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Abstract: A convenient framework to treat massless two-dimensional scattering theo-
ries has been established by Buchholz. In this framework, we show that the asymptotic
algebra and the scattering matrix completely characterize the given theory under asymp-
totic completeness and standard assumptions.

Then we obtain several families of interacting wedge-local nets by a purely von
Neumann algebraic procedure. One particular case of them coincides with the defor-
mation of chiral CFT by Buchholz-Lechner-Summers. In another case, we manage to
determine completely the strictly local elements. Finally, using Longo-Witten endomor-
phisms on the U (1)-current net and the free fermion net, a large family of wedge-local
nets is constructed.

1. Introduction

Construction of interacting models of quantum field theory in physical four-dimen-
sional spacetime has been a long-standing open problem since the birth of quantum
theory. Recently, operator-algebraic methods have been applied to construct models
with weaker localization property [7,10,18,19,22]. It is still possible to calculate the
two-particle scattering matrix for these weakly localized theories and they have been
shown to be nontrivial. However, the strict locality still remains difficult. Indeed, of
these deformed theories, strictly localized contents have been shown to be trivial in
higher dimensions [7]. In contrast, in two-dimensional spacetime, a family of strictly
local theories has been constructed and nontrivial scattering matrices have been calcu-
lated [23]. The construction of local nets of observables is split up into two procedures:
construction of wedge-local nets and determination of strictly local elements. In this
paper we present a purely von Neumann algebraic procedure to construct wedge-local
nets based on chiral CFT and completely determine strictly local elements for some
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of these wedge-local nets. Furthermore, we show that the pair of the S-matrix and the
asymptotic algebra forms a complete invariant of the given net and give a simple formula
to recover the original net from these data.

In algebraic approach to quantum field theory, or algebraic QFT, theories are realized
as local nets of operator algebras. Principal examples are constructed from local quan-
tum fields, or in mathematical terms, from operator-valued distributions which commute
in spacelike regions. However, in recent years purely operator-algebraic constructions
of such nets have been found. A remarkable feature of these new constructions is that
they first consider a single von Neumann algebra (instead of a family of von Neumann
algebras) which is acted on by the spacetime symmetry group in an appropriate way. The
construction procedure relying on a single von Neumann algebra has been proposed in
[4] and resulted in some intermediate constructions [18,19,7,22] and even in a complete
construction of local nets [23]. This von Neumann algebra is interpreted as the algebra
of observables localized in a wedge-shaped region. There is a prescription to recover the
strictly localized observables [4]. However, the algebras of strictly localized observables
are not necessarily large enough and they can be even trivial [7]. When it turned out to
be sufficiently large, one had to rely on the modular nuclearity condition, a sophisticated
analytic tool [8,23].

Among the above constructions, the deformation by Buchholz, Lechner and Summers
starts with an arbitrary wedge-local net. When one applies the BLS deformation to chiral
conformal theories in two dimensions, things get considerably simplified. We have seen
that the theory remains to be asymptotically complete in the sense of waves [6] even after
the deformation and the full S-matrix has been computed [15]. In this paper we carry
out a further construction of wedge-local nets based on chiral conformal nets. It turns
out that all these constructions are related with endomorphisms of the half-line algebra
in the chiral components recently studied by Longo and Witten [26]. Among such endo-
morphisms, the simplest ones are translations and inner symmetries. We show that the
construction related to translations coincides with the BLS deformation of chiral CFT.
The construction related to inner symmetries is new and we completely determine the
strictly localized observables under some technical conditions. Furthermore, by using
the family of endomorphisms on the U (1)-current net considered in [26], we construct
a large family of wedge-local nets parametrized by inner symmetric functions. All these
wedge-local nets have nontrivial S-matrix, but the strictly local part of the wedge-local
nets constructed through inner symmetries has trivial S-matrix. The strict locality of the
other constructions remains open. Hence, in our opinion, the true difficulty lies in strict
locality.

Another important question is how large the class of theories is obtained by this
procedure. The class of S-matrices so far obtained is considered rather small, since
any of such S-matrices is contained in the tensor product of abelian algebras in chi-
ral components, which corresponds to the notion of local diagonalizability in quantum
information. In this paper, however, we show that a massless asymptotically complete
theory is completely characterized by its asymptotic behaviour and the S-matrix, and
the whole theory can be recovered with a simple formula. Hence we can say that this
formula is sufficiently general.

In Sect. 2 we recall standard notions of algebraic QFT and scattering theory. In Sect. 3
we show that the pair of S-matrix and the asymptotic algebra is a complete invariant of
a massless asymptotically complete net. In Sect. 4 we construct wedge-local nets using
one-parameter endomorphisms of Longo-Witten. It is shown that the case of translations
coincides with the BLS deformation of chiral CFT and the strictly local elements are
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completely determined for the case of inner symmetries. A common argument is sum-
marized in Sect. 4.1. Sect. 5 is devoted to the construction of wedge-local nets based on
a specific example, the U (1)-current net. A similar construction is obtained also for the
free fermionic net. Sect. 6 summarizes our perspectives.

2. Preliminaries

2.1. Poincaré covariant net. We recall the algebraic treatment of quantum field theory
[20]. A (local) Poincaré covariant net A on R? assigns to each open bounded region O
a von Neumann algebra A(O) on a (separable) Hilbert space H satisfying the following
conditions:

(1) Isotony. If O; C O, then A(O;) C A(O3).

(2) Locality. If O and O; are causally disjoint, then [A(O), A(O3)] = 0.

(3) Poincaré covariance. There exists a strongly continuous unitary representation U
of the (proper orthochronous) Poincaré group Pﬁ such that for any open region O
it holds that

U(2)AO)U(g)" = A(g0), forgeP].

(4) Positivity of energy. The joint spectrum of the translation subgroup R? of ’PJI of
U is contained in the forward lightcone V, = {(po, p1) € R? : po = |p1l}.
(5) Existence of the vacuum. There is a unique (up to a phase) unit vector 2 in H
which is invariant under the action of U, and cyclic for \/ , cg2 A(O).
(6) Additivity. If O = J; O;, then A(0) =/, A(O)).
From these axioms, the following property automatically follows (see [2])
(7) Reeh-Schlieder property. The vector Q2 is cyclic and separating for each .A(O).

It is convenient to extend the definition of net also to a class of unbounded regions
called wedges. By definition, the standard left and right wedges are as follows:

WL = {(t0,t1) : 19 > 11,10 < —11},
Wr == {(to, 1) : to < t1, 10 > —11}.

The wedges Wi, WR are invariant under Lorentz boosts. They are causal complements
of each other. All the regions obtained by translations of standard wedges are still called
left- and right-wedges, respectively. Moreover, a bounded region obtained as the inter-
section of a left wedge and a right wedge is called a double cone. Let O’ denote the
causal complement of O. It holds that W, = Wg, andif D = (WL +a) N (WRr +b) is a
double cone, a, b € R2, then D’ = (WR +a) U (WL +b). Itis easy to see that €2 is still
cyclic and separating for A(Wr) and A(WR).
We assume the following properties as natural conditions.

e Bisognano-Wichmann property. The modular group A’ of A(Wg) with respect

. cosht sinht
to Q is equal to U(A(—27t)), where A(t) = (sinht cosh t) denotes the Lorentz
boost.

e Haag duality. If O is a wedge or a double cone, then it holds that A(0)" = A(O").

If A is Mobius covariant (conformal), then the Bisognano-Wichmann property is auto-
matic [5], and Haag duality is equivalent to strong additivity ([29], see also Sect. 2.2).
These properties are valid even in massive interacting models [23]. Duality for wedge
regions (namely A(Wr) = A(WR)) follows from Bisognano-Wichmann property [31],
and it implies that the dual net indeed satisfies the Haag duality [2].
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2.2. Chiral conformal nets. In this Section we introduce a fundamental class of exam-
ples of Poincaré covariant nets. For this purpose, first we explain nets on the one-dimen-
sional circle S'. An open nonempty connected nondense subset I of the circle S! is
called an interval. A (local) Mébius covariant net .4 on ! assigns to each interval a
von Neumann algebra Ao (/) on a (separable) Hilbert space Hy satisfying the following
conditions:

(1) Isotony. If I} C I, then Ag(1}) C Ao(l»).

(2) Locality. If 1 N I = @, then [Ag(1}), Ag(I2)] = 0.

(3) Mobius covariance. There exists a strongly continuous unitary representation Uy
of the Mobius group PSL(2, R) such that for any interval 7, it holds that

Uo()Ao(DUo(g)" = Ao(gl), for g € PSL(2, R).

(4) Positivity of energy. The generator of the one-parameter subgroup of rotations in
the representation Uy is positive.

(5) Existence of the vacuum. There is a unique (up to a phase) unit vector 2 in Hp
which is invariant under the action of Uy, and cyclic for \/ 1es! Ao(I).

We identify the circle S' as the one-point compactification of the real line R by the
Cayley transform:

P
= z1=— -, teR, zeS' cC.
z+1 t+i

t=1i

Under this identification, we refer to translations t and dilations § of R and these are
contained in PSL(2, R). It is known that the positivity of energy is equivalent to the
positivity of the generator of translations [25].

From the axioms above, the following properties automatically follow (see [17]):

(6) Reeh-Schlieder property. The vector 2 is cyclic and separating for each Ay (7).

(7) Additivity. If 7 = |J; I;, then Ao(1) = \/; Ao([)).

(8) Haag duality on S'. For an interval / it holds that Ag(I) = Ag(I’), where I’ is
the interior of the complement of / in S!. _

(9) Bisognano-Wichmann property. The modular group A of Ag(R,) with respect
to Qq is equal to Uy (8(—2mt)), where § is the one-parameter group of dilations.

Example 2.1. Atthis level, we have plenty of examples: The simplest one is the U (1)-cur-
rent net which will be explained in detail in Sect. 5.1. Among others, the most important
family is the loop group nets [17,32]. Even a classification result has been obtained for
a class of nets on S!' [21].

A net A on S! is said to be strongly additive if it holds that Ag(1) = Ag(I}) V
Ao(l2), where I} and I are intervals obtained by removing an interior point of /.

Let us denote by Diff (S!) the group of orientation-preserving diffeomorphisms of
the circle S'. This group naturally includes PSL(2, R). A Mobius covariant net .Ag on
S! is said to be conformal or diffeomorphism covariant if the representation Uq of
PSL(2, R) associated to .Ag extends to a projective unitary representation of Diff(S!)
such that for any interval I and x € Ay(]), the following holds:

Uo(9)Ao(DUo(9)* = Ao(g), for g € Diff(s"),
Uo(g)xUo(g)" = x, if supp(g) C I',
where supp(g) C I’ means that g acts identically on .
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Let Ao be a Mbius covariant net on S'. If a unitary operator Vy commutes with the
translation unitaries To(¢) = Up(t(¢)) and Vo Ao(R+) V" C Ap(R4) holds, then we say
that V implements a Longo-Witten endomorphism of Ay. In particular, Vy preserves
Qo up to a scalar since 2 is the unique invariant vector under 7 (7). Such endomor-
phisms have been studied first in [26] and they found a large family of endomorphisms
for the U (1)-current net, its extensions and the free fermion net.

Let us denote two lightlines by L1 := {(#9, 1) € RZ: g+t = 0}. Note that any
double cone D can be written as a direct product of intervals D = I, x I_, where
I, C Lyand I_ C L_.Let A;, Ay be two Mébius covariant nets on S' defined on the
Hilbert spaces H1, Hy with the vacuum vectors 21, €2, and the representations Uy, Us
of PSL(2, R). From this pair, we can construct a two-dimensional net .4 as follows: For
a double cone D = I, x I_, we set A(D) = A1(I;) ® Ax(I-). For a general open
region O C R, we set A(O) := \/po A(D). We set Q := Q| ® Q; and define the
representation U of PSL(2, R) x PSL(2, R) by U(g1 x g2) := Ui1(g1) ® Ua(g2). By
recalling that PSL(2, R) x PSL(2, R) contains the Poincaré group Pﬁ , it is easy to see
that A together with U and 2 is a Poincaré covariant net. We say that such A is chiral
and A, A are referred to as the chiral components. If A}, A; are conformal, then the
representation U naturally extends to a projective representation of Diff (S') x Diff(S!).

2.3. Scattering theory for Borchers triples. A Borchers triple on a Hilbert space H is
a triple (M, T, ) of a von Neumann algebra M C B(H), a unitary representation 7'
of R? on H and a vector Q € H such that

e AdT (ty, t1)(M) C M for (19, t1) € Wr, the standard right wedge.
The joint spectrum sp T is contained in the forward lightcone V, = {(po, p1) € Ry :
po = |pil}

e  is a unique (up to scalar) invariant vector under 7, and cyclic and separating
for M.

By the theorem of Borchers [4,16], the representation 7 extends to the Poincaré group
771 , with Lorentz boosts represented by the modular group of M with respect to 2. With

this extension U, M is Poincaré covariant in the sense that if gWr C Wg for g € 731 ,
then U(g) MU (g)* C M.

The relevance of Borchers triples comes from the fact that we can construct wedge-
local nets from them: Let W be the set of wedges, i.e. the set of all W = gWg or
W = gWp where g is a Poincaré transformation. A wedge-local net WV > W — A(W)
is a map from W to the set of von Neumann algebras which satisfy isotony, locality,
Poincaré covariance, positivity of energy, and existence of vacuum, restricted to V. A
wedge-local net associated with the Borchers triple (M, T, Q) is the map defined by
A(Wg +a) = T(a)MT (a)* and A(Wg +a) = T (a)M'T (a)*. This can be considered
as anotion of nets with a weaker localization property. It is clear that there is a one-to-one
correspondence between Borchers triples and wedge-local nets. A further relation with
local nets will be explained at the end of this section. For simplicity, we study always
Borchers triples, which involve only a single von Neumann algebra.

We denote by H. (respectively by H_ ) the space of the single excitations with positive
momentum, (respectively with negative momentum) i.e., Hy = {§ € H : T(¢t,1)§ =
& fort € R} (respectively H_ = {& e H: T(t, —t)§ = & fort € R}).

Our fundamental examples come from Poincaré covariant nets. For a Poincaré covar-
iant net A, we can construct a Borchers triple as follows:
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o M= A(WR)
o T := U|R2, the restriction of U to the translation subgroup.
e Q: the vacuum vector.

Indeed, the first condition follows from the Poincaré (in particular, translation) covari-
ance of the nets and the other conditions are assumed properties of U and 2 of the net.
If (M, T, Q) comes from a chiral conformal net A = A} ® Ay, then we say this triple
is chiral, as well. This simple construction by tensor product of chiral nets is considered
to be the “undeformed net”. We will exhibit later different constructions.

Given a Borchers triple (M, T, 2), we can consider the scattering theory with respect
to massless particles [15], which is an extension of [6]: For a bounded operator x € B(H)
we write x(a) = Ad T (a)(x) for a € R2. Furthermore, we define a family of operators
parametrized by 7:

xi(hy) = /dthT(t)x(t, +1),

where hr(t) = |T|7°h(|7|7%(t — 7)), 0 < &€ < lisaconstant,7 € Rand & is a
nonnegative symmetric smooth function on R such that [ dr h(r) = 1.

Lemma 2.2 ([6] Lem. 2(b), [15] Lem. 2.1). Let x € M, then the limits ®"(x) :=
s-lim7_, 1 o0 X4+ (h7) and O™ (x) := s-lim7_, _o x_(h7) exist and the following holds:

o PNM(X)Q = PoxQ and P (x)Q = P_xQ

o ONM(x)Hy C Hy and d"(x)H_ C H-

o AdU () (P (x)) = D(AAU(g)(x)) and AdU (g)(P™(x)) = ®M(AdU(g)(x))
forg e 731 such that gWr C WR.

Furthermore, the limits ®"(x) (respectively ®"(x)) depend only on P,x$2 (respec-
tively on P_x<2).

Similarly we define asymptotic objects for the left wedge Wy. Since JM'J = M,
where J is the modular conjugation for M with respect to €2, we can define for any

yeM,
O (y) 1= JOL Uy ) I, 9N (y) = JOL(IyI)J.
Then we have the following.

Lemma 2.3 ([15], Lem. 2.2). Let y € M'. Then

dN(y) = s-lim ye(hg), D(y) = s-lim y_(h7).
T ——o00 T —o00

These operators depend only on the respective vectors Cbif(y)Q = P,yQ, ®U(y)Q =
P_yQ and we have
(a) DL () Ha C Heo S (NH- C H-,
(b) AdU (g)(D(y)) = @Y (AdU(g)(y)) and AdU (g) (P2 (y)) = @2 (Ad U ()(y))
for g € PI such that gWr, C WL.
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For & € Hy, &- € H_, there are sequences of local operators {x,} C M and
{yn} € M’ such that s-lim,, _, o0 Pyx,Q2 = &, and s-lim,,_, o, P_y,Q = £_. With these
sequences we define collision states as in [15]:

in ; i
ErxE = s-lim &Y (x,) P ()R,

out . out out
ELxXE_ = i—_l}lgol DL (xn) P (yn) 2.

in out
We interpret &£, x&_ (respectively &, x £_) as the incoming (respectively outgoing) state
which describes two non-interacting waves &, and £_. These asymptotic states have the
following natural properties.

Lemma 2.4 ([15], Lem. 2.3). For the collision states £, X &— and 14 X1,

L (EexEo, nexn=) = (o) - (& 712,
2. U(e)(ExE_) = (U()En) X (U(Q)E_) forall g € P, such that gWx C Ww holds.

And analogous formulae hold for outgoing collision states.

Furthermore, we set the spaces of collision states: namely, we let H™™ (respectively

t
H°") be the subspace generated by &, 1>r<1$_ (respectively .§+0>li &_).From Lemma 2.4, we
see that the following map

S:ENE > £ XE

is an isometry. The operator S : H°' — H" is called the scattering operator or the
S-matrix of the Borchers triple (M, U, 2). We say the waves in the triple are interacting
if S is not a constant multiple of the identity operator on H°". We say that the Borchers
triple is asymptotically complete (and massless) if it holds that H'" = H°" = H. We
have seen that a chiral net and its BLS deformations (see Sect. 4.2.2) are asymptotically
complete [15]. If the Borchers triple (M, T, 2) is constructed from a Poincaré covariant
net A, then we refer to these objects and notions as S, H and asymptotic completeness
of A, etc. This notion of asymptotic completeness concerns only massless excitations.
Indeed, if one considers the massive free model for example, then it is easy to see that
all the asymptotic fields are just the vacuum expectation (mapping to C1).

To conclude this section, we put a remark on the term “wedge-local net”. If a
Borchers triple (M, T, 2) comes from a Haag dual Poincaré covariant net A, then the
local algebras are recovered by the formula A(D) = T (a) MT (a)* N T (b)) M'T (b)* =
A(Wr+a)NA(WL+b), where D = (Wr+a)N (W +b) is a double cone. Furthermore, if
A satisfies the Bisognano-Wichmann property, then the Lorentz boost is obtained from
the modular group, hence all the components of the net are regained from the triple.
Conversely, for a given Borchers triple, one can define a “local net” by the same formula
above. In general, this “net” satisfies isotony, locality, Poincaré covariance and positivity
of energy, but not necessarily satisfies additivity and cyclicity of vacuum [4]. Additivity
is usually used only in the proof of the Reeh-Schlieder property, thus we do not consider
it here. If the “local net” constructed from a Borchers triple satisfies cyclicity of vac-
uum, we say that the original Borchers triple is strictly local. In this respect, a Borchers
triple or a wedge-local net is considered to have a weaker localization property. Hence
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the search for Poincaré covariant nets reduces to the search for strictly local Borchers
triples. Indeed, by this approach a family of (massive) interacting Poincaré nets has been
obtained [23].

3. Asymptotic Chiral Algebra and S-Matrix

3.1. Complete invariant of nets. Here we observe that the asymptotically complete
(massless) net A is completely determined by its behaviour at asymptotic times. This is
particularly nice, since the search for Poincaré covariant nets is reduced to the search for
appropriate S-matrices. Having seen the classification of a class of chiral components
[21], one would hope even for a similar classification result for massless asymptotically
complete nets.

Specifically, we construct a complete invariant of a net with Bisognano-Wichmann
property consisting of two elements. We already know the first element, the S-matrix. Let
us construct the second element, the asymptotic algebra. An essential tool is half-sided
modular inclusion (see [1,33] for the original references). Indeed, we use an analogous
argument as in [31, Lem. 5.5]. Let N' C M be an inclusion of von Neumann algebras.
If there is a cyclic and separating vector 2 for N/, M and M N A, then the inclusion

N C M is said to be standard in the sense of [13]. If oM (N) C N fort € Ry
where otM is the modular automorphism of M with respect to €2, then it is called a

+half-sided modular inclusion.

Theorem 3.1 ([1,33]). If (N C M, Q) is a standard +(respectively — )half-sided mod-
ular inclusion, then there is a Mobius covariant net Ay on S' such that Ag(R_) = M
and Ag(R_ — 1) = N (respectively Ag(Ry) = M and Ag(R; +1) = N).

If a unitary representation Ty of R with positive spectrum satisfies To(t)Q2 = Q for
t € R, AdTy(t)(M) C M fort < 0 (respectively t > 0) and AdTo(—1)(M) = N
(respectively Ad Ty (1) (M) = N), then Ty is the representation of the translation group
of the Mobius covariant net constructed above.

We put A% (0) := {®™(x), x € A(0)}. We will show that A (Wg + (—1, 1)) C
fl‘im(WR) is a standard +half-sided modular inclusion when restricted to H.. Indeed,
Clbﬁut commutes with AdU (g;), where g; = A(—2xt) is a Lorentz boost (Lemma 2.2),
and A(WR + (=1, 1)) is sent into itself under AdU (g;) for t > 0. Hence by the
Bisognano-Wichmann property, flﬁut(WR +(=1,1) C Aﬁ“t(WR) is a +half-sided
modular inclusion. In addition, when restricted to_H,, this inclusion is standard.
To see this, note that AM(Wr + (—1,1)) = AMWr + (=1,1) + (1,1)) =
AN (W + (0,2)) because @ is invariant under 7'(1, 1), and hence AS"(D) C

(Aﬂ”t(WR +(=1,1)) N Aﬁ”t(WR)), where D = Wr N (WL, + (0, 2)). It follows that

(th“t (Wr + (=1, 1))’ N flﬁ“‘(WR)) Q> AM(D)Q = P, AD)Q = My,

which is the standardness on .. Then we obtain a Mobius covariant net on S' acting
on H, which we denote by A™. Similarly we get a Mobius covariant net A" on H_.
Two nets A" and A" act like a tensor product by Lemma 2.4, and span the whole
space H from the vacuum Q by asymptotic completeness. In other words, A ® A
is a chiral Mobius covariant net on R? acting on . We call this chiral net A ® AUt
the (out-)asymptotic algebra of the given net .A. Similarly one defines AH‘ and A",
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Let (M, T, Q), where M := A(WR), be the Borchers triple associated to an asymp-
totically complete Poincaré covariant net .4 which satisfies the Bisognano-Wichmann
property and Haag duality. Our next observation is that M can be recovered from asymp-
totic fields.

Proposition 3.2. I holds that M = {®%(x), d"(y) : x,y € M}’ = AMR_) v
A(Ry).

Proof. The inclusion M D {®"(x), ®"(y) : x, y € M} is obvious from the defini-
tion of asymptotic fields. The converse inclusion is established by the modular theory:
From the assumption of Bisognano-Wichmann property, the modular automorphism of
M with respect to 2 is the Lorentz boosts U (A (—2mt)). Furthermore, it holds that
Ad U(A(—27'rt))(<1>$”t x)) = CDﬁL“ (AdU(A(—2mt))(x)) by Lemma 2.2. An analogous
formula holds for ®'". Namely, the algebra in the middle term of the statement is invariant
under the modular group.

By the assumed asymptotic completeness, the algebra in the middle term spans the
whole space H from the vacuum €2 as well. Hence by a simple consequence of Takesaki’s
theorem [30, Th. IX.4.2] [31, Th. A.1], these two algebras coincide.

The last equation follows by the definition of asymptotic algebra and their invariance
under translations in respective directions. O

Proposition 3.3. It holds that S- ®%" (x)-§* = @ (x) and S- AL (R+)-S* = AL (R).

Proof. This follows from the calculation, using Lemmata 2.2, 2.3 and 2.4,
in in in
L (x)(Exn) = (Px§)xn
out
=S| (Px§)xn
out out
=S5 077 (x)(E xn)

out * in
=8 Q77 (x) - ST(Exn),
and asymptotic completeness. The equation for “—” fields is proved analogously. The
last equalities are simple consequences of the formulae for asymptotic fields. O

Theorem 3.4. The out-asymptotic net A" @ A" and the S-matrix S completely char-
acterizes the original net A if it satisfies Bisognano-Wichmann property, Haag duality
and asymptotic completeness.

Proof. The wedge algebra is recovered by M = A(Wg) = {®X!(x), d"(y) : x,y €
M} by Proposition 3.2. In the right-hand side, ®™" is recovered from ®°" and S by
Proposition 3.3. Hence the wedge algebra is completely recovered from the data "
and S, or Aig and S by Proposition 3.2. By Haag duality, the data of wedge algebras
are enough to recover the local algebras. By the Bisognano-Wichmann property, the
representation U of the whole Poincaré group is recovered from the modular data. 0O

Remark 3.5. Among the conditions on A, the Bisognano-Wichmann property is satisfied
in almost all known examples. Haag duality can be satisfied by extending the net [2]
without changing the S-matrix. Hence we consider them as standard assumptions. On
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the other hand, asymptotic completeness is in fact a very strong condition. For example,
a conformal net is asymptotically complete if and only if it is chiral [31]. Hence the
class of asymptotically complete nets could be very small even among Poincaré covari-
ant nets. But a clear-cut scattering theory is available only for asymptotically complete
cases. The general case is under investigation [14].

3.2. Chiral nets as asymptotic nets. We can express the modular objects of the interact-
ing net in terms of the ones of the asymptotic chiral net.

Proposition 3.6. Let A% and J° be the modular operator and the modular conju-
gation of AQ™(R_) ® A (R,) with respect to Q2. Then it holds that A = A and
J = S§Jou,

Proof. First we note that the modular objects of A(WR) restrict to H; and H_ by
Takesaki’s theorem [30, Thm. IX.4.2]. Indeed, A" (R;) and A°“'(R_) are subalge-

bras of A(WR) and invariant under Ad A’’, or equivalently under the Lorentz boosts
Ad U (A(—2nt)) by the Bisognano-Wichmann property, as we saw in the proof of Prop-
osition 3.2, then the projections onto the respective subspaces commute with the modular
objects. Let us denote these restrictions by Af, J,, A and J_, respectively.

We identify H, ® H_ and the full Hilbert space H by the action of A% ® A°". By
the Bisognano-Wichmann property and Lemma 2.4, we have

it ) out _ . out .
AT xn = (U(A(=271)8) x (U(A(=271))n)
=AYE® A"y
= (A @A) 5@,
which implies that A = Ay @ A_ = AU,

As for modular conjugations, we take x € A(WR) and y € A(WR)' = A(WL) and
set & = ®M(x)Q and n = ®°"'(y)Q2. Then we use Lemma 2.3 to see

out
JoExn=J- 0P x) PN (y)Q
= o(Jx )N (Jy))Q

= (JE)X(Jn)

=5 (&)X (I_n)
=S (el e

from which one infersthat J = S - (J, ® J_) =S - J°. O

Theorem 3.4 tells us that chiral conformal nets can be viewed as free field nets for
massless two-dimensional theory (cf. [31]). Let us formulate the situation the other way
around. Let A, ® A_ be a chiral CFT, then it is an interesting open problem to character-
ize unitary operators which can be interpreted as a S-matrix of a net whose asymptotic
net is the given A, ® A_. We restrict ourselves to point out that there are several imme-
diate necessary conditions: For example, S must commute with the Poincaré symmetry
of the chiral net since it coincides with the one of the interacting net. Analogously it
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must hold that (J; ® J_)S(J; ® J_) = S*. Furthermore, the algebra of the form as in
Proposition 3.2 must be strictly local.

If one has an appropriate operator S, an interacting Borchers triple can be constructed
by (cf. Propositions 3.2, 3.3)

o Myg={x®1,AdSA®y) :xc AMR),yc A_(Ry)},
o U =U,QU_,
[ Q = Q+®Qf.

By the formula for the modular conjugation in Proposition 3.6, it is immediate to see
that

M ={AdS' @ 1), 1@y :x" € A (Ry),y € A_(R_)}".

Thenforx € A, (R_), y € A_(Ry)itholds that "' (x®1) = x®1 and ON(AdS(I®
y)) = AdS(1 ® y). Similarly, we have ®*"/(AdS(x’ ® 1)) = AdS(x’ ® 1) and
N1 ®y)=1®y forx’ € A;(Ry) and y' € A_(R_). From this it is easy to see
that S is indeed the S-matrix of the constructed Borchers triple.

In the following sections we will construct unitary operators which comply with these
conditions except strict locality. In my opinion, however, the true difficulty is the strict
locality, which has been so far established only for “regular” massive models [23]. But
it is also true that the class of S-matrices constructed in the present paper can be seen
rather small (see the discussion in Sect. 6).

4. Construction Through One-Parameter Semigroup of Endomorphisms

In this section, we construct families of Borchers triples using a one-parameter semi-
group of endomorphisms of Longo-Witten type. The formula to define the von Neumann
algebra is very simple and the proofs use a common argument based on spectral decom-
position.

Our construction is based on chiral conformal nets on S!, and indeed one family can
be identified as the BLS deformation of chiral nets (see Sect. 4.2). But in our construction,
the meaning of the term “deformation” is not clear and we refrain from using it. From
now on, we consider only the chiral net with the identical components A; = A; = Ay
for simplicity. It is not difficult to generalize it to the “heterotic case” where A; # A,.

4.1. The commutativity lemma. The following lemma is the key of all the arguments
and will be used later in this section concerning one-parameter endomorphisms. Typical
examples of the operator Q¢ in lemma will be the generator of one-dimensional trans-
lations Py (Sect. 4.2), or of one-parameter inner symmetries of the chiral component
(Sect. 4.4).

As a preliminary, we give a remark on the tensor product. See [12] for a general
account on spectral measure and measurable family. Let Eg be a projection-valued mea-
sure on Z (typically, the spectral measure of some self-adjoint operator) and V(1) be a
measurable family of operators (bounded or not). Then one can define an operator

/ZV()») ®dEoy(M)(E Q1) := /z V(0§ ® dEo(M)n.

If V(A) is unbounded, the vector & should be in a common domain of {V(1)}. As we
will see, this will not matter in our cases. For two bounded measurable families V, V',



454 Y. Tanimoto

it is easy to see that

/V(k)®dEo()»)~/V/()»)®dEo()»)=/V(K)V/(k)@)dEo(l)-
z z z

Lemma 4.1. We fix a parameter k € R. Let Qg be a self-adjoint operator on Hy and
let Z C R be the spectral supports of Qo. If it holds that [x, Ade’**20(x")] = 0 for
x,x" € B(Hp) and s € Z, then we have that

[x ®1, Adei¥ 20800y’ 11)] _o,
[]1 ® x, Ad ¥ 20800 (1 @x/)] —0.

Proof. We prove only the first commutation relation, since the other is analogous. Let
Qo = f - § - dEp(s) be the spectral decomposition of Q. According to this spectral
decomposition, we can decompose only the second component:

00® 00— Q0®/ZS~dE0(X)=/ZSQo®dEo(S)-

Hence we can describe the adjoint action of ¢/ 20®Q0 explicitly:

Ad e 2080 (1 @ 1) = /

eiSKQO ®dE(s) - (x’ ®1) / e_i‘YKQO Q dEy(s)
7 Z

_ /Z (Adei”QO(x/))@)dEo(s)

Then it is easy to see that this commutes with x ® 1 by the assumed commutativity. O

4.2. Construction of Borchers triples with respect to translation. The objective here is
to apply the commutativity lemma in Sect. 4.1 to the endomorphism of translation. Then
it turns out that the Borchers triples obtained by the BLS deformation of a chiral triple
coincide with this construction. A new feature is that our construction involves only von
Neumann algebras.

4.2.1. Construction of Borchers triples. Let (M, T, Q) be a chiral Borchers triple with
chiral component Ag and Ty () = €'/ the chiral translation: Namely, M = Ay(R_) ®

Ap(R,), Tro, 1) =Ty (272 ) @ Ty (252) and @ = 20 ® Q0.

Note that T (z) implements a Longo-Witten endomorphism of Ag for ¢t > 0. In this
sense, the construction of this section is considered to be based on the endomorphisms
{AdTp(r)}. A nontrivial family of endomorphisms will be featured in Sect. 5.

We construct a new Borchers triple on the same Hilbert space H = Hp ® Ho as
follows. Let us fix ¥ € R,.

o Mpy,:={x @1, Ade* AR y):x e AR-).y € Ay(R,)},
e the same T from the chiral triple,
e the same €2 from the chiral triple.

Theorem 4.2. Let k > 0. Then the triple (Mp, ., T, Q) is a Borchers triple with the
S-matrix Spy .« = et Po®Po,
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Proof. The vector 29 ® €20 is obviously invariant under 7 and T has the spectrum
contained in V. The generator Py of one-dimensional translations obviously commutes
with one-dimensional translation 7y, hence Py ® Py commutes with 7 = Ty ® Ty, so
does e'<P0®F0 We claim that M p, . is preserved under translations in the right wedge.
Indeed, if (fg, t;) € WR, then we have

AdT (19, 11) (Ade"KPo@PO(ll ® y)) = Ade™ EP (AAT (19, 1) (1 ® y)),

and AdT (15, 11))(1 ® y) € 1 ® Ap(R,), and it is obvious that Ad T (tg, t;))(x @ 1) €
Ao(R-) ® 1, hence the generators of the von Neumann algebra M p, , are preserved.

We have to show that € is cyclic and separating for M p; .. Note that it holds that
PR g @ Qy = £ ® Q for any k € R, £ € Hy, by the spectral calculus. Now
cyclicity is seen by noting that

(x®1)-Ade“PCPH 1 ®y) - Q=x1) <P . (xQp) ® Q
= (xQ0) ® (y0)

and by the cyclicity of Q for the original algebra M = Ag(R_) ® Ap(R,).
Finally we show the separating property as follows: we set

ML = (AP @ 1), 1® ) x € ARy, Y € Ag(R_)}.

Py.k

Note that 2 is cyclic for M }"0 .. by an analogous proof for M p, ., thus for the separating
property, it suffices to show that M p, , and M},O’ . commute. Let x, y' € Ag(R_), x" €

Ap(R,). First, x ® 1 and 1 ® y’ obviously commute. Next, we apply Lemma 4.1 to
x,x" and Qg = Py to see that x ® 1 and Ade'*P0®Po(y ® 1) commute: Indeed, the
spectral support of Py is R;, and for s € Ry, x and Ade™s*Po(x") commute since Py
is the generator of one-dimensional translations and since x € Ag(R_), x' e Ap(Ry).
Similarly, for y € Ao(Ry), Ade™P®P (1 ®y) and M}, commute. This implies that
Mp,. and M}JOVK commute.

The S-matrix corresponds to the unitary used to twist the chiral net as we saw in the
discussion at the end of Sect. 3.2. O

Now that we have constructed a Borchers triple, it is possible to express its modular
objects in terms of the ones of the chiral triple by an analogous argument as Proposi-
tion 3.6. Then one sees that M}DO . is indeed the commutant M’PO o

4.2.2. BLS deformation. We briefly review the BLS deformation [7]. Let (M, T, 2) be a
Borchers triple. We denote by M the subset of elements of M which are smooth under
the action of @ = Ad T in the norm topology. Then one can define for any x € M,

and a matrix ©, = (/(() 6), the warped convolution

Xe = / dE(a) ag,q(x) = 11{1(1)(271)*2 / d*ad®b f(ea, eb)e " “Pag, ,(x)T (b)
&
on a suitable domain, where dE is the spectral measure of 7 and f € .#(R? x R?)
satisfies f(0,0) = 1. We set
M, = {x¢ 1 x € M™Y.
For k > 0, the following holds.
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Theorem 4.3 ([7]). If (M, T, Q) is a Borchers triple, then (M,., T, Q) is also a Bor-
chers triple.

We call the latter the BLS deformation of the original triple (M, T, 2). One of the
main results of this paper is to obtain the BLS deformation by a simple procedure.

We have determined the property of deformed scattering theory in [15]. In our nota-
tion M?> = Py ® Py we have the following.

Theorem 4.4. For any & € 'Hy and n € H_, the following relations hold:

out

Ex,n=e 2O E @y,
in iK
Exen =e2 0P E @),

where on the left-hand sides there appear the collision states of the deformed theory.

4.2.3. Reproduction of BLS deformation. Let (M, T, Q) be a chiral Borchers triple. In
this Section we show that the Borchers triple (M p, ., T, §2) obtained above is unitarily
equivalent to the BLS deformation (M, T, ). Then we can calculate the asymptotic

out out
fields very simply. We use symbols x and x , to denote collision states with respect to

the corresponding Borchers triples with M (undeformed) and M, respectively. Recall
i
that for the undeformed chiral triple, all these products O; , 1>l<1 and ® coincide [15].

Theorem 4.5. Let us put Np, = Ade_%P‘)@POMpO,K. Then it holds that N'p, , =
My, hence we have the coincidence of two Borchers triples (N Py, T, 82) =
(MK9 T’ Q)

Proof. In [15], we have seen that the deformed BLS triple is asymptotically complete.
Furthermore, we have

out iK out
Ex o =e 2108Mg Ny,

As for observables, let x € Ap(R_) and we use the notation xg, from [7].! For the

asymptotic field @2% of BLS deformation, we have

out out out
O ((x® D) )E xkn = ((x @ D)o, &) xkn
out

= (x§) X7

— TR () Xy

_ e—%"Pg@Po el .go;tn

iK iK t

— Ade  FP®P(x @ 1) . e~ T P®R . £%

iK t
— Ade FPOP(x @ 1) . EX 1,

Ultis suggested that the reader look at the notation Fg in [7], where F is an observable in M and Q is a
2 x 2 matrix. We keep the symbol Q for a generator of one-parameter automorphisms, hence we changed the
notation to avoid confusion.
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(see Appendix A for the second equality) hence, we have <I>,?‘f}r((x ® De,) =

Ade™7 PP (x @ 1). Analogously we have ®_((1 ® y)e,) = Ade T ®P (1 @ y)
for y € Ag(Ry).
Note that by definition we have

Nrge = (Ade™ TP®P (x @ 1), Ade 2 PP (1 @ y) 1 x € Ag(R_), y € Ao(R,)}.

Since the image of the right-wedge algebra by ®9" and @M remains in the right-wedge
algebra, from the above observation, we see that Po.c C M, [15]. To see the converse
inclusion, recall that it has been proved that the modular group A‘’ of the right-wedge
algebra with respect to 2 remains unchanged under the BLS deformation. We have
that Ad A (e P0®P0) — (icP0®Po hence it is easy to see that Np, . is invariant under
Ad AT By the theorem of Takesaki [30, Thm. IX.4.2], there is a conditional expectation
from M, onto Np, , which preserves the state (€2, -©2) and in particular, M, = Np, «
if and only if €2 is cyclic for Ap, . We have already seen the cyclicity in Theorem 4.2,
thus we obtain the thesis. )

The translation 7" and €2 remain unchanged under e 7 Po®P 0 which established the
unitary equivalence between two Borchers triples. O

Remark 4.6. Itis also possible to formulate Theorem 3.4 for the Borchers triple, although
the asymptotic algebra will be neither local nor conformal in general. From this point
of view, Theorem 4.5 is just a corollary of the coincidence of the S-matrix. Here we
preferred a direct proof, instead of formulating the non-local net on R.

4.3. Endomorphisms with asymmetric spectrum. Here we briefly describe a general-
ization of the construction in previous sections. Let Ay be a local net on S LTy be
the representation of the translation. We assume that there is a one-parameter family
Vo(t) = 20" of unitary operators with a positive or negative generator Qg such that
Vo(t) and Tp(s) commute and Ad Vo (1) (Ao(R;)) C Ao(Ry) for t > 0. With these
ingredients, we have the following:

Theorem 4.7. The triple

o Moy :={x®1,AdeF 2221 ®y): x € A)(R-),y € Ao(Ry)}”,
o T :=Ty® Ty,
o Q:=Qp® R,

where % corresponds to sp Qo C Ru, is a Borchers triple with the S-matrix e**20®Qo
fork > 0.

The proof is analogous to Theorem 4.2 and we refrain from repeating it here.
The construction looks very simple, but to our knowledge, there are only few exam-
ples. The one-parameter group of translation itself has been studied in the previous sec-

K
tions. Another one-parameter family of unitaries with a negative generator {I"(e” 1)}
has been found for the U (1)-current [26], where P; is the generator on the one-particle
space, k > 0 and I" denotes the second quantization. Indeed, by Borchers’ Theorem
[4,16], such one-parameter group together with the modular group forms a representa-
tion of the “ax + b” group, thus it is related somehow with translation.
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4.4. Construction of borchers triples through inner symmetry in chiral cFT.

4.4.1. Inner symmetry. Let Ag be a conformal (M6bius) net on S!. An automorphism
of Ay is a family of automorphisms {ag s} of local algebras {.4y(1)} with the consis-
tency condition «g, s | 4,1y = @o,7 for I C J. If each ag ; preserves the vacuum state
w, then «y is said to be an inner symmetry. An inner symmetry « is implemented by
a unitary V, defined by V4 xQ = ag, ;(x)S2, where x € Ag(I). This definition does
not depend on the choice of I by the consistency condition. If «¢ ; is a one-parameter
family of weakly continuous automorphisms, then the implementing unitaries satisfy
Vo (1) Vg (8) = Vo (t +5) and Vq, (0) = 1, hence there is a self-adjoint operator Qg
such that V() = €90 and 002 = 0. Furthermore, /20 commutes with modular
objects [30]: Joe''20Jy = €0, or JyQoJo = —Qo (note that Jy is an anti-unitary
involution). If «; is periodic with period 2, namely ap; = ao +27, then it holds that
Vo (t) = Voo (t + 2m) and the generator Qg has a discrete spectrum sp Q¢ C Z. For the
technical simplicity, we restrict ourselves to the study of periodic inner symmetries. We
may assume that the period is 2 by a rescaling of the parameter.

Example 4.8. We consider the loop group net Ag i of a (simple, simply connected) com-
pact Lie group G atlevel k [17,32], the net generated by vacuum representations of loop
groups LG [28]. On this net, the original group G acts as a group of inner symmetries.
We fix a maximal torus in G and choose a one-parameter group in the maximal torus
with a rational direction, then it is periodic. Any one-parameter group is contained in a
maximal torus, so there are a good proportion of periodic one-parameter groups in G
(although generic one-parameter groups have irrational direction, hence not periodic).
In particular, in the SU (2)-loop group net Ay (2),x, any one-parameter group in SU (2)
is periodic since SU (2) has rank 1.

An inner automorphism o«g commutes with Mobius symmetry because of the
Bisognano-Wichmann property. Hence it holds that Uy(g) QoUp(g)* = Qg. Further-
more, if the net Ay is conformal, then ¢p commutes also with the diffeomorphism
symmetry [11]. Let G be a group of inner symmetries and Ag be the assignment:
I — Ag(DC |H€’ where Ag(1)€ denotes the fixed point algebra of Ao (1) with respect

to G and Hg ={xQp:x € .Ag (I), I C S'}. Thenitis easy to see that Ag is a Mobius
covariant net and it is referred to as the fixed point subnet of A with respect to G.

We can describe the action ¢ of a periodic one-parameter group of inner symmetries
in a very explicit way, which can be considered as the “spectral decomposition” of «.
Although it is well-known, we summarize it here with a proof for later use. This will be
the basis of the subsequent analysis.

Proposition 4.9. Any element x € Ay(I) can be written as x = ), x,, where x, €
Ao(I) and ag ;(x,) = e x,. We denote Ag(I), = {x € Ao(I) : ap,(x) = e™x}. It
holds that Ay(I), Ao(1),, C Ao(I)pmen and Aog(1)m Eo(n)Ho C Eo(m + n)Hg, where
Ey(n) denotes the spectral projection of Qo corresponding to the eigenvalue n € 7.

Proof. Let us fix an element x € Ag(I). The Fourier transform

2 )
Xp ::/ ag(x)e " ds
0
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(here we consider the weak integral using the local normality of «g ;) is again an element
of Ao(1), since Ap([) is invariant under o ;. Furthermore it is easy to see that

2
ap,(x,) = Qg (/ 00,5 (x)e™ " dS)
0

2w )
=/ a5+ (x)e”"" ds
0
. 27[ . .
— elnt/ OlO,s(x)e_ms ds — elntxn’
0

hence we have x,, € Ag(1),.

By assumption, «g,(x) = Ad ¢"Q0(x) and sp Qo C Z. If we define Xim =
Eo(l)x Eo(m), it holds that Ade'’Q0x; ,, = ¢/!=™'x; , . The integral and this decom-
position into matrix elements are compatible, hence for x € Ay(I) we have

Xp = E Xl,m-

Now it is clear that x = zn Xx,,, where each summand is a different matrix element,
hence the sum is strongly convergent. Furthermore from this decomposition we see that
Ao(DmAo(D)n C Ao and Ag(I)m Eo(n)Ho C Eo(m +n)Hp. O

At the end of this section, we exhibit a simple formula for the adjoint action
Ad e’ 20®Q0 on the tensor product Hilbert space H := Ho ® Ho.

Lemma 4.10. For x,, € Ay(Dm, yn € Ao(Dp, it holds that Ade’*20®20(x,, @ 1) =
Xy ® Q0 gnd Ade'* 20220 (1 ® y,) = ™2 ® y,.

Proof. Recall that sp Qg € Z. Let Qg = > ;1 - Eo(l) be the spectral decomposition

of Qp. As in the proof of Lemma 4.1, we decompose only the second component of
Qo ® Qyp to see that

00® Qo= Q0 ® (Zl : Eo(l)) =>"100® Eo(l)
1 [
e*Q0®00 Ze”KQO ® Eo(l)
[

Ade™ 00 (x, @ 1) = > Ade™ % (x,,) ® Eo(l)
I

— Zeimlkxm ® E()(l)
1
= xp ®eimKQ0'
O

Proposition 4.11. For each | € 7Z there is a cyclic and separating vector v € Eo()’Hy
for a local algebra Ay(I).
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Proof. 1t is enough to note that the decomposition 1 = >, Eo(/) is compatible with
the decomposition of the whole space with respect to rotations, since inner symmetries
commute with any Mobius transformation. Hence each space Eo(/)H is a direct sum
of eigenspace of rotation. It is a standard fact that a eigenvector of rotation which has
positive spectrum is cyclic and separating for each local algebra (see the standard proof
of Reeh-Schlieder property, e.g. [2]). O

We put E(I, 1) := Eo() ® Eo(l').

Corollary 4.12. Each space E(l,1I'YH contains a cyclic and separating vector v for
Ao(I) ® Ao(J) for any pair of intervals I, J.

4.4.2. Construction of Borchers triples and their intersection property. Let Ay be a
Mobius covariant net and « ; be a periodic one-parameter group of inner symmetries.
The automorphisms can be implemented as g ; = Ade’€0 as explained in Sect. 4.4.1.
The self-adjoint operator Qg is referred to as the generator of the inner symmetry.

We construct a Borchers triple as in Sect. 4.2.1. Let k € R be a real parameter (this
time x can be positive or negative) and we put

Mgpe i={x ®1,Ade* 201 ® y) : x € A(R-), y € Ay(R,)Y,
fo— 11 fo+11

T(tg, 1) := T, QTo\ — ).,

(0. 1) °( V2 ) O( ﬂ)

Q= Qo ® Q.

Theorem 4.13. The triple (Mg, T, Q) above is a Borchers triple with a nontrivial
scattering operator Sg, , = €' 20®Q0,

Proof. As remarked in Sect. 4.4.1, Qo commutes with Mobius symmetry Uy, hence
Q0 ® Qo and the translation T = T ® Ty commute. Since (Ag(R_) @ Ao(R,), T, Q)
is a Borchers triple (see Sect. 2), it holds that Ad T (tg, t;)) M C M for (19, 1;) € Wr
and T (tg, t1)S2 = Q and T has the joint spectrum contained in V..

Since g is a one-parameter group of inner symmetries, it holds that g s (Ag(R-)) =
Ao(R_) and ag;(Ao(Ry)) = Ao(Ry) for s, € R. By Lemma 4.1, for x € Ag(R-)
and x’ € Ag(R,) it holds that

[x ®1,Ade* 209 ('  1)] = 0.

Then one can show that (Mg, , T, 2) is a Borchers triple as in the proof of Theo-
rem 4.2. The formula for the S-matrix can be proved analogously as in Sect. 3.2. O

We now proceed to completely determine the intersection property of Mg, . As
a preliminary, we describe the elements in Mg,  in terms of the original algebra M
componentwise. On M = Ap(R_) ® Ap(R,), there acts the group S lg st by the tensor
product action: (s,?) > ag; = aps @ oo = Ad (€590 @ i1 Q0), According to this
action, we have a decomposition of an element z € M into Fourier components as in
Sect. 4.4.1:

Zm.n :=/ as,z(Z)e_l(mx_m” ds dt,
Stx st
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which is still an element of M, and with E(l,!") := Ey(l) ® Ey(l’), these components
can be obtained by

Znn =D EUIERKK).
[—k=m
I'—k'=n

One sees that Ad (20 ® €/'90) acts also on Mg, , since it commutes with
Ad e’ 2080 We still write this action by o. We can take their Fourier components
by the same formula and the formula with spectral projections still holds.

Lemma 4.14. An element z,, € M, i has the components of the form

(Zk)m,n = Zm,n(emKQO ®1),

where 7 = (zm.n) is some element in M. Similarly, an element z, € M’Q  has the
components of the form

, .
(ZK)m,n = Zm,n(]1 & emeQo)7
where 7' = (2 n) is some element in M'.

Proof. We will show only the former statement since the latter is analogous. First we
consider an element of a simple form (x,,, ® 1)S(1 ® y,)S*, where x,,, € Ayg(R_),, and
yn € Ao(R,),. We saw in Proposition 4.10 that this is equal to (x,, ® y,) ("2 ® 1),
thus this has the asserted form. Note that the linear space spanned by these elements
for different m, n is closed even under product. For a finite product and sum, the thesis
is linear with respect to x and y, hence we obtain the desired decomposition. The von
Neumann algebra M, . is linearly generated by these elements. Recalling that z,, ,
is a matrix element with respect to the decomposition 1 = >, , E(l, [’), we obtain the
lemma. O

Now we are going to determine the intersection of wedge algebras. At this point, we
need to use unexpectedly strong additivity and conformal covariance (see Sect. 2). The
fixed point subnet Ago of a strongly additive net Ay on S! with respect to the action ay

of a compact group S' of inner symmetry is again strongly additive [35].

Example 4.15. The loop group nets Agy vy, x are completely rational [17,34], hence in
particular they are strongly additive. Moreover, they are conformal [28].

If Ap is diffeomorphism covariant, the strong additivity follows from the split prop-
erty and the finiteness of p-index [27]. We have plenty of examples of nets which satisfy
strong additivity and conformal covariance since it is known that complete rationality
passes to finite index extensions and finite index subnets [24].

Theorem 4.16. Let Ay be strongly additive and conformal and ¢'*20 implement a peri-
odic family of inner symmetries with the generator Qo. We write, with a little abuse of
notation, T (t4,t_) := To(ty) ® To(t—). Fort, < Q0andt_ > 0 we have

Moo N (ADT (4, 1) (M, )) = AF (14, 0)) ® AF (0, 1)),

where G is the group of automorphisms generated by Ad e 20,
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Proof. Let us consider an element from the intersection. From Lemma 4.14, we have
two descriptions of such an element, namely,

(Zk)m,n = Zm,n(einKQO ®1), z€ A)(R-) @ Ag(Ry),
@ mn = 2y (L ® ™ L), 7' € ARy +1,) ® Ag(R_ +1).

If these elements have to coincide, each (m, n) component has to coincide. Or equiva-
lently, it should happen that z,, , (€20 ® =M< Q0) = 7/,

Recall that an inner symmetry commutes with dlffeomorphlsms [11]. This implies
that the fixed point subalgebra contains the representatives of diffeomorphisms. Fur-
thermore, the fixed point subalgebra by a compact group is again strongly additive [35].
This means that

Ap (=00, 1)) v A ((0, 00)) = Ay (1, 0)),
Ag (00, 0)) v A ((1—, 00)) = A" ((0, 1)),

where I’ means the complementary interval in S'.

We claim that if for z € Ag(R_) ® Ap(Ry) and 7’ € Ag(Ry + 1) @ Ag(R_ +1_)
there holds z - (¢/"€C ® e™"C) = 7/ then z = 7/ € (Ag(R_) N Ay(R4 +1)) ®
(AoRy) N Ag(R_ +1¢_)). Indeed, since z € Ap(R_) ® Ap(R,), it commutes with
U(g+ x g—) with supp(g+) C R, and supp(g—) C R_. Similarly, 7’ € Ag(R; +19) ®
Ao(R_ + 1) commutes with U(gy x g—) with supp(g+) C R_ +#; and supp(g-) C
R, +7_. Furthermore, the unitary /< ® ¢~"*C which implements an inner symmetry
commutes with any action of diffeomorphism [11]. Recall that the fixed point subalgebra
is strongly additive, hence by the assumed equality z - (62 ® e¢~"*Q) = 7/, this ele-
ment commutes with Ago ((t+,0)) ® Ago ((0, —)"). In particular, it commutes with any
diffeomorphism of §' x S! supported in (z,, 0)’ x (0, 7). There is a sequence of diffeo-
morphisms g; which take R_ x Ry to (t4 —&;, 0) x (0, t— +¢;) with support disjoint from
(t4+,0) x (0, z_) for arbitrary small &; > 0. This fact and the diffeomorphism covariance
imply that z is indeed contained in Ao ((z+, 0)) ® Ao ((0, 7_)). By a similar reasoning, one
sees that 7 € Ag((+, 0)) ® Ap((0, z_)) as well. Now by the Reeh-Schlieder property
for Ag((t+, 0)) ® Ao ((0, 1_)) we havez =7/ sincezQ = z- ("L Qe M NQ = 7/Q.

Thus, if i, (¢ C®e ™" Q) =z}, . thenzpm n = 2, ,, € Ao((t+, 0)®Ao((0, 1-)).
Furthermore, by Corollary 4.12, there is a separating vector v € E (I, I')H. Now it holds
that einlk—iml'c ZmnV = Z,, ,V, hence from the separating property of v it follows that
intk—imlc, - — 2. for each pair (I,1") € Z x Z. This is possible only if both
nk and mx are 27 multiples of an integer or z,,,, = z,,, = 0. This is equivalent to

that Ade*™Q0 @ ¢/¥"Q0(7) = z, namely, z is an element of the fixed point algebra
AS ((t+,0)) ® A ((0, 1)) by the action Ade*"20 ® /"0 of G x G. O

Note that the size of the intersection is very sensitive to the parameter «: If « is a
27 -multiple of a rational number, then the inclusion [Ay, Ag ] has finite index. Other-
wise, it has infinite index.

Finally, we comment on the net generated by the intersection. The intersection takes
a form of chiral net Ag ® Ag where G is generated by Ade!“20, hence the S-matrix is
trivial [15]. This result is expected also from [31], where the Mobius covariant net has
always trivial S-matrix. Our construction is based on inner symmetries which commute
with Mobius symmetry, hence the net of strictly local elements is necessarily Mobius
covariant, then it should have trivial S-matrix. But from this simple argument one cannot
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infer that the intersection should be asymptotically complete, or equivalently chiral. This
exact form of the intersection can be found only by the present argument.

4.4.3. Construction through cyclic group actions. Here we briefly comment on the
actions by the cyclic group Zi. In previous sections, we have constructed Borchers
triples for the action of S'. It is not difficult to replace S' by a finite group Z;. Indeed,
the main ingredient was the existence of the Fourier components. For Z-actions, the dis-
crete Fourier transform is available and all the arguments work parallelly (or even more
simply). For later use, we state only the result without repeating the obvious modification
of definitions and proofs.

- 2mn
Theorem 4.17. Let Ay be a strongly additive conformal neton S and apn, = Ade' & Qo
be an action of Zy, as inner symmetries. Then, for n € Zy, the triple

Moy = (x ® 1, Ade! T 299 (1 g y) : x € Ag(R_), y € AR,)}",
T :=Ty® To,
Q= Q)R Qo

2
is an asymptotically complete Borchers triple with S-matrix €' T Q0800 g for strictly
local elements, we have

Myn N (AT (14, 1) (M ) = AF (4. 0) ® AF (0, 1)),

where G is the group of automorphisms of Ag generated by Ad e’ %QO.

Note that, although the generator Q¢ of inner symmetries of the cyclic group Zj is

not unique, we used it always in the form e’ 00 o ¢ 20900 4nd these operators are
determined by the automorphisms. Spectral measures can be defined in terms of these
exponentiated operators uniquely on (the dual of) the cyclic group Zy. In this way, the
choice of Q¢ does not appear in the results and proofs.

5. Construction Through Endomorphisms on the U (1)-Current Net

5.1. The U(1)-current net and Longo-Witten endomorphisms. In this section we will
construct a family of Borchers triples for a specific net on S'. Since we need explicit
formulae for the relevant operators, we briefly summarize here some facts about the
net called the U (1)-current net, or the (chiral part of) free massless bosonic field. On
this model, there has been found a family of Longo-Witten endomorphisms [26]. We
will construct a Borchers triple for each of these endomorphisms. This model has been
studied with the algebraic approach since the fundamental paper [9]. We refer to [25]
for the notations and the facts in the following.

A fundamental ingredient is the irreducible unitary representation of the Mobius
group with the lowest weight 1: Namely, we take the irreducible representation of
PSL(2, R) of which the smallest eigenvalue of the rotation subgroup is 1. We call
the Hilbert space H'. We take a specific realization of this representation. Namely,
let C*°(S!, R) be the space of real-valued smooth functions on S'. This space admits a
seminorm

LFI =D 2k Al

k=0
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where fk is the k" Fourier component of f, and a complex structure

T f)x = —isign(k) fr.

Then, by taking the quotient space by the null space with respect to the seminorm, we
obtain the complex Hilbert space H'. We say C*®(S!, R) ¢ H!. On this space, there
acts PSL(2, R) by naturally extending the action on C*®(S!, R).

Let us denote H" := H®" for a nonnegative integer n. On this space, the symmetric
group Sym(n) acts. Let O, be the projection onto the invariant subspace with respect to
this action. We put H? := Q,H" and the symmetric Fock space

HE = @H?,

and this will be the Hilbert space of the U (1)-current net on S'. For £ € H!, we denote

by ¢ a vector of the form >, %58’” =10t (%S ® é’) @ - - -. Such vectors form a

total set in 7. The Weyl operator of £ is defined by W (¢)e" = e EE—(Em) pErn,
The Hilbert space H* is naturally included in the unsymmetrized Fock space:

H = @(H1)®”=C®Hl@(H1®H1)®---.
n

We denote by Oy the projection onto HSE. For an operator X on the one particle space
H', we define the second quantization of X; on HZ by

rX) =@PxXN*=1eX 6 X eX)& .

Obviously, I'(X1) restricts to the symmetric Fock space HSE. We still write this restric-
tion by I'(X1) if no confusion arises. For a unitary operator V; € B(H') and £ € H!,
it holds that I'(V})ef = V1§ and AdT(V))(W(£)) = W(Vi£). On the one particle
space H!, the Mabius group PSL(2, R) acts irreducibly by U;. Then PSL(2, R) acts on
H* and on HSZ and by I'(U;1(g)), g € PSL(2, R). The representation of the translation
subgroup in H! is denoted by T () = ¢/'P' with the generator P;.

The U (1)-current net A© is defined as follows:

AODy = (W) : fec™®S,R) c H!, supp(f) C I}

The vector 1 € C = H° ¢ HSZ serves as the vacuum vector 29 and I'(U1(+)) imple-
ments the Mobius symmetry. We denote by TSE the representation of one-dimensional
translation of A©.

For this model, a large family of endomorphisms has been found by Longo and
Witten.

Theorem 5.1 ([26], Thm. 3.6). Let ¢ be an inner symmetric function on the upper-half
plane So C C: Namely, ¢ is a bounded analytic function of Sx with the boundary
value |o(p)| = 1 and p(—p) = @(p) for p € R. Then I' (p(P1)) commutes with TSE (in
particular T'(p(P1))20 = Qo) and AdT' (¢(Py)) preserves AO(R,). In other words,
T'(¢(Py)) implements a Longo-Witten endomorphism of A©.
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5.2. Construction of Borchers triples. In this section, we construct a Borchers triple for
a fixed ¢, the boundary value of an inner symmetric function (see Sect. 5.1). Many oper-
ators are naturally defined on the unsymmetrized Fock space, hence we always keep in
mind the inclusion HZ C H*. The full Hilbert space for the two-dimensional Borchers
triples will be HX @ HE.

On ‘H™, m commuting operators act

I - P ® ---1:1<i<m}
i-th

We construct a unitary operator by the functional calculus on the corresponding spectral
measure. We set
e PN i=(1®---®P® -1 ® - ® P ®- - ®1), which acts on
’ i-th j-th
H"Q@H", 1 <i <mandl<j<n
o Syt = I1; ; go(Pm ™, where <p(P ™Y is the functional calculus on H™ @ H".

s SW:=®mnS$n @mnHl](p(Pmn

By construction, the operator S, acts on H* ® H*. Furthermore, it is easy to see that
S, commutes with both Oy ® 1 and 1 ® Qx: In other words, S, naturally restricts to
partially symmetrized subspaces H* ® H* and H* ® HZ and to the totally symmetrized
space HZ ® HZE. Note that S"" is a unitary operator on the Hilbert spaces H™ ® H"
and S, is the direct sum of them.

Let E1® E|1®- - -® E| be the joint spectral measure of operators {1 Q-+ - ® P| ®---®

j-th
1:1 < j < n}). The operators {go(Pimj’”) t1<i<m,1<j<n}andS)" are com-
m-times n-times

patible with the spectral measure | E1QE1 Q-+ - QE| | Q| E1QEI ®---® E

and one has

<p(P;j1j:")=/(11®~-~®<p(p,-P1)®~--11)®(11®---dEl(p,»)®---]1).
i~th j-th

Form = 0 orn = 0 we set gof"]’." = 1 as a convention.

According to this spectral decomposition, we decompose S, with respect only to the
right component as in the commutativity Lemma 4.1:

S(p — @H(p(Pmn

m,n 1]

_EBH/(M@ ®<p(ij1)®-~-]l)®dEo(p1)®-~-®dE(pn)
m,n i, j i-th

= @/H(n®~-~®<o<ij1)®~--11)®dEo<p1)®~-®dE<pn>
m,n [’j i-th

= EB/EBHW(P/PO)@’" ®dE\(p) ® - ® dEy(py)
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- @/H@(‘P(PJPI))®m ®dE(p) ® --- ®dE1(py)
n j o m

= EB/HF(w(p,- P) @ dE (p1) ® -+ ® dE1(pa),
n J

where the integral and the product commute in the third equality since the spectral mea-
sure is disjoint for different values of p’s, and the sum and the product commute in the
fifth equality since the operators in the integrand act on mutually disjoint spaces, namely
on H"™ ® H* for different m. Since all operators appearing in the integrand in the last
expression are the second quantization operators, this formula naturally restricts to the
partially symmetrized space H> ® H*.

Lemma 5.2. It holds for x € AQ(R_) and x' ¢ AO(R,) that
[x®1, AdS(p(x' Q1] =0,
on the Hilbert space HX ® HZE.

Proof. The operator S, is disintegrated into second quantization operators as we saw
above. If ¢ is an inner symmetric function, then so is ¢(p;-), p; = 0, thus each
I'(¢(p; P1)) implements a Longo-Witten endomorphism.

Note that S,, restricts naturally to HZ* ® H* by construction and x ® 1 and x’ ® 1
extend naturally to HS2 ® H* since the right-components of them are just the identity
operator 1. Then we calculate the commutation relation on HZ ® H*. This is done in
the same way as Lemma 4.1: Namely, we have

AdS,(x' ® 1) =€B/Ad [Tr@piP) | ) ®dEI(p) ® - @ dE1(pa).
n J

And this commutes with x ® 1. Indeed, since x € AQ(R_) and x’ € AQ(R,), hence
AdT (p(pj)(x') € AO/(R,) for any p; > 0 by Theorem 5.1 of Longo-Witten, and by
the fact that the spectral support of E is positive. Precisely, we have [x ® 1, Ad S, (x' ®
1)l =0on H> @ H*.

Now all operators Sy, x ® 1 and x’ ® 1 commute with 1 ® Qx, we obtain the thesis
just by restriction. O

Finally we construct a Borchers triple by following the prescription at the end of
Sect. 3.1.

Theorem 5.3. The triple

e My:={x®1,AdS,(1®y):x e AOR.), y e AOR,)Y
e T=TyQTyof AV @ A®
e =0Q)R® Qo Of.A(O) ® AO

is an asymptotically complete Borchers triple with S-matrix S,.

Proof. This is almost a repetition of the proof of Theorem 4.2. Namely, the conditions
on T and 2 are readily satisfied since they are same as the chiral triple. The operators
Sy and T commute since both are the functional calculus of the same spectral measure,
hence T (to, t1) sends M, into itself for (79, 11) € Wr. The vector € is cyclic for M,
since M D {(x®1-S5, -1y -Q ={x®1 -1®y-Q} and the latter is dense
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by the Reeh-Schlieder property of the chiral net. The separating property of €2 is shown
through Lemma 5.2. O

Remark 5.4. In this approach, the function ¢ itself appears in two-particle scattering, not
the square as in [22]. Thus, although the formulae look similar, the present construction
contains much more examples.

Intersection property for constant functions ¢. For the simplest cases ¢(p) = 1 or
¢(p) = —1, we can easily determine the strictly local elements. Indeed, for ¢(p) =
1, S, = 1 and the Borchers triple coincides with the one from the original chiral
net. For ¢(p) = —1, S(’;"” = (—=1)™" . 1 and it is not difficult to see that if one
defines an operator Q¢ := 2P, — 1, where P, is a projection onto the “even” subspace
@D, H?" of HE, then ¢/ 20 implements a Z;-action of inner symmetries on .A® and

Sy = €m20®Q0 Then Theorem 4.17 applies to find that the strictly local elements are
of the form A©® 7 ® A® Zz, where the action of Z, is realized by Ade!™" <0,

5.3. Free fermionic case. As explained in [26], one can construct a family of endomor-
phisms on the Virasoro net Vir, with the central charge ¢ = 1 by considering the free
fermionic field. With a similar construction using the one-particle space on which the
Mobius group acts irreducibly and projectively with the lowest weight % one considers

the free fermionic (nonlocal) net on S!, which contains Vir; with index 2.

2
The endomorphisms are implemented again by the second quantization operators.
By “knitting up” such operators as is done for the bosonic U (1)-current case, then by
restricting to the observable part Vir, we obtain a family of Borchers triples with the

asymptotic algebra Vir; ® Vir; with nontrivial S-matrix. In the present article we omit
2 2
the detail, and hope to return to this subject with further investigations.

6. Conclusion and Outlook

We showed that any two-dimensional massless asymptotically complete model is char-
acterized by its asymptotic algebra which is automatically a chiral Mobius net, and the
S-matrix. Then we reinterpreted the Buchholz-Lechner-Summers deformation applied
to chiral conformal net in this framework: It corresponds to the S-matrix e/*f0®F0 Fyr-
thermore we obtained wedge-local nets through periodic inner symmetries which have
S-matrix €220 We completely determined the strictly local contents in terms of
the fixed point algebra when the chiral component is strongly additive and conformal.
Unfortunately, the S-matrix restricted to the strictly local part is trivial. For the U(1)-
current net and the Virasoro net Vir, with ¢ = % we obtained families of wedge-local
nets parametrized by inner symmetric functions ¢.

One important lesson is that construction of wedge-local nets should be considered as
an intermediate step to construct strictly local nets: Indeed, any Mobius covariant net has
trivial S-matrix [31], hence the triviality of S-matrix in the construction through inner
symmetries is interpreted as a natural consequence. Although the S-matrix as a Borchers
triple is nontrivial, this should be treated as a false-positive. The true nontriviality should
be inferred by examining the strictly local part. On the other hand, we believe that the
techniques developed in this paper will be of importance in the further explorations in
strictly local nets. The sensitivity of the strictly local part to the parameter « in the case
of the construction with respect to inner symmetries gives another insight.
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Apart from the problem of strict locality, a more systematic study of the necessary or
sufficient conditions for S-matrix is desired. Such a consideration could lead to a clas-
sification result of certain classes of massless asymptotically complete models. For the
moment, a more realistic problem would be to construct the S-matrix with the asymp-
totic algebra Ay ® Ay, where Ay is a local extension of the U (1)-current net [9,26].
A family of Longo-Witten endomorphisms has been constructed also for 4y, hence
a corresponding family of wedge-local net is expected and recently a similar kind of
endomorphisms has been found for a more general family of nets on S! [3]. Or a general
scheme of deforming a given Wightman-field theoretic net has been established [22].
The family of S-matrices constructed in the present paper seems rather small, since there
is always a pair of spectral measures and their tensor product diagonalizes the S-matrix.
This could mean in physical terms that the interaction between two waves is not very
strong. We hope to address these issues in future publications.
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Appendix A. A Remark on BLS Deformation

In the proof of Theorem 4.5 we used the fact that (x @ 1)g, & ® Q0 = x& ® 0. Equation
(2.2) from [7] translates in our notation to

x®1)p, = lim /AdU(Ktl,Kto)(x®]l)FdE(lo,t1),
B/R2 Jp
F 1

where B is a bounded subset in R? and F is a finite dimensional subspace in . Now it is
easy to see that (x ® 1)g, (6§ ® Q) = x& ® Qp. Indeed, we have £ ® ¢ € E(Ly), where
Ly = {(po, p1) € R2: po+ p1 = 0}, hence the integral above is concentrated in L., and
for (¢, 1) € Ly itholds that AdU (kt, kt)(x ® 1) = Ad1 @ Up(v2k1)(x ® 1) = x @ 1.
Then the integral simplifies as follows:

x®@M1De, (¢ ®Q) = lim AdU(kt,kt)(x® 1) - F-dE(t,1)(§ @ Qo)
B /R? JBnL,
F 1

— lim x®1-dE@t, 1)(E ® Q)
B/R?.JBnL,
F 1

= x££ ® Qo.

This is what we had to prove.
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