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Abstract The new parallel multiclass stochastic gradient
descent algorithms aim at classifying million images with
very-high-dimensional signatures into thousands of classes.
We extend the stochastic gradient descent (SGD) for support
vector machines (SVM-SGD) in several ways to develop the
new multiclass SVM-SGD for efficiently classifying large
image datasets into many classes. We propose (1) a balanced
training algorithm for learning binary SVM-SGD classifiers,
and (2) a parallel training process of classifiers with several
multi-core computers/grid. The evaluation on 1000 classes
of ImageNet, ILSVRC 2010 shows that our algorithm is 270
times faster than the state-of-the-art linear classifier LIBLIN-
EAR.

Keywords Support vector machine · Stochastic gradient
descent · Multiclass · Parallel algorithm · Large-scale image
classification

1 Introduction

Visual classification is one of the important research topics in
computer vision and machine learning. Low-level local fea-
tures and bag-of-words model (BoW) are the core of state-
of-the-art visual classification systems. The usual pipeline
for visual classification task involves three steps: (1) extract-
ing features, (2) building codebook and encoding features,
and (3) training classifiers. Most of the methods based on
this pipeline have been only evaluated on small datasets, e.g.
Caltech 101 [1], Caltech 256 [2], and PASCAL VOC [3] that
can fit into desktop memory. In step 3, most researchers may
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choose either linear or non-linear support vector machines
(SVM) classifiers that can be trained in a few minutes.

However, the emergence of ImageNet dataset [4] poses
more challenges for training classifiers. ImageNet is much
larger in scale and diversity than the other benchmark
datasets. The current release ImageNet has grown a big step
in terms of the number of images and the number of classes,
as shown in Fig. 1—it has more than 14 million images for
21,841 classes (more than 1,000 images for each class on
average).

With millions of images, training an accurate classifier
may take weeks or even years [5,6]. Therefore, the recent
works in large-scale learning classifiers have focused on
building linear classifiers for large-scale visual classification
tasks. In many test cases, linear SVM classifier is a trade-off
between training time and classification accuracy [7]. Shalev-
Shwartz et al. [8] and [9] propose stochastic gradient descent
algorithms for SVM (denoted by SVM-SGD) that shows the
promising results for large-scale binary classification prob-
lems. An extension of SVM-SGD [10] uses the one-versus-
all strategy for dealing with large-scale images in very-high-
dimensional signatures and thousands classes. However, the
current version of SVM-SGD does not take into account the
benefits of high-performance computing (HPC).On ILSVRC
2010, it takes very long time to train 1000 binary classifiers.
Therefore, it motivates us to study how to speed-up SVM-
SGD for large-scale visual classification tasks. In this paper,
we extend the binary SVM-SGD in several ways to develop
the new parallel multiclass SVM-SGD algorithms for effi-
ciently classifying large image datasets into many classes.
The idea is to build

1. Abalanced training algorithm for binarySVM-SGDclas-
sifiers,
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Fig. 1 A comparison of ImageNet with other benchmark datasets

2. A parallel training process of classifiers with several
multi-core computers/grid.

The remainder of this paper is organized as follows: Sect. 2
briefly reviews the related work on large-scale visual classi-
fication. Section 3 introduces stochastic gradient descents
for SVM. In Sect. 4, we present its improvement for large
number of classes and describe how to speed-up the training
process of SVM-SGD by using our balanced training algo-
rithm and take into account the benefits of HPC. Section 5
presents numerical results before the conclusion and future
work.

2 Related work

Many previous works on visual classification have relied on
bag-of-words model, BoW [11], local feature quantization
and SVM. These models may be enhanced by multi-scale
spatial pyramids [12] on BoWs or histogram of oriented
gradient [13] features. Some recent works consider exploit-
ing the hierarchical structure of dataset for image recogni-
tion and achieve impressive improvements in accuracy and
efficiency [14]. Related to classification is the problem of
detection, often treated as repeated one-versus-all classifica-
tion in sliding windows [3,15]. In many cases, such local-
ization of objects might be useful for improving classifi-
cation accuracy performance. However, in the context of
large-scale visual classification with hundreds or thousands
of classes, these common approaches become computation-
ally intractable.

To address this problem, [16] study semi-supervised learn-
ing on 126 hand-labeled Tiny Images categories, [17] show
classification experiments on a maximum of 315 categories.
[18] do research with landmark classification on a collec-

tion of 500 landmarks and 2 million images. On a small
subset of ten classes, they have improved BoW classifica-
tion by increasing the visual vocabulary up to 80 K visual
words. Furthermore, the current released ImageNet makes
the complexity of large-scale visual classification become
a big challenge. To tackle this challenge, many researchers
are beginning to study strategies on how to improve the accu-
racy performance and avoid using high-cost nonlinear kernel
SVMs for training classifiers. The recent prominent works
for these strategies are proposed in [5,6,19,20] where the
data are first transformed by a nonlinear mapping induced
by a particular kernel and then efficient linear classifiers are
trained in the resulting space. They argue that the classifi-
cation accuracy of linear classifiers with high-dimensional
image representations is similar to low-dimensional BoW
with non-linear kernel classifiers. Therefore, many previ-
ous works in large-scale visual classification have converged
on building linear classifiers using the state-of-the-art linear
classifier LIBLINEAR [21]. However, the recent works in
[8] and [9] show empirically that SVM-SGD is faster than
LIBLINEAR on many benchmark datasets. The recent work
[20] and [10] study the impact of high-dimensional Fisher
vectors on large-datasets. They show that the larger the train-
ing dataset, the higher the impact of the dimensionality on
the classification accuracy. To get the state-of-the-art results
on ILSVRC 2010, they make use of the spatial pyramids to
increase the dimensionality of Fisher vector and then exploit
Product Quantizer [22] to compress the data before training
classifiers. With this method, the training data can fit into
the main memory of a single computer (48 GB). To train-
ing classifiers, they employ Stochastic Gradient Descent [9]
with early stopping, reweighting data, regularization, step
size and the computation of dot product is parallelized on
16 cores of their computer. Our approach is quite different
with this work in which we train classifiers with a sampling
strategy and a smooth hinge loss function and parallelize the
training task of binary classifiers on several multi-core com-
puters.

A grid with several multi-core computers bring to us
many advantages. Advanced technologies designed for the
systems where several processes have access to shared or
distributed memory space are becoming popular choice for
high-performance computing algorithms. Therefore, it moti-
vates us to investigate parallel solutions and demonstrate how
SVM-SGDcan benefit frommodern platforms. Furthermore,
in the case of large number of classes, we propose the bal-
anced training algorithm that can be applied to speed-up the
training process of classifiers without compromising classi-
fication accuracy. Our experiments show very good results
and confirm that the balanced training algorithm and par-
allel solutions are very essential for large-scale visual clas-
sification in terms of training time and classification accu-
racy.
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3 Support vector machines and stochastic gradient
descent

3.1 Support vector machines (SVM)

Let us consider a linear binary classification task, as
depicted in Fig. 2, with m datapoints xi (i = 1, . . . , m)
in the n-dimensional input space Rn , having corresponding
labels yi = ±1. For this problem, the SVM algorithms [23]
try to find the best separating plane (denoted by the normal
vector w ∈ Rn and the scalar b ∈ R), i.e. furthest from
both class +1 and class −1. It can simply maximize the
distance or margin between the supporting planes for each
class (x .w − b = +1 for class +1, x .w − b = −1 for class
−1). The margin between these supporting planes is 2/‖w‖
(where ‖w‖ is the 2-norm of the vector w). Any point xi

falling on the wrong side of its supporting plane is consid-
ered to be an error, denoted by zi (zi ≥ 0). Therefore, the
SVM has to simultaneously maximize the margin and mini-
mize the error. The standard SVMs pursue these goals with
the quadratic programming of (1).

min �(w, b, z) = 1

2
‖w‖2 + C

m∑

i=1

zi

s.t. : yi (w.xi − b) + zi ≥ 1 (1)

zi ≥ 0,

where the positive constant C is used to tune errors and mar-
gin size.

The plane (w, b) is obtained by solving the quadratic pro-
gramming (1). Then, the classification function of a new dat-
apoint x based on the plane is

predict(x) = sign(w.x − b) (2)

Fig. 2 Linear separation of the datapoints into two classes

SVM can use some other classification functions, for
example a polynomial function of degree d, a RBF (Radial
Basis Function) or a sigmoid function. To change from a lin-
ear to non-linear classifier, one must only substitute a kernel
evaluation in (1) instead of the original dot product. More
details about SVM and other kernel-based learning methods
can be found in [24].

Unfortunately, the computational cost requirements of the
SVM solutions in (1) are at least O(m2), wherem is the num-
ber of training datapoints, making classical SVM intractable
for large datasets.

3.2 SVM with stochastic gradient descent (SGD)

We can reformulate the SVM problem in quadratic program-
ming (1) in an unconstraint problem. We can ignore the bias
b without generality loss. The constraints yi (w.xi ) + zi ≥ 1
in (1) are rewritten as follows:

zi ≥ 1 − yi (w.xi ) (3)

The constraints (3) and zi ≥ 0 are rewritten by the hinge
loss function:

zi = max{0, 1 − yi (w.xi )} (4)

Substituting for z from the constraint in terms of w into
the objective function � of the quadratic programming (1)
yields an unconstrained problem (5):

min �(w, [x, y])= λ

2
‖w‖2+ 1

m

m∑

i=1

max{0, 1−yi (w.xi )}

(5)

And then, [8,9] proposed the stochastic gradient descent
method to solve the unconstrained problem (5). The sto-
chastic gradient descent for SVM (denoted by SVM-SGD)
updatesw on T epochs with a learning rate η. For each epoch
t , the SVM-SGD uses a single randomly received datapoint
(xi , yi ) to compute the sub-gradient ∇t�(w, [xi , yi ]) and
update wt+1.

As mentioned in [8,9], the SVM-SGD algorithm quickly
converges to the optimal solution due to the fact that the
unconstrained problem (5) is convex games on very large
datasets. The algorithmic complexity of SVM-SGD is lin-
ear with the number of datapoints. An example of its effec-
tiveness is given with the classification into two classes of
780,000 datapoints in 47,000-dimensional input space in 2 s
on a PC and the test accuracy is similar to standard SVM.

4 Extentions of SVM-SGD to large number of classes

Most SVM algorithms are only able to deal with a two-class
problem. There are several extensions of a binary classifi-
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cation SVM solver to multi-class (k classes, k ≥ 3) clas-
sification tasks. The state-of-the-art multi-class SVMs are
categorized into two types of approaches. The first one is
considering the multi-class case in one optimization prob-
lem [25–27]. The second one is decomposing multi-class
into a series of binary SVMs, including one-versus-all [23],
one-versus-one [28] and Decision Directed Acyclic Graph
[29].

In practice, one-versus-all, one-versus-one are the most
popular methods due to their simplicity. Let us consider k
classes (k > 2). The one-versus-all strategy builds k different
classifiers where the i th classifier separates the i th class from
the rest. The one-versus-one strategy constructs k(k − 1)/2
classifiers, using all the binary pairwise combinations of the
k classes. The class is then predicted with a majority vote.

When dealingwith very large number of classes, e.g. thou-
sands classes, the one-versus-one strategy is too expensive
because it needs to train millions binary classifiers. There-
fore, the one-versus-all strategy becomes popular in this case.
However, the multiclass SVM-SGD algorithm using one-
versus-all leads to the two problems:

1. the SVM-SGD algorithm deals with the imbalanced
datasets for building binary classifiers,

2. the SVM-SGD algorithms also takes very long time to
train very large number of binary classifiers in sequential
mode using a single processor.

A recent multiclass SVM-SGD algorithm proposed by
[10] uses the one-versus-all strategy for classifying large-
scale images in very-high-dimensional signatures and thou-
sands classes. The recommendations for this algorithm
include early stopping, reweighting used to adjust the sample
data, regularization, step size.

And then, our multiclass SVM-SGD algorithm also uses
the one-versus-all approach to train independently k binary
classifiers. We propose two ways for creating the new mul-
ticlass SVM-SGD algorithm being able to handle very large
number of classes in high speed. The first one is to build
balanced training of binary classifiers with a sampling strat-
egy and a smooth hinge loss function. The second one is
to parallelize the training task of all classifiers with several
multi-core machines/grids.

4.1 Balanced training SVM-SGD

In the one-versus-all approach, the learning task of SVM-
SGD tries to separate the i th class (positive class) from the
k−1 others classes (negative class). For very large number of
classes, e.g. 1,000 classes, this leads to the extreme imbalance
between the positive and the negative class. The problem
is well known as the class imbalance. The problem of the
SVM-SGD algorithm comes from the update rule using a

random received datapoint. The probability for a positive
datapoint sampled is very small (about 0.001) comparedwith
the large chance for a negative datapoint sampled (e.g. 0.999).
And then, the SVM-SGD concentrates mostly on the errors
produced by the nagative datapoints. Therefore, the SVM-
SGD has difficulty to separate the positive class from the
rest.

As summarized by the review papers of [30–32], and the
very comprehensive papers of [33,34], solutions to the class
imbalance problemswere proposed both at the data and algo-
rithmic level. At the data level, these algorithms change the
class distribution, including over-sampling theminority class
[35] or under-sampling the majority class [36,37]. At the
algorithmic level, the solution is to re-balance the error rate
by weighting each type of error with the corresponding cost.

Our balanced training SVM-SGD simultaneously uses the
two approaches. Furthermore, the class prior probabilities
in this context are highly unequal (e.g. the distribution of
the positive class is 0.1 % in the 1,000 classes classifica-
tion problem), and over-sampling the minority class is very
expensive. Therefore, our balanced training SVM-SGD uses
under-sampling the majority class (negative class). The bal-
anced training SVM-SGD also modifies the updating rule
using the skewed misclassification costs.

Although the SVM-SGD algorithm has impressive con-
vergence properties due to the fact that the unconstrained
problem (5) is convex games on very large datasets. The
hinge loss function L(w, [xi , yi ]) = max{0, 1 − yi (w.xi )}
in the unconstrained problem (5) is discontinuously in the
derivative at yi (w.xi ) = 1, and then the SGD’s convergence
rate still cannot be faster than O(ln(T )/T ) as mentioned
in [38]. One way to resolve this issue is to use a surrogate
smooth loss function of the hinge loss function in the uncon-
strained problem (5), this leads to achieve the optimal rate
O(1/T ), illustrated in [39,40]. Then, we propose to substi-
tute the hinge loss L(w, [xi , yi ]) = max{0, 1− yi (w.xi )} in
the unconstrained problem (5) by the smooth hinge loss [41],
as follows:

Ls(w, [xi , yi ])=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 − yi (w.xi ) yi (w.xi ) ≤ 0

1
2 [1 − yi (w.xi )]2 0 < yi (w.xi ) < 1

0 1 ≤ yi (w.xi )

(6)

And then our balanced trainingSVM-SGDfor binary clas-
sification tasks (described in 1) updates w on T epochs. For
each epoch t , the reduced dataset D′ is created by the full
set of positive class D+ and under-sampling the negative
class D′−, the SVM-SGD randomly picks a datapoint (xi , yi )
from the reduced dataset D′ to compute the sub-gradient
∇t�(w, [xi , yi ]) (according to the smooth hinge loss (6) and
update wt+1 (using the skewed misclassification costs) as

123



Vietnam J Comput Sci (2014) 1:107–115 111

follows:

wt+1 = wt − ηt∇t�(w, [xi , yi ]) = wt − ηt (λwt

+∇t Ls(w, [xi , yi ])) (7)

with ∇t Ls(w, [xi , yi ])

=

⎧
⎪⎪⎨

⎪⎪⎩

− 1
|Dc| yi xi yi (wt .xi ) ≤ 0

− 1
|Dc| yi xi [1 − yi (wt .xi )] 0 < yi (wt .xi ) < 1

0 1 ≤ yi (wt .xi )

(8)

where |Dc| is the cardinality of the class c ∈ ±1.

Algorithm 1: Balanced training SVM-SGD for binary
classification tasks

input :
training data of the positive class D+
training data of the negative class D−
positive constant λ > 0
number of epochs T

output:
SVM-SGD model w

1 init w1 = 0
2 for t ← 1 to T do
3 creating the reduced dataset D′ from the full set of positive

class D+ and sampling without replacement D′− from dataset
D− (with |D′−| = √|D−| × |D+|)

4 setting ηt = 1
λt

5 for i ← 1 to |D+| do
6 randomly pick a datapoint [xi , yi ] from reduced set D′
7 if (yi (wt .xi ) ≤ 0) then
8 wt+1 = wt − ηt (λwt − 1

|Dyi | yi xi )

9 else if (yi (wt .xi ) < 1 then
10 wt+1 = wt − ηt {λwt − 1

|Dyi | yi xi [1 − yi (wt .xi )]}
11 else
12 wt+1 = wt − ηtλwt
13 end
14 end
15 end
16 return wt+1

We remark that the margin can be seen as the minimum
distance between two convex hulls, H+ of the positive class
and H− of the negative class (the farthest distance between
the two classes). Under-sampling the negative class (D′−)
done by balanced training SVM-SGD provides the reduced
convex hull of H−, called H ′−. And then, the minimum dis-
tance between H+ and H ′− is larger than H+ and H− (full
dataset). It is easier to achieve the separating boundary than
learning on the full dataset. Therefore, the training task of
balanced SVM-SGD is fast to converge to the solution.

4.2 Parallel multiclass SVM-SGD training

For k classes problems, the multiclass SVM-SGD algorithm
trains independently k binary classifiers. Although balanced
training SVM-SGD deals with binary classification tasks
with high speed, the multiclass SVM-SGD algorithm does
not take the benefits of high-performance computing.

Our investigation aims at speedup training tasks of multi-
class SVM-SGD with several multi-processor computers.
The idea is to learn k binary classifiers in parallel.

The parallel programming is currently based on two
major models, Message Passing Interface, MPI [42] and
Open Multiprocessing, OpenMP [43]. MPI is a standard-
ized and portable message-passing mechanism for distrib-
uted memory systems. MPI remains the dominant model
(high performance, scalability, and portability) used in high-
performance computing today. However, MPI process loads
the whole dataset into memory during learning tasks, mak-
ing it wasteful. The simplest development of parallel multi-
class SVM-SGD algorithms is based on the shared mem-
ory multiprocessing programming model OpenMP. How-
ever, OpenMP is not guaranteed to make the most effi-
cient computing. Finally, we present a hybrid approach
that combines the benefits from both OpenMP and MPI
models. The parallel learning for multiclass SVM-SGD is
described in Algorithm 2. The number of MPI processes
depends on the memory capacity of the HPC system
used.

Algorithm 2: Hybrid MPI/OpenMP parallel multiclass
SVM-SGD algorithm

input :
D the training dataset with k classes
P the number of MPI processes

output:
SVM-SGD model

1 Learning:

2 M P I − P ROC1
3 #pragma omp parallel for
4 for c1 ← 1 to k1 do /* class c1 */
5 training SVM-SGD(c1 − vs − all)
6 end

7 .̇

8 M P I − P ROCP
9 #pragma omp parallel for

10 for cP ← 1 to kP do /* class cP */
11 training SVM-SGD(cP − vs − all)
12 end

5 Experiments

We have implemented two parallel versions of SVM-SGD:
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1. OpenMP version of balanced training SVM-SGD (Par-
MC-SGD)

2. HybridMPI/OpenMPversion of balanced training SVM-
SGD (mpi-Par-MC-SGD)

Franc and Sonnenburg [44] have shown in their experi-
ments that OCAS even in the early optimization steps shows
often faster convergence than that seen so far in this domain
prevailing approximative methods. Therefore, in this sec-
tion we compare parallel algorithms of SVM-SGDwith both
OCAS and LIBLINEAR in terms of training time and clas-
sification accuracy.

OCAS. This is an optimized cutting plane algorithm for
SVM [45] with the default parameter value C = 1.

LIBLINEAR. This is the linear SVM from [21] with
default parameter value C = 1.

Par-MC-SGD, mpi-Par-MC-SGD. These are parallel
balanced training SVM-SGD using T = 20 epochs and reg-
ularization term λ = 0.0001.

Our experiments are run on machine Linux 2.6.39-bpo.2-
amd64, Intel(R) Xeon(R), CPU X5560, 2.8 GHz, 16 cores,
and 96 GB main memory.

5.1 Dataset

ThePar-MC-SGD,mpi-Par-MC-SGDalgorithms are design-
ed for large-scale datasets, so we have evaluated the perfor-
mance of our approach on the three following datasets.

ImageNet 10. This dataset contains the 10 largest classes
from ImageNet (24,807 images with size 2.4 GB). In each
class, we sample 90 % images for training and 10 % images
for testing (with random guess 10 %). First, we construct
BoW of every image using dense SIFT descriptor (extracting
SIFT on a dense grid of locations at a fixed scale and orien-
tation) and 5,000 codewords. Then, we use feature mapping
from [46] to get the high-dimensional image representation
in 15,000 dimensions. This feature mapping has been proven
to give a good image classification performance with linear
classifiers [46]. We end up with 2.6 GB of training data.

ImageNet 100. This dataset contains the 100 largest
classes from ImageNet (183,116 images with size 23.6 GB).
In each class, we sample 50 % images for training and 50 %
images for testing (with random guess 1 %). We also con-
struct BoW of every image using dense SIFT descriptor and
5,000 codewords. For feature mapping, we use the same
method as we do with ImageNet 10. The final size of training
data is 8 GB.

ILSVRC 2010. This dataset contains 1,000 classes from
ImageNet with 1.2M images (126 GB) for training, 50 K
images (5.3 GB) for validation and 150 K images (16 GB)
for testing. We use BoW feature set provided by [47] and the
method reported in [48] to encode every image as a vector
in 21,000 dimensions. We take ≤900 images per class for

training dataset, so the total training images is 887,816 and
the training data size is 12.5 GB. All testing samples are used
to test SVMmodels. Note that the randomguess performance
of this dataset is 0.1 %.

5.2 Training time

We have only evaluated the training time of SVM classi-
fiers excluding the time needed to load data from disk. As
shown in Figs. 3 and 4, on small andmedium datasets as Ima-
geNet 10, ImageNet 100, our parallel versions show a very
good speed-up in training process, comparedwithOCAS and
LIBLINEAR (Tables 1, 2).
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Fig. 3 SVMs training time with respect to the number of threads on
ImageNet 10
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Table 1 SVMs training time (minutes) on ImageNet 10

# OpenMP threads

Method 1 5 10 15

OCAS 106.67

LIBLINEAR 2.02

Par-MC-SGD 3.80 0.89 0.57 0.55

2mpi-Par-MC-SGD 1.99 0.54 0.54 0.62

Bold value indicates the best result

Table 2 SVMs training time (minutes) on ImageNet 100

# OpenMP threads

Method 1 5 10 15

OCAS 1016.35

LIBLINEAR 30.41

Par-MC-SGD 23.00 5.17 3.55 3.12

2mpi-Par-MC-SGD 12.15 3.11 2.78 2.84

Bold value indicates the best result

1 5 10 15
0

500

1,000

1,500

2,000

2,500

3,000

# OpenMP threads

S
V

M
s 

tr
ai

ni
ng

 ti
m

e 
in

 m
in

ut
es

LIBLINEAR
Par-MC-SGD
2mpi-Par-MC-SGD

Fig. 5 SVMs training time with respect to the number of threads on
ILSVRC 2010

ILSVRC 2010. Our implementations achieve a signifi-
cant speed-up in training process when performing on large
dataset ILSVRC 2010.

Balanced training SVM-SGD. As shown in Fig. 5, the
balanced training version of SVM-SGD (Par-MC-SGD run-
ningwith 1 thread) has a very fast convergence speed in train-
ing process: it is 30 times faster than LIBLINEAR (Table 3).

OpenMP balanced training SVM-SGD. On a multi-
core machine, OpenMP version of balanced training SVM-
SGD (Par-MC-SGD) achieves a significant speed-up in train-
ing process with 15 OpenMP threads. As shown in Fig. 5,
our implementation is 249 times faster than LIBLINEAR

Table 3 SVMs training time (minutes) on ILSVRC 2010

# OpenMP threads

Method 1 5 10 15

OCAS −
LIBLINEAR 3106.48

Par-MC-SGD 103.62 22.01 15.33 12.48

2mpi-Par-MC-SGD 51.97 14.11 11.69 11.50

Bold value indicates the best result

(Table 3). Due to the restriction of our computer (16 cores),
we set the maximum number of OpenMP threads to 15. We
can set more than 15 OpenMP threads, but according to our
observation there is very few significant speed-up in training
process because there is no more available core.

Hybrid MPI/OpenMP balanced training SVM-SGD.
Although OpenMP balanced training SVM-SGD shows a
significant speedup in training process, it does not ensure that
the program achieves the most efficient high-performance
computing on multi-core computer. Therefore, we explore
this challenge using a combination of MPI and OpenMP
models. With this approach, our implementation (mpi-Par-
MC-SGD) achieves the impressive parallelization perfor-
mance results on our computer. The program first loads the
whole training data into computer memory and each MPI
process can work with its local data independently. However,
we cannot increase the number of MPI processes exceed the
memory capacity of computer, because each MPI process
occupies the main memory during its computation process,
resulting in an increase in the overall memory requirement.
OpenMPhas been proven towork effectively on sharedmem-
ory systems. It is used for fine-grained parallelization within
eachMPI process. Consequently, in eachMPI processwe can
increase the number of OpenMP threads without demanding
more extra memory. As shown in Fig. 5, our implementation
achieves a significant performance in training process with
2 MPI processes and 15 OpenMP threads. It is 270 times
faster than LIBLINEAR. On ILSVRC 2010, we need only
12 min to train 1000 binary classifiers, compared with LIB-
LINEAR (∼2 days and 4 h), as shown in Table 3. This result
confirms that our approach has a great ability to scaleup to
full ImageNet dataset with more than 21,000 classes.

5.3 Classification accuracy

As shown in Fig. 6, on the small datasets ImageNet 10 and
medium dataset ImageNet 100, Par-MC-SGD provides very
competitive performances when compared with LIBLIN-
EAR.

We achieve a very good classification result on ILSVRC
2010. This is a large dataset with a large number of classes
(1,000 classes) and a huge number of samples (more than 1
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Fig. 6 Overall accuracy of SVM classifiers

Table 4 SVMs overall classification accuracy (%)

Dataset ImageNet 10 ImageNet 100 ILSVRC 1000

OCAS 72.07 52.75 –

LIBLINEAR 75.09 54.07 21.11

Par-MC-SGD 75.33 53.60 21.90

Bold value indicates the best result

million samples), and the density of dataset is about 6 % (the
proportion of non-zero elements of dataset in percent). Thus,
it is very difficult for many state-of-the-art SVM solvers to
obtain a high rate in classification performance. In particular,
with the feature set provided by ILSVRC 2010 competition
the state-of-the-art system [5] reports an accuracy of approx-
imately 19 %, but it is far above random guess (0.1 %). And
now our approach provides a significantly higher accuracy
rate than [5] with the same feature set (21.90 vs. 19 %), as
shown in Table 4. The relative improvement is more than
15 %. Moreover, we also compare our implementation with
the current state-of-the-art of linear SVM classifiers LIB-
LINEAR to validate our approach. As shown in Table 4, Par-
MC-SGD outperforms LIBLINEAR (+0.79 %, the relative
improvement is more than 3.7 %).

Note that Par-MC-SGD runs much faster than LIBLIN-
EAR while yielding higher rate in classification accuracy.

6 Conclusion and future work

We have developed the extended versions of SVM-SGD in
several ways to efficiently deal with large-scale datasets with
very large number of classes like ImageNet. The primary idea
is to build the balanced classifiers with a sampling strategy

and a smooth hinge loss function and then parallelize the
training process of these classifiers with several multi-core
computers.

Our approach has been evaluated on the 10, 100 largest
classes of ImageNet and ILSVRC 2010. On ILSVRC 2010,
our implementation is 270 times faster than LIBLINEAR.
Therefore, we can achieve higher performances using more
resources (CPU cores, computer, etc.). Furthermore, with
our sampling strategy we significantly speed-up the train-
ing process of the classifiers while yielding a high perfor-
mance in classification accuracy. We need only 12 min, to
train 1,000 binary classifiers. Obviously, this is a roadmap
towards full dataset with 21,000 classes of ImageNet. How-
ever, when the training data are larger, SVM-SGD requires
a large amount of main memory due to loading the whole
training data into main memory. This issue will be addressed
in the next step. We may study the approach as reported in
[49] and another possibility is to compress the training data
and handle it on the fly [20]. In the near future we intend
to provide more empirical test on full dataset with 21,000
classes of ImageNet and comparisons with parallel versions
of LIBLINEAR.

Open Access This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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