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Abstract

paradigm is to control the false discovery rate.

false discovery rate controls for typical genomic studies.

rate indices.

Background: Multiple hypothesis testing is a pervasive problem in genomic data analysis. The conventional
Bonferroni method which controls the family-wise error rate is conservative and with low power. The current

Results: We characterize the variability of the false discovery rate indices (local false discovery rates, g-value and
false discovery proportion) using the bootstrapped method. A colon cancer gene-expression data and a visual
refractive errors genome-wide association study data are analyzed as demonstration. We found a high variability in

Conclusions: We advise researchers to present the bootstrapped standard errors alongside with the false discovery
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Background

DNA microarray technology allows researchers to perform
genome-wide screening and monitoring of expression levels
for hundreds and thousands of genes simultaneously. The
problem of multiple hypothesis testing arises when one
compares a large number of genes between different groups
(e.g., between breast cancer patients and healthy controls)
[1]. In this context, the conventional Bonferroni method
which controls the family-wise error rate is conservative
and with low power. The current paradigm is to control
the false discovery rate (FDR, the expected proportion of
false positives among the rejected hypotheses) [2]. From a
practicing epidemiologist’s viewpoint, the procedure is sim-
ple: input the P-values for the genes into an FDR software,
get the output of the corresponding g-values [3], and then
declare a gene significant if its q-value is less than or equal
to 0.05. This supposedly ensures the FDR to be controlled
at 5 % level.

If there are a total of r genes found to be significant
using the above procedure, most researchers will reckon
that the false positive genes among them would be no
more than 0.05 x r. An interpretation such as these can
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be perilous. In fact, there are three levels of variations
attached to any FDR control. The first level is the vari-
ation between the ‘local FDRs'’. A local FDR for a gene is
the probability of being false positive specifically for that
gene [4-7]. The average local FDR of the r significant
genes being 0.05 does not imply that all of them have a
local FDR of 0.05. The second level of variation comes
from the random errors in the estimation of the q-values
themselves, which in turn relies on the empirical distri-
bution function of the P-values. The fewer the genes are,
the less stable the empirical distribution function is, and
the more variable the estimated q-values will be. Finally,
the total number of false positives by itself is a random
variable. Its expected value being 0.05 x r does not guar-
antee that the actual number should be it.

In this paper, we use bootstrap method to characterize
the variability of FDR control. A colon cancer gene-
expression data [8] and a visual refractive errors genome-
wide association study data [9] will be analyzed for
demonstrations.

Methods

Assume that there are a total m genes under study
with P-values of p;, i =1,...,m. From these, we calculate
the local FDRs [4-7] and the g-values [3]: fdr; and ¢,
for i=1,...,m, respectively, using false discovery rate
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analysis package in R, such as fdrtool (specifying stat-
istic = “pvalue”, plot=FALSE). Assume that among
them there are a total of r (r>0) genes with q-values
at most as large as 0.05. We declare those genes sig-
nificant with FDR controlled at 5 % level, and put
them in an S set: S={i:q;<0.05}.

As the unit of analysis for an FDR control is a P-value
rather than a study subject, we propose a P-value-based
bootstrap method to characterize the variability of FDR
control. Whereas the usual bootstrap method samples
with replacement of the study subjects, our P-value-
based bootstrap method samples with replacement
directly of the P-values. This is computationally much
more efficient, because the P-values in our method do
not need to be re-computed from scratch for each boot-
strapped sample as in the usual study-subject-based
bootstrapping.

To be precise, the j th gene of a bootstrapped sample is
Gj=[mx U +1], where U is the uniform(0,1) distribution
and [x] returns the largest integer not exceeding x. It has a
P-value of p; = Pg,- From this new set of P-values: p/ for

j=1,...,m., we calculate a new set of local FDRs: fdr; for
j=1,...,m. Note a star is superscripted to avoid confusion.
There is no guarantee that each and every gene in the
original data will be represented in the bootstrapped
sample. Put those ‘missing’ genes in a set: M = {i: i # G; for
j=1,...,m}. For an i ¢ M, we simply let its bootstrapped
local FDR (superscripted B) be fdr?$M=fdr;, where j is
any value satisfying G;=i. For an i € M, we use linear
interpolation to estimate its bootstrapped local FDR. First,
we find its left and right ‘flanking’ genes. The left flank-
ing genes are those that have the largest P-value (but
no larger than p;) in the bootstrapped sample, that is,

the set: L = {j Lp; = max,.o, (p,*()} The right flanking

genes are those that have the smallest P-value (but no
smaller than p,) in the bootstrapped sample, that is, the

set: R = {j L pf = ming), (p,ﬁ)} If L is non-empty, we
randomly pick one member in it, say %, and let p; = p,,
and fdr, = fdr,,. If L is empty, we let p, = fdr, = 0. If R is
non-empty, we randomly pick one member in it, say v,
and let pp=p, and fdrg=fdr,. If R is empty, we let
pr =1fdr; =1. Now we can use the linear interpolation. If
Pr # pPr, the bootstrapped local FDR for this ie M is

fdr?eM _ fdrRX(Pk*P;i-f;erx(pR*Pk)' prL = pr, we let fdr?eM -

fdry (fdr; = fdry in this situation anyway).

In a bootstrapped sample, we calculate the boot-
strapped g-value by simply averaging the bootstrapped
local FDRs pertaining to the r significant genes, that is,

q® =1x Zfdr?. Next, we simulate a binary ‘false dis-
ieS

covery indicator’ (1: false positive; 0: true positive) for

each and every significant gene. The simulation is done
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according to an independent Bernoulli distribution
with the corresponding bootstrapped local FDR as the
parameter. The bootstrapped total number of false
positives is then simply the summation of these false
discovery indicators, and the bootstrapped false dis-
covery proportion (FDP), that number divided by r, that
is, FDP® =1 x ZBernoulli (fdr?). Note that of the r sig-
ieS

nificant genes, the ¢® is the average bootstrapped false dis-
covery probability, and the FDP®, the bootstrapped
proportion of false positives.

A total of 10,000 bootstrapped samples were generated
to estimate the bootstrapped standard errors for the
local FDRs, g-value and FDP, respectively. For independ-
ent genes, the 95 % bootstrapped percentile confidence
intervals for local FDR and g-value at various P-value
cutoffs can maintain the coverage probabilities close to
the nominal value of 0.95, but for correlated genes, the
coverage is below 0.95 (Additional file 1). In practice, it
is difficult to tell whether the genes under study are in-
dependent of one another or are correlated. Therefore,
the bootstrapped standard errors presented in this paper
should better be regarded as lower bounds of the vari-
ability of the FDR control.

Results

The colon cancer data of Alon et al. [8] contains the
gene expression measurements of 2000 genes for 62
samples including 40 colon cancer tissue samples and
22 normal tissue samples. The P-value of each gene is
calculated by Student’s t-test. A total of 95 significant
differentially expressed genes are found with FDR con-
trolled at 5 % level. Figure 1a shows the local FDRs. We
see that their local FDR values are not all controlled at
0.05. A total of 43 significant genes have local FDR
values larger than 0.05, and the largest one is 0.10.
Using the bootstrap method, we can gauge the variabil-
ity of the FDR control. We see that the largest boot-
strapped standard error for the local FDRs is 0.017
(Fig. 1a). The bootstrapped standard error for the g-
value is 0.006, and for the FDP, an upward of 0.023
(Table 1).

The visual refractive errors data of Stambolian et al.
[9] consists of genome-wide association studies for 7280
samples from five cohorts. We choose the data from
chromosome 14 which is composed of 84,536 single nu-
cleotide polymorphisms (SNPs). The P-value of each
SNP is calculated from meta-analysis of five cohorts.
There are ten significant SNPs detected with FDR con-
trolled at 5 % level. Figure 1b shows the local FDRs. Al-
though most of their local FDR values are near 0.05, the
largest one is 0.18 which is a far cry from a FDR control
of 5 %. Using the bootstrap method, we find the variabil-
ity of the FDR control in this data to be even greater



Lin and Lee BMC Genetics (2015) 16:97

Page 3 of 4

Local FDR
0.2

0.1

L w
|t

T T T T T T T T
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

0.0

p-value

Fig. 1 Local false discovery rates (FDRs) of significant genes in the colon cancer data (a) and the refractive errors data (b). Error bars are + 1
bootstrapped standard error. The bold line marks the FDR control value of 0.05

Local FDR
0.2

0.1

T
/ I

T T T T T
0e+00 1e-06 2e-06 3e-06 4e-06 5e-06

0.0

p-value

than that in the colon cancer data. For the local FDRs,
the largest bootstrapped standard error can be as large
as 0.089 (Fig. 1b). For q-value and FDP, their boot-
strapped standard errors are up to 0.027 and 0.083, re-
spectively (Table 1).

Discussion

Previous researchers [10-12] studied the variability of
FDR control using computer simulation and found a
number of factors associated with high variability: small
sample size, small total number of genes, large correl-
ation among the genes, and low signal prevalence/
strength for the genes, etc. These researchers investi-
gated one factor at a time. In real practice however, we
need to gauge the overall effect of multiple factors. In
this study, we propose a simple bootstrap method to
characterize the three levels of variations (local FDRs,
g-value, and FDP) associated with an FDR control. A
small-scale simulation in Additional file 2 shows that
the results of the present method are in agreement with
the previous computer simulation studies. However, the
present method is completely data-driven, requiring no a

Table 1 The bootstrapped standard errors of g-value and false
discovery proportion (FDP) among significant genes

Bootstrapped standard errors

Colon cancer data

g-value 0.0060

FDP 0.0234
Refractive errors data

g-value 0.0273

FDP 0.0828

priori knowledge about which factor(s) might influence
the variability and by how much. Using a simple bootstrap
procedure, the methods automatically takes into account
all factors that may influence the variability of FDR con-
trol. Additional file 3 presents handy R codes for imple-
menting the method.

In this study, we found the variability in FDR controls
to be quite large for the colon cancer gene expression
and the visual refractive errors genome-wide association
study data. [The computer-simulation methods of Gold
et al. [10], Green and Diggle [11], and Zhang and
Coombes [12] cannot be directly applied to these data-
sets for comparisons, because their methods require
extra information beyond the data at hand.] We also
found a potential danger in using the g-value to infer
significance. Take the visual refractive errors data as an
example. Using the criterion of q <0.05, a total of ten
significant SNPs can be detected. However, one of them
actually has a local FDR as large as 0.18. Clearly, it is too
liberal to declare a SNP with such high rate of false posi-
tive to be significant. If the significance of a particular
gene is at issue, naturally we must turn to its local FDR
(and the associated bootstrapped standard error), rather
than its g-value. Only when a gene has a very low local
EDR value, can it be pretty safe to declare that gene sig-
nificant, for example, when its local FDR value plus two
standard errors is still lower than 0.05.

Conclusions

This study demonstrates the high variability in FDR
controls for typical genomic studies. To avoid over-
interpretations, researchers are advised to present the
associated bootstrapped standard errors alongside with
the FDR indices of local FDRs, g-value and FDP.
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