate,
cross-sectional (observation of a representative subset of
a population at a fixed time-point), and temporal investi-
gation of the plant macroscopic phenotype. This requires
advanced features such as plant mesh morphological seg-
mentation [24,25], accurate plant data extraction [26], and
plant organs tracking over-time. The mesh based method-
ology was tested on plant meshes reconstructed [23,27]
for a set of six plants studied at four time-points (i.e.
6 x 4 = 24 plant meshes).

Methods

To investigate the feasibility of a mesh based processing
pipeline for the 3D analysis of plants, we initially devel-
oped the prototype cross-sectional pipeline described on
Figure 1. The following sections propose a brief presen-
tation of the image acquisition and plant mesh recon-
struction steps, and detailed descriptions of the mesh
segmentation, temporal phenotypic analysis, and valida-
tion scheme.

Plant material

The prototype study involved acquiring and processing
images for an initial set of six Gossypium hirsutum plants
studied over four time-points. Manual measurements,
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temporal pipeline is detailed on Figure 3).
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Figure 1 Prototype plant analysis pipeline. The horizontal axis (1) illustrates our prototype cross-sectional (observation of a representative subset
of a population at a specific time-point) pipeline which is divided into 4 main stages: plant image acquisition, surface mesh reconstruction,

morphological mesh segmentation (see Figure 2), and plant phenotypic parameters extraction. Monitoring the phenotypic parameters over-time
(2) involves repeating the cross-sectional pipeline throughout all the time-points available and analysing the variations in the plant phenotype (the
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performed by X.S and S.B for each plant and each time-
point, were used to validate the accuracy and quantify
the error on the mesh-based phenotypic data estima-
tion. The first three time-points involved measuring inva-
sively (but non-destructively) parameters such as main
stem height, leaf width and leaf length using a measur-
ing tape. For the last time-point, measurements were
collected after destructive harvest in order to optimise
their precision. The petioles and leaves were cut from
the main stem, laid flat on a table and carefully mea-
sured. Overall, a set of 384 measurements was manu-
ally collected (24 main stem height measurements, 180
leaf width measurements, and 180 leaf length measure-
ments).

Plant data acquisition and mesh reconstruction

A manual data capture process similar to that described
in [12] was used to collect multiple plant images from dif-
ferent viewing angles using a high-resolution Pentax K10
SLR camera with a sigma 20-40mm aspherical lens. Each
cotton plant pot was placed at the centre of a rotating tray.
The camera was fixed on a tripod during all the acquisition
process. The rotating tray was manually turned and pic-
tures were taken at each rotation angle (every ‘%? degree).
The acquisition process completed, 64 images were avail-
able (per plant and time-point) for the multi-view 3D
reconstruction. An example of acquired plant image is
shown on Figure 1, the image resolution was 3872x2592
pixels (>~ 10 Megapixels).

Plant 3D models (meshes) were created from the high-
resolution images using 3DSOM, a commercial 3D digiti-
sation software [23]. The number of polygons constituting
the reconstructed meshes fluctuated between 120000
and 270000.

The acquisition and mesh generation are not the
primary focus of the current paper, however we acknowl-
edge the “semi-automated” steps involved. An automated
image acquisition platform [28] and a mesh reconstruc-
tion algorithm (based on [29-31]) are under development
and will allow full automation for future experiments.

Automated plant mesh segmentation

The identification of different plant organs is a critical
stage in performing mesh-based plant phenotyping and
has proven problematic with 2D based image analysis
solutions [1]. To complete this task, we developed an
advanced mesh segmentation algorithm that partitions
the plant mesh into morphological regions.

Mesh segmentation algorithms involve assigning a
unique value (called a label) to all the points of the mesh
(called vertices) that belong to the same region. A sur-
face mesh is constituted of triangles that link the vertices
together through their edges. Two vertices are said to
be topologically connected (neighbours) if they share the
edge of a triangle. Finally, a vertex comprises a normal
vector equal to the average of the normal vectors of the
neighbouring triangles.

Due to the complex and irregular morphology of plants,
no generic mesh segmentation algorithm [24,25] is accu-
rate and robust enough to identify the different plant
parts (main stem, petioles, leaves). This paper introduces
a “hybrid” segmentation pipeline that overcomes the mor-
phological shape differences between cotton plants and
various reconstruction inconsistencies due to occlusions
(the most common being missing petioles, as they are
occluded by the leaves in the images used by the recon-
struction scheme). Our automated segmentation pipeline,
illustrated in Figure 2, is constituted of 4 successive steps:
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Figure 2 Automated segmentation pipeline. lllustration of the 4 successive steps of the segmentation pipeline: (1) coarse segmentation - takes
as input the non segmented plant mesh and provides as output a plant mesh roughly segmented (7 region for the main stem (red) and N regions

for the associated petioles and leaves (other colours)), (2) precise stem segmentation - takes as input the main stem previously segmented (region
M) and partitions it into several internodes, (3) petiole segmentation - takes as input a given associated leaf and petiole (from step 1) and separates
them into two distinct regions (process repeated for all the associated leaves/petioles), and (4) leaf segmentation - takes as input a given separated

Leaf segmentation
Planar-Symmetry and
normal clustering

leaf and segments it into adaxial/abaxial surfaces and left/right parts (process repeated for all the leaves).

a coarse segmentation, a stem segmentation, petioles seg-
mentations, and leaves segmentations. All the operations
described in the next paragraphs are fully automatic and
do not require any manual input [28].

Step 1: Coarse segmentation

The purpose of this first step is to partition the plant
into n+1 coarse regions (with # = number of leaves),
one for the main stem (region M) and n for the pairs
of petioles and leaves (regions N;,i = 1,...,n). This is
performed by a region-growing algorithm [24,32]. Region-
growing algorithms start from a seed point (automatically
selected based on prior criteria defined by the application)
and gradually grow a region from neighbour to neigh-
bour until a given criteria is met. Since the criteria to
stop the growth of a region are user-defined, this generic

approach is particularly convenient for coarse segmenta-
tions but often shows limitations when seeking accurate
region delineation.

The scheme starts by defining a coarse region M as the
main stem by fitting a curve ¢, to the main stem from
one extremity to the other and assigning to the region M
all the vertices in a given planar radius of c,. Remaining
vertices are classified into the n regions N; using a region-
growing algorithm. The algorithm finds the first vertex
that is not part of any region yet (at the start only one
region is defined: M), uses it as seed point, and recur-
sively grows a new region to all the eligible topological
neighbours (creating a second region Np). A neighbour is
eligible if it does not belong to M or any of the regions
N; already created. The region stops to grow when there

Pair-wise matching

o
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Figure 3 Temporal analysis pipeline. The full temporal analysis involves repeating the same pair-wise matching pipeline throughout all the time
points. The pair-wise matching (horizontal axis) is constituted of two steps: (1) a plant alignment, that takes as inputs the segmented plant meshes
for the time-points T and Ty41 (see (a)) and rigidly aligns the mesh from time-point T, with the mesh from time-point T,4 (see resulting mesh T in
blue on (b)), and (2) a plant parts matching that matches the different plant organs using the aligned meshes (see example of matched leaves on
(c)). The full temporal matching (vertical axis) consists of repeating this pair-wise matching throughout all the time-points in order to obtain the
mapping of the different organs of the plant over-time.
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is no eligible neighbour remaining, i.e. all neighbours are
labelled. The algorithm iterates through all the vertices of
the mesh and grows a new region N; each time it finds
a vertex that does not belong to any of the regions M
or N; already created (new seed point). This scheme is
robust to reconstruction issues such as holes in the mesh
or detached mesh pieces, as a vertex does not need to be
connected to the main mesh to become a seed. A typical
result of this pass is shown in Figure 2.1.

Step 2: Main stem segmentation

The second segmentation step is based on a primitive fit-
ting segmentation approach [33,34] that aims at refining
the rough stem segmentation and partitioning the stem
into different internodes (using the previously extracted
region M). Primitive fitting algorithms involve finding a
given shape (chosen based on the mesh structure) in a
complex mesh and considering that all the vertices within
the registered shape belong to the same region. In this
work, the tubular shape fitting algorithm involves finding
the tube parameters that minimise the point to surface
distance to the region M.

The algorithm creates a tube around the curve c, (see
previous section) and optimises its radius to tighten the
shape around the main stem (see Figure 4.a). Vertices
inside the final tube fitted are considered part of the main
stem region. The vertices bordering the tube (i.e. junctions
between the petioles and the main stem) are used to parti-
tion M into different regions. A stem internode goes from
one junction to the other (see Figure 4.a). Typical stem
segmentations are shown in Figures 2.2 and 4-.a.

Step 3: Petiole segmentation

The petioles are also segmented (and separated) from the
leaves in each regions Nj (created in the first step of the
segmentation) using tubular fitting. For each petiole and
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associated leaf in the regions Nj;, we interpolate a curve
along the petiole (using the local centre of mass of the
vertices) and build a tube around it (see red tube on
Figure 4.a/b). The tube follows the petiole and extends
to the apex of the leaf. If we define B; as the vertex out-
side the tube which is the closest to the main stem (leaf
stalk), then all the vertices inside the tube which are closer
to the main stem than B; belong to the petiole region P;
(see Figure 4.b). Other vertices naturally belong to the
leaf region L;. In the case of a missing petiole (detected
by a non-topological connectivity to the main stem), this
step is skipped, and the region is processed using Step 4.
Figure 2.3 illustrates a typical plant mesh after the petiole
segmentations.

Step 4: Leaf segmentation

The leaf segmentation algorithm aims at obtaining a sagit-
tal (left and right parts) and transversal (adaxial and
abaxial surfaces: see Figure 5.d) segmentation. It has been
designed to be robust to numerous natural leaf shape
variations (bending, changes over-time) and erroneous
leaf reconstructions due to occlusions during the 3D
reconstruction (e.g. abnormal leaf thickness, leaves stuck
together). A high accuracy of this stage is crucial for leaf
width, length, area, and average thickness estimation. The
proposed solution is based on two properties common to
all the studied leaves: the symmetry and the vertices nor-
mal vector distribution (mainly pointing in two directions:
away from the leaf adaxial or abaxial surface).

For the sagittal segmentation, a 2D-symmetry based
algorithm was found to be the most robust, accurate,
and computationally efficient. It is obtained by project-
ing the vertices of the leaf onto the plane having the main
stem axis as normal and comparing the sign of the angle
between the vector going from the main stem (c,) to the

a

Junction 1

Internode

Figure 4 Schematic illustration of the segmentation. (a) shows the tubes used to segment the stem (blue) and one petiole (red). (b) illustrates
the tube used to separate (segment) the petiole P; from the leaf L;. (c) illustrates the planar symmetry used to segment the leaf into two symmetric
parts. In this particular case, the points p1 and p, will belong to two different leaf regions as the angles ¢y and «; are signed differently.
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Figure 5 lllustration of a leaf data extraction. (a) shows the leaf sagittal and coronal planes, and the points S;1, Si2, Ci.1, G2 which are used to
compute the leaf width and length, (b) shows, in blue, the projection (onto the coronal plane) of the line fitted to the shape of the leaf from $;; to
Si2. This projected line length is the estimate of the leaf width. (c) shows, in orange, the projection (onto the sagittal plane) of the line fitted to the
shape of the leaf from C;; to Cj. This projected line length is the estimate of the leaf length. (d) represents a leaf transversally sliced into abaxial and

adaxial surfaces (using the vertices normal vector clustering algorithm).

apex and the vector going from c, to the considered ver-
tex. The region to which a vertex belongs to depends
on the sign of the angle (¢; and «y in Figure 4.c). An
illustration of this process is provided in Figure 4.c.

The transversal segmentation involves using a normal
clustering algorithm that starts by computing 7,: as the
average normal vector for the whole leaf L; (7,:. will nat-
urally point away from adaxial or abaxial surface). A first
pass will sort the leaf vertices into two different regions
(adaxial or abaxial) depending on the angle formed by
their normal vector and V;;, (higher or lower than 7). We

then recompute Vni using only the normal vectors of the
vertices belonging to one of the two created regions and
repeat the sorting process using the updated 7,: This
scheme is repeated until a natural convergence occurs (i.e.
Vn)i does not change between two iterations).

In the case where two leaves were merged together
due to occlusion issues in the 3D reconstruction, the
algorithm detects a largely greater volume, splits the
region L; into two regions, and performs the normal leaf
segmentation on each region. To create the two regions,
the algorithm detects the points f;; and f;» which are the
furthest apart in the region L;, computes the centroid
fci of these two points, and uses as split plane the plane
defined with fc; as origin and the normalised vector from
fci to fi2 as normal. The mesh segmentation after this step
is shown on Figure 2.4.

Phenotypic parameters of interest

For phenotypic analysis, important parameters are main
stem height, size and inclination, petiole length and initi-
ation angle, and leaf width, length, area, and inclination.
This section presents the process used to extract these
parameters from the segmented plant mesh, and focuses
in particular on the leaf parameters, which are crucial
indicators of the level of stress to which the plant is
subjected to [2,3].

Main stem

The main stem height can be expressed as the height
difference between the highest and lowest vertices of
the region M. The normalised vector between these two
vertices defines the main stem axis and the angle between
this axis and the coordinates system up-vector gives the
inclination of the main stem. In this work the main stem
length is defined as the length of the curve ¢, fitted to the
main stem.

Petiole

If ¢; is a curve interpolated along the petiole P; (using local
vertices centre of mass), the length of the petiole can then
be expressed as the length of ¢;. In addition, if /; and #;
denote the points of ¢; that are the closest to c, and the
highest respectively, then the angle o between the main

stem axis and the vector [;/1; defines the petiole initiation
angle (see « on Figure 4.a).

Leaf blade

For each segmented leaf L;, we define Lc; as the centroid
of the leaf, ;] as the average of the vectors going from Lc;
to the vertices belonging to the right part of the leaf, and
i3 as the vector going from Lc; to the tip of the leaf. Let
;; = (L, u_,ﬁ) and I;5 = (Lc;, u_i,E) define the leaf sagit-
tal and coronal planes (in which Lc; and iz, are the origin
and normal of the plane IT;,) as displayed in Figure 5.a.
Let S;1 and S;» (resp. C;1 and Cj») be the points on each
side of I1; (resp. I1;7) that maximise the distance to I1;;
(resp. ;) as illustrated on Figure 5.b/c.

To estimate the leaf width (resp. length), we compute
the length of the curve w; (resp. /;) interpolated to the leaf
shape from S;; to S; 5 (resp. C;1 to C;2) and projected onto
I1;7 (resp. I1;1) (to remove additional transversal length).
Illustrations are provided in Figure 5.b/c. The projection

——
of C;1C; 2 onto I; 1 is used as leaf axis. The angle between
this axis and the main stem axis gives the leaf inclina-
tion. The leaf area can be estimated by averaging the
areas of the adaxial and abaxial surfaces (see Figure 5.c),
which are computed by summing the area of the triangles
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composing them. The leaf thickness can be estimated by
averaging the distance between each vertex of the adaxial
surface to the closest vertex on the abaxial surface.

Analysis over-time

This step of the pipeline involved monitoring the varia-
tions of the estimated plant parameters over time. Even
though this is a straightforward process for stem height
monitoring, the temporal petiole and leaf parameters
analysis requires an efficient matching algorithm that
tracks the different plant parts over time (orientation and
size of the leaves change over time as a result of variations
in growing conditions, making it difficult to find robust
descriptors).

To perform this task, we developed the pipeline pre-
sented on Figure 3 which is based on the assumption that
a plant organ position does not vary much between two
close imaging dates. We apply the same “pairwise match-
ing” algorithm (horizontal axis on Figure 3) throughout
all the available time-points (i.e. matching of 77 and T,
of To and T3, ..., of Ty_1 and Ty. See vertical axis on
Figure 3) in order to obtain the sequences of leaves and
petioles. The pair-wise scheme is divided into two main
steps: an alignment of the two plants and a parts matching
algorithm.

Plants alignment

The plant at T is rigidly aligned with the plant at T
using a translation and a rotation around its main stem
axis. The translation is performed using the vector going
from centre of the plant at 7, (lowest point of the
main stem region) to the centre of the plant at Tyij.
The rotation is performed using the angle « that min-
imises the metric m, defined in Eq. (1). In this equation
Lcr, i, stands for the centroid of the leaf i, and W7, for
the number of leaves for the plant at time-point Ty,
and D(Lct, i Ler,, 4 ;) expresses the 3D Euclidean distance
between Lcr, ; and Lcr,,, j. An example of the alignment
is shown in Figure 3.b.

i<V,

My (T, Te1) = Y Dopr(Ler,i) (1)
i=1

min

where  Dopt(Ler, i) = I
1 =J SWTx-H

(D(Ler,i, Let, )
Plant parts matching

Internodes matching: This step aims at matching the
different internodes of a plant between two time-points.
Petioles may grow between two time-points, and thus,
split an internode of the plant at time-point 7, into
two parts, meaning that an internode from the plant at
time-point Ty can be matched with multiple internodes
from the plant at T;. For the two plants, we rank the
internodes by normalised height, retrieve their lowest and
highest boundaries and match two together when there
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is an overlap between their boundaries. Figure 6 shows a
schematic illustration of the process.

Leaf blades and petioles matching: Using two aligned
plants, we match the different leaves and petioles of
the plants by solving an assignment problem. We build
an adjacency matrix (comporting W7, rows and Wr,,,
columns) such that at a given position (i, /) in the matrix,
we store the distance D(Lcr, i, LcT,,, ;) between the cen-
troids of the leaf i of the plant at T and of the leaf j of
the plant at T,4;. Since the plants are now aligned, two
leaves are eligible for pair-wise correspondence only if
they belong to a given angular range from each other, and
we set to oo the distance between them in the adjacency
matrix when this condition is not satisfied. The pair-wise
matching is performed using a simplified version of the
Hungarian algorithm [35] that minimises the sum of the
distances between the paired leaves. The petioles linked
to the paired leaves are paired at the same time.

After this step, the morphological parts of the plant are
matched over time.

Validation methodology
We were able to compute the relative error &g4,,, and
the squared difference Aii’mi for a given automated mea-
surement a; with respect the manual measurement m; by
applying Eq. (2) and (3):

a; — m;
Sa,-,m,- = |ln,l7L| (2)
1
ii,mi = (a; —m;)* (3)
Let Sy = {Says---»8aq) and Sy = {Syy,...,8mg} denote

the sets of automated and manual main stem height mea-
surements (with © number of plants). Let also W, =
{Way .. .sWag} and Wy, = {Wyy, . . ., Wi } denote the sets
of automated and manual leaf width measurements (with

Petiole

Internode

T, / §

X x+1

Figure 6 lllustration of the process to match internodes. An
internode from the plant at 7y can be matched with multiple
internodes from the plant at T4 in the case of a petiole appearance
between the two time-points.




Paproki et al. BMC Plant Biology 2012, 12:63
http://www.biomedcentral.com/1471-2229/12/63

® total number of leaves: 180). Using Eq. (2) and (3), we
can then express the mean absolute percentage errors Ej,
E,, and the root mean square errors RMSE;, RMSE,, on
the main stem height and leaf width measurements by:

L 100 ST eSS

s S and

SEIe (4)

RMSE; = || S5 SutSni
Q
100 x =% e v
EW — Zt; Wa,th,z ﬂnd

i 2 (5)

RMSE, = | == retnt

A similar analysis allows to compute E; and RMSE; for the
leaf length measurements.

These errors were computed either using the whole
datasets mentioned, or using the datasets trimmed from
10% of the outliers (5% of the best and worst relative
errors). In addition, to be able to test the correlation
between the automated and manual measurements, we
calculated the squared Pearson product-moment correla-
tion coefficient (R*) [36] and the Intraclass Correlation
Coefficient (ICC - Two-ways random single measures)
[37-39]. The closer the R? and ICC coefficients are to 1,
the stronger the correlation between two measurements.

Results

The results we obtained by applying our processing
pipeline on the initial population of 6 Gossypium hirsutum
plants studied over 4 time-points are presented bellow.

Plant mesh segmentation

As illustrated by the segmentation results displayed in
Figure 7, the segmentation pipeline performs well and
meets its targeted expectation which is the identification
of the morphological parts of the plant. The algorithm has
proved to be robust to the mesh abnormalities caused by
occlusions during the reconstruction step, including holes
in the mesh and plant parts detached from the main mesh
(typically, a missing petiole, see magnification on Figure 7
b/T2) or stuck together (see Figure 7 b/T3). The accuracy
of the final mesh partitioning is limited by the quality of
the 3D reconstruction and irregularities in the sagittal seg-
mentation of a leaf could appear if the leaf is considerably
rotated with respect to the main stem.

Phenotypic parameters estimation

Our methodology allowed us to perform 384 phenotypic
measurements on our initial population of 24 Gossypium
hirsutum plant meshes (24 main stem height measure-
ments, and 180 measurements for both leaf width and
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TOo

Figure 7 Examples of plant segmentation results. lllustration of
the segmentation of two Gossypium hirsutum cotton plant (a) and (b)
studied over 4 time-points. As shown by the segmentation of the
plant b at T, and T3 the algorithm is robust to reconstruction issues
such as floating mesh parts (typically leaves), and two leaves merges
together.

length measurements). Overall, the described methodol-
ogy estimates plant phenotypic parameters with sufficient
accuracy and reproducibility to be used as a surrogate for
manual or destructive phenotypic analysis (Table 1). We
noted mean absolute percentage errors of E; >~ 9.34%
(159 mm with an average stem height of 170.9 mm),
E, =~ 5.75% (5.11 mm with an average leaf width of
88.9 mm), and E; ~ 8.78% (6.93 mm with an aver-
age leaf length of 78.9 mm) on the main stem height,
and leaf width and leaf length measurements. The root
mean square errors computed were RMSE; ~ 19.043
mm, RMSE,, >~ 7.287 mm, and RMSE; >~ 9.707 mm.
These values provide the average difference between the
mesh based measurements and the direct measurements
in millimetres. The Bland-Altman plot and the distribu-
tion of the relative error, presented in Figure 8.d/e, allow
a more thorough analysis of the error and show that,
even though most of the measurements were performed
within an error range of [ 0%; 10%] (see dotted red line
on the Figure 8.e), many outliers remain in the analysis
(vertical scattering on the Bland-Altman plot). The pres-
ence of outliers is caused by imprecision in the mesh
segmentation and/or erroneous plant reconstructions due
to occlusions during the 3D reconstruction. The scatter-
plots and linear regressions displayed in Figure 8.a and
8.b allow to appreciate the strong correlations between
the mesh-based and direct leaf measurements. The plot-
ted point-clouds fall into slightly scattered lines and the
linear regressions are approaching the targeted reference
(i.e. y = x). The squared Pearson correlation and intra-
class correlation coefficients R?, ~ 0.957, ICC,, ~ 0.974,
R12 ~ 0.948, and ICC; ~ 0.967 calculated on the leaf
width and length measurements concord with our pre-
vious statement of strong correlations as they approach
1. Finally, although the plot of Figure 8.c shows a more
scattered point-cloud for the main stem height measure-
ments, the correlation coefficients found were RS2 ~ 0.887
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Table 1 Main stem and leaf measurements analysis
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Comparison between the automated and manual measurements

[Vl Ex Range (mm) Ex10% 0, 10% R2 ICCy RMSE,

Main Stem Height 24 9.34% 15.95 11.50% 7.29% 6.88% 0.887 0.941 19.043
Leaf Width 180 5.75% 511 6.40% 4.78% 3.20% 0.957 0.974 7.287
Leaf Length 180 8.78% 6.93 8.36% 7.92% 5.42% 0948 0.967 9.707

In this table, we compare the values automatically extracted from the meshes with our direct measurements. |v,| is the cardinality of vy, £, and E; 105 are respectively
the non-trimmed and trimmed (10% extrema values removed) mean absolute percentage errors, and o, and oy 1% are respectively the non-trimmed and trimmed
standard deviations. R? is the squared Pearson correlation coefficient, ICC, is the intraclass correlation coefficient. RMSE, is the Root Mean Square Error.

and ICC; ~ 0.941, which are acceptable precisions for
our research.

Temporal analysis

The automated temporal analysis of the plants was quite
robust to the two major challenges: the growth of the
plants over time and the changes in the topology and
shape of the leaves over time. Correct matches of the dif-
ferent plant organs occurred in 95% of the cases (missing
petioles were ignored). Illustrations of the results obtained

by applying the pair-wise matching pipeline for a plant
studied over 4 time-points are proposed in Figure 9.e.
A dependency of the current matching scheme is that
an organ needs to be accurately identified in order to
be matched.

Computational cost

The automated 3D analysis was performed on a standard
computer equipped with a processor Intel Core 2 Duo
E8300 (2.83GHz). The mesh analysis involved an average

Leaf Width: ai = f(mi)

Leaf Length: ai = f(mi)

Main stem height: ai = f(mi)

Log((Manual+Automated)/2)
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Figure 8 Statistical analysis: Comparison of mesh-based measurements with manual ground-truthing. (a), (b), and (c) present scatter plots
of the different phenotypic parameters evaluated by our pipeline against manual measurements. The squared Pearson correlation and intra-class
correlation coefficients computed for the main stem height, leaf width, and leaf length measurements were Rf ~ 0.887, REV ~ 0957, R/z ~ (0.948,
ICCs >~ 0.941,ICC,, =~ 0.974, ICC; =~ 0.967, (d) is the Bland-Altman plot of our datasets (i.e. the relative error against logarithm of the mean of two
measurements), (e) illustrates the distribution of the error for each measurement type. The dotted red line represents the 10% relative error.
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Number of leaves = f(Time Point)

Main Stem Height = f(Time Point)

Leaf matching: TO - T1
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Figure 9 Example of temporal analysis performed over 4 time-points. (a) presents the evolution of the number of leaves per plant, (b)
illustrates the evolution of the main stem height for each plant in our initial set, (€) monitors the evolution of the average leaf area per plant, (d)
monitor the evolution of the width of individual leaves for a given plant, and (e) illustrates the results of the pair-wise matching process for a given
plant (for each pair-wise matching, the leaves matched are coloured similarly). These graphs illustrate an important contribution of our work, the
temporal matching, as to date, no available solution allows to monitor the evolution of specific plant organs over-time while at the same providing

execution time of 4.9 minutes and a total of 29.3 minutes
for the complete analysis of six plants over four time-
points (with plant meshes decimated to 70000 triangles
and without algorithm optimisations outside standard
speeding techniques). Table 2 provides the full analy-
sis of the computational cost of our algorithm. From
Table 2 and Figure 9.a, we can denote that a higher the
number of leaves will involve a slightly longer time to
perform the analysis (due to repeated leaf segmentations
and data computations, e.g. Plant 2). The time required
to perform the full mesh-based analysis (3D reconstruc-
tion excluded) is faster than any manual method can be,
and the performed analysis provides additional informa-
tion on the evolution of the data over-time. Future work
will involve paralleling different stages of the algorithm
(such as step 2 and 3 of the segmentation, the leaves
segmentations, or the computation of the metrics from
Eq. (1) in the plant alignment) and utilising cluster and
cloud computing technologies to access more important
computational resources.

Additional results
Additional results are provided in the web-site associated
with this paper [see Additional file 1].

Discussion

As illustrated by Figure 9.a, 9.b, 9.c, and 9.d, that present
a comparative study of the temporal evolution of pheno-
typic parameters for 6 Gossypium hirsutum plants, our
methodology allows an accurate monitoring of the plants’
phenotypic traits over-time. By developing a hybrid mesh
segmentation and analysis methodology for plant pheno-
typing, we have demonstrated that the automated tempo-
ral mesh-based analysis of the plant aerial part is feasible
(from the temporal broad plant analysis to the evolution
of individual organs).

Nevertheless, our initial study has several limitations
which should be acknowledge and will lead to further
investigation and development.

As of today, the pilot study was limited in terms of the
exhaustiveness of the phenotypic parameters estimated,
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Table 2 Analysis of the computational cost (in minutes)
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Analysis of the computational cost (in minutes)

Operation Time-Point Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant6
T0 0.62 0.64 0.71 0.70 0.61 0.62
A T 0.64 0.62 0.57 0.51 0.55 0.81
Segmentation
T2 0.71 0.69 0.52 0.68 0.65 0.60
T3 0.68 0.62 067 0.80 0.71 0.81
T0 0.075 0.065 0.082 0.073 0.074 0.078
i T1 0.067 0.066 0.075 0.062 0.074 0.074
Data extraction
T2 0.072 0.068 0.061 0.063 0.068 0.067
T3 0.073 0.072 0.071 0.076 0.071 0.071
Temporal organs matching 2.21 2.51 2.16 2.01 2.05 212
Complete mesh analysis 4.97 5.19 4.65 4.77 4.67 5.06

For the sake of consistency in the analysis of the CPU time (number of CPU cycles elapsed between the beginning and the end of an operation) required to run each
step of the pipeline, we initially decimated all the plant meshes to 70000 triangles. The programs were run on a computer equipped with a processor Intel Core 2 Duo
E8300 (2.83GHz). The segmentation steps were executed successively (non-threaded pipeline) and the results were obtained in less than 1 minute (< 50s) for every
plant mesh. The data extraction steps were also executed successively, and the processing time required was negligible (< 0.082 min / < 5s per plant and per
time-point). The CPU time required to run the plant parts matching for four time-points oscillated around 2 minutes (depending on the number of leaves). Operations
of alignment and matching were executed successively. Note that the temporal pipeline includes the data extraction algorithm, as the plant data are required by the
temporal pipeline. Finally the CPU time required to run the full mesh processing pipeline was around 5 minutes per plant. For a given plant, the segmentation of the
different meshes were executed in parallel (4 time-points = 4 plant mesh segmentations) and followed by a serial temporal analysis.

but the explicit 3D reconstruction and robust identifica-
tion of the morphological parts of the plant allow esti-
mation of a large number of parameters of interest to
plant biologists not easily extracted from 2D images with
existing software platforms (accurate leaf area and bio-
volume rather than projected area, growth of individual
leaves, organ quantification over time, leaf number / phyl-
lochron, leaf angle). More phenotypic parameter extrac-
tions can be easily developed and incorporated to our
pipeline as the biologists’ requirements evolve, allowing
re-use of existing libraries of 3D models and the capac-
ity to tailor the pipeline to new trait identification and
quantification. Plant architecture is an important deter-
minant of radiation use efficiency in crops and analysis
of this trait in explicit 3D and over time has previously
been an intractable problem with anything other than low
throughput [1]. We should acknowledge, however, that
tools for 3D analysis of roots based on inferred 3D “recon-
structions” (i.e. 3D approximation using shapes such as
tubes) exist and have been extensively used since the early
1960’s [20,21,40].

Although the methodology was solely tested on Gossyp-
ium hirsutum plants, it is expected that the method will
be broadly and easily adaptable to other dicotyledonous
crops such as canola, tomato, and low tillering mono-
cotyledons with simple architectures such as corn. The
pipeline can be easily adapted, and operators can be
implemented and combined in order to increase the flex-
ibility of the algorithm. Preliminary results (unpublished),
obtained by reusing the two first steps of the segmentation
pipeline (rough segmentation and stem segmentation) on

corn, allowed to isolate the main stem, the leaves, and
inter-nodes, and allowed the direct computation of corn
specific data. Due to the importance of rice and wheat
as major food crops, the application of image based plant
phenomics tools to grasses is of great interest. Signifi-
cant development of our pipeline is needed to cope with
occlusions due to the complex structure and the tillering
observed in cereal crops. Their investigation will involve
pushing the state-of-the-art reconstruction and segmen-
tation algorithms to their limit.

With respect to the accuracy on the phenotypic parame-
ters, errors between 5 and 10% (involving ranges between
5mm to 7mm for the leaves) are acceptable for mor-
phological scale phenotyping, reflecting the magnitude
of errors already inherent in manual measurements and
variations observed between individual plants of identi-
cal genetic make-up, and are low enough to distinguish
changes in the relevant traits between two imaging dates
during development (which is the aim of our research).
Measurements for which the mean absolute error is above
10% (or over 10mm range, e.g. main stem measurements)
will involve further work to improve the accuracy (for
instance, the mean bias error - that characterises system-
atic over/under estimations - for the main stem height
measurements was MBE; >~ 9.8mm, against MBE,, =
—2.7mm and MBE; >~ 3.1mm for the leaf width and length
measurements, entailing that a systematic over-estimation
on the main stem height measurements is made). Finally,
our current aim involves reducing the error on the mea-
surements to less than 5%, which we believe is achievable
by training our algorithms on phantom plant meshes (with
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phenotypic parameters exactly known) generated using
existing plant modelling technologies [4,41].

While the focus of the current study has been the
processing of meshes produced by a commercial 3D
reconstruction product, major future work will involve
improving the digitisation of plant structure and func-
tion by incorporating data other than visible light images
into the 3D model. In addition to visible light cameras
collecting multiple view geometries, PlantScan, a new
screening platform recently developed in our laboratory
[28] is equipped with LiDAR (Light Detection and Rang-
ing sensors), infra-red cameras, and multi-wavelength
cameras. The LiDAR cameras allow the reconstruction of
accurate point-clouds (precision of 200 microns) that will
be integrated in our probabilistic reconstruction scheme
[29-31] in order to improve the accuracy of the recon-
structed plant meshes that currently limits the quality
of the morphological segmentation and temporal analy-
sis. These meshes will be overlaid with thermal infra-red
data and multi-spectral images data that provide colori-
metric information (for chemical composition and pho-
tosynthetic functional analysis). Our laboratory expects
to scan one plant every 7 minutes, making the current
mesh-based methodology (3D reconstruction excluded)
suitable for high-throughput dicotyledonous plant anal-
ysis. As 3DSOM required an average processing time of
15 minutes to reconstruct suitable meshes, a special focus
will be placed on the efficiency of the reconstruction
scheme developed.

Conclusions

In this paper, we presented a hybrid mesh-based method-
ology developed for high-throughput plant phenomics
research. The proposed solution provides advanced mesh-
processing features, including plant mesh morphologi-
cal segmentation, accurate plant aerial-part phenotypic
parameters estimation, and individual organ tracking and
data monitoring over-time. Experiments involved testing
our processing pipeline on an initial set of six Gossypium
hirsutum plants analysed over four time-points.

From the qualitative and quantitative results presented
in the paper, we believe that the development of a
mesh based methodology for high-resolution and high-
throughput plant phenomics platform is feasible and
offers multiple advantages over current systems that use
a small number of 2D images. The hybrid mesh seg-
mentation presented allowed the identification of the
different plant organs for all the test plants. The phe-
notypic parameter estimation algorithms allowed the
retrieval of measurements such as main stem height and
inclination, petiole length and initiation angle, and leaf
width, length, area and inclination. By comparing 384
mesh-based measurements with manual measurements,
we observed errors ranging from 5.75% to 9.34% and
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correlations ranging from 0.887 to 0.974. The tempo-
ral organ tracking algorithm successfully matched plant
organs between time-points in 95% of the cases. Finally,
the proposed analysis required only 4.9 minutes in average
to analyse a plant over four time-points. The mesh-based
analysis is thus considered a suitable mean to perform
accurate and efficient 3D plant phenotypic analysis.

Additional file

Additional file 1: Website presenting the results. Website containing
the results obtained by applying our method on the initial set of plant
meshes. The different results are presented as tables containing links to the
different web-pages. The results of the segmentation and temporal
matching between the different time-points are available as images.
Phenotypic parameters estimated by our method are available in the form
of tables. In addition, a spreadsheet containing all the mesh-based and
manual measurements is available as a web-page and contains the
statistical analysis presented in the paper.
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