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Abstract It is well known that the concept of a point charge interacting with the electro-
magnetic (EM) field has a problem. To address that problem we introduce the concept of
wave-corpuscle to describe spinless elementary charges interacting with the classical EM
field. Every charge interacts only with the EM field and is described by a complex valued
wave function over the 4-dimensional space time continuum. A system of many charges
interacting with the EM field is defined by a local, gauge and Lorentz invariant Lagrangian
with a key ingredient—a nonlinear self-interaction term providing for a cohesive force as-
signed to every charge. An ideal wave-corpuscle is an exact solution to the Euler-Lagrange
equations describing both free and accelerated motions. It carries explicitly features of a
point charge and the de Broglie wave. Our analysis shows that a system of well separated
charges moving with nonrelativistic velocities are represented accurately as wave-corpuscles
governed by the Newton equations of motion for point charges interacting with the Lorentz
forces. In this regime the nonlinearities are “stealthy” and don’t show explicitly anywhere,
but they provide for the binding forces that keep localized every individual charge. The the-
ory can also be applied to closely interacting charges as in hydrogen atom where it produces
discrete energy spectrum.

Keywords Wave mechanics · Corpuscle · Extended charge · Lorentz-Abraham model ·
Nonlinearity · Maxwell equations

1 Introduction

We all know from textbooks that if there is a point charge q of a mass m in an external
electromagnetic (EM) field its non-relativistic dynamics is governed by the equation

d

dt
[mv (t)] = q

[
E (t, r (t)) + 1

c
v (t) × B (t, r (t))

]
(1)
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where r and v = ṙ = dr
dt

are respectively the charge’s time-dependent position and velocity,
E(t, r) and B(t, r) are the electric field and the magnetic induction, c is speed of light and the
right-hand side of (1) is the Lorentz force. We also know that if the charge’s time-dependent
position and velocity are r and v then there is associated with them an EM field described
by the equations

1

c

∂B

∂t
+ ∇ × E = 0, ∇ · B = 0, (2)

1

c

∂E

∂t
− ∇ × B =−4π

c
qδ (x − r (t))v (t) ,

∇ · E =4πqδ (x − r (t)) ,

(3)

where δ is the Dirac delta-function, v(t) = ṙ(t). But if naturally we would like to consider
(1) and (2)–(3) as a closed system “charge-EM field” there is a problem. The origin of the
problems is in the divergence of the EM field exactly at the position of the point charge, as,
for instance, for the electrostatic field E with the Coulomb’s potential q

|x−r| with a singularity

at x = r. If in (1) m replaced with γm, where γ = 1/
√

1 − v2(t)/c2 is the Lorentz factor, the
system constituted by the modified equation and (2)–(3) becomes Lorentz invariant. In fact,
the modified system has a Lagrangian that yields it via the variational principle [7, (4.21)],
[41, (2.36)], but the problem still persists. Some studies indicate that, [49], “a fully consistent
classical equation of motion for a point charge, unlike that of an extended charge, does
not exist”. If one wants to stay within the classical theory of electromagnetism, a possible
remedy is the introduction of an extended charge which, though very small, is not a point.
There are two most well known models for such an extended charge: the semi-relativistic
Abraham rigid charge model (a rigid sphere with spherically symmetric charge distribution),
[41, Sects. 2.4, 4.1, 10.2, 13], [37, Sects. 2.2], and the Lorentz relativistically covariant
model which was studied and advanced in [1], [23, Sect. 16], [31], [34], [37, Sects. 2, 6],
[40], [41, Sects. 2.5, 4.2, 10.1], [48]. Importantly for what we do here, Poincaré suggested
in 1905–1906, [35, 36] (see also [23, Sects. 16.4–16.6], [37, Sects. 2.3, 6.1–6.3], [33, Sect.
63], [40], [48, Sect. 4.2] and references there in), to add to the Lorentz-Abraham model non-
electromagnetic cohesive forces which balance the charge internal repulsive electromagnetic
forces and remarkably restore also the covariance of the entire model. W. Pauli argues very
convincingly based on the relativity principle in [33, Sect. 63] the necessity to introduce for
the electron an energy of non-electromagnetic origin.

An alternative approach to deal with the above-mentioned divergences goes back to
G. Mie who proposed to modify the Maxwell equations making them nonlinear, [33, Sect.
64], [47, Sect. 26] and a particular example of the Mie approach is the Born-Infeld the-
ory, [12]. Recently M. Kiessling showed that, [25], “a relativistic Hamilton–Jacobi type
law of point charge motion can be consistently coupled with the nonlinear Maxwell–Born–
Infeld field equations to obtain a well-defined relativistic classical electrodynamics with
point charges”.

A substantially different approach to elementary charges was pursued by E. Schrödinger
who tried to develop a concept of wavepacket as a model for spatially localized charge. The
Schrödinger wave theory, [39], was inspired by de Broglie ideas, [13], [7, Sect. II.1]. The
theory was very successful in describing quantum phenomena in the hydrogen atom, but it
had great difficulties in treating the elementary charge as the material wave as it moves and
interacts with other elementary charges. M. Born commented on this, [11, Chap. IV.7]: “To
begin with, Schrödinger attempted to interpret corpuscles and particularly electrons, as wave
packets. Although his formulae are entirely correct, his interpretation cannot be maintained,
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since on the one hand, as we have already explained above, the wave packets must in course
of time become dissipated, and on the other hand the description of the interaction of two
electrons as a collision of two wave packets in ordinary three-dimensional space lands us in
grave difficulties.”

The wave-corpuscule mechanics (WCM) is a Lagrangian mechanics that includes as an
important element a concept of wave-corpuscle. The wave-corpuscle is understood as a spa-
tially localized solution to a nonlinear Schroedinger or Klein-Gordon equation, if we neglect
spin. Our approach to a spatially distributed but localized elementary charge has some fea-
tures in common with the above discussed concepts of extended charge, but it differs from
any of them substantially. In particular, our approach provides for an electromagnetic theory
in which (i) a “bare” elementary charge and the EM field described by the Maxwell equa-
tions form an inseparable entity; (ii) every elementary “bare” charge interacts directly only
with the EM field; (iii) the EM field is a single entity providing for the interaction between
“bare” elementary charges insuring the maximum speed of interaction not to ever exceed
the speed of light. To emphasize the inseparability of the “bare” elementary charge from the
EM field we refer to their entity as to dressed charge.

The best way to describe our concept of a spatially distributed but localized dressed
charge in one word is by the name wave-corpuscle, since it is a stable localized excitation
of a dispersive medium propagating in the three-dimensional space. An instructive example
of a wave-corpuscle is furnished by our nonrelativistic charge model. In that model, in the
simplest case, an ideal wave-corpuscle is described by a complex-valued wave function ψ

of the form

ψ = ψ(t,x) = exp

{
i

�

[
p(t) · (x − r(t)) + sp(t)

]}
ψ̊ (|x − r(t)|) , (4)

where ψ̊(s), s ≥ 0, is a non-negative, monotonically decaying function which vanishes at
infinity at a sufficiently fast rate, sp(t) is a phase shift and Eex(t) is an external homoge-
neous electric field. Importantly, for the above wave function ψ to be an exact solution of
corresponding field equations, the parameters r(t) and p(t) satisfy the Newton’s equations
which in this simplest case have the form

m
d2r(t)

dt2
= qEex, p(t) = m

dr(t)
dt

, (5)

where m and q are respectively its mass and the charge. We would like to emphasize that
the Newton’s equations are not postulated as in (1) but rather are derived from the field
equations. In contrast to Abraham and Lorentz models as well as quantum Abraham models
with de Broglie-Bohm laws of quantum motion introduced by M. Kiessling in [26] we do
not define a charge as an object with prescribed geometry, the dynamics and shape of a wave
corpuscle is governed by a nonlinear Klein-Gordon or a nonlinear Schrödinger equation in
relativistic and nonrelativistic cases respectively and a wave-corpuscle is defined as a special
type of solutions to these equations.

The ideal wave-corpuscle wave function ψ(t,x) defined by (4), (5) together with the
corresponding EM field forms an exact solution to the relevant Euler-Lagrange field equa-
tions describing an accelerating dressed charge. The point charge momentum p(t) turns out
to be exactly equal to the total momentum of the charge as a wave-corpuscle and its elec-
tromagnetic field. The wave-corpuscle is a material wave in space, more precisely a field
on space-time, and the quantity q|ψ(t,x)|2 corresponds to the charge density and the den-
sity |ψ(t,x)|2 is not given a probabilistic interpretation. The WCM can be characterized in
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one word as “neo-classical” as suggested by Michael Kiessling. We believe that our wave-
corpuscle provides an alternative resolution to the wave-particle duality problem.

We develop here both the relativistic and non-relativistic versions of the theory for one
and many charges. The field equations of the relativistic theory include, in particular, the
classical Maxwell equations

∂μFμν = 4π

c
J ν, Fμν = ∂μAν − ∂νAμ, (6)

where Aν = (ϕ,A) is the 4-potential, Fμν is the antisymmetric tensor of EM field, and
J ν = (c	,J) is the 4-current composed of all conserved 4-currents of individual charges.
The dynamics of charges is determined by nonlinear Klein-Gordon field equations, instead
of Newton’s equations with Lorentz forces. Though the WCM covers all spatial scales the
primary focus of this paper is on the case when charges are well separated, and we only
briefly discuss the hydrogen atom model as well as a comparison of the WCM with quantum
mechanics.

To keep the size of the paper within reasonable limits we had to omit many details related
to symmetries, gauge invariance, conservation laws as well as derivations of expressions
for densities of the energy-momentum tensor, angular momentum tensor, currents, internal
forces all of which a curious reader can find in our manuscript [6].

2 Nonrelativistic Theory for the Charge in an External EM Field

The nonrelativistic case, i.e. the case when a charge moves with a velocity much smaller than
the velocity of light, is important for our studies for at least two reasons. First of all, we need
it to relate the wave-corpuscle mechanics to the Newtonian mechanics for point charges in
EM fields. Second of all, in the nonrelativistic case we can carry out rather detailed analytical
studies of many physical quantities in a closed form. With that in mind, we would like to
treat the nonrelativistic case not just as an approximation to the relativistic theory but rather
as a case on its own, and we do it by constructing a certain nonrelativistic Lagrangian L̂0

intimately related to the relativistic Lagrangian defined in (153). Some details of the relation
between the relativistic and nonrelativistic Lagrangians are considered in Sect. 3.3.

2.1 Lagrangian and Field Equations

Our nonrelativistic Lagrangian for a single charge in an external EM field with potentials
ϕex, Aex has the form

L̂0
(
ψ,ψ∗, ϕ

) = χ

2
i
[
ψ∗∂̃tψ − ψ∂̃∗

t ψ∗
]
− χ2

2m

{
∇̃ψ∇̃∗ψ∗ + G(ψ∗ψ)

}
+ |∇ϕ|2

8π
, (7)

∂̃t = ∂t + iq(ϕ + ϕex)

χ
, ∇̃ = ∇ − iqAex

χc
, (8)

where ψ∗ is complex conjugate to ψ , m > 0 is the charge mass, χ > 0 is a constant similar
to the Planck constant � = h

2π
, and q is the charge. The Lagrangian expression indicates

that the charge is coupled to the EM field through the covariant derivatives, and that type
of coupling is known as minimal. Evidently in this Lagrangian the EM field of the charge
is represented only by its scalar potential ϕ and the corresponding electric field E = −∇ϕ,
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and the charge’s magnetic field is assumed to be identically zero. Consequently, any radi-
ation phenomena are excluded in this model. The Lagrangian L̂0 can be viewed as a field
version of the point charges model that neglects all retardation effects in the static limit
(zeroth order in v

c ) with the “instantaneous” interaction Lagrangian − q1q2
|r1−r2| between two

charges, [23, Sect. 12.6]. More detailed discussions on the relations between relativistic and
nonrelativistic Lagrangians are provided in Sect. 3.3.

The field equations for this case take the form of the following nonlinear Schrödinger
equation for ψ coupled with the equation for the electric potential ϕ:

iχ∂tψ = −χ2∇2ψ

2m
− χqAex · ∇ψ

mci
+ q

(
ϕ + ϕex + qA2

ex

2mc2

)
ψ + G′

a

(|ψ |2)ψ, (9)

−∇2ϕ = 4πq|ψ |2, (10)

where G′(s) = ∂sG, and we refer to the pair {ψ,ϕ} as dressed charge. The integral of |ψ |2
over the entire space turns to be a conserved quantity which we set to be 1, namely

∫
R3

|ψ |2 dx = 1, (11)

and we refer to the above equality as the charge normalization condition.
Let us consider now the case of a resting charge without external EM field, namely with

Aex = 0, ϕex = 0 in (9). We describe the resting charge by time independent real-valued
radial functions ψ̊ = ψ̊(|x|) and ϕ̊ = ϕ̊(|x|) that solve (9)–(10) which turn into the following
rest charge equations:

−∇2ϕ̊ = 4πq|ψ̊ |2, (12)

−∇2ψ̊ + 2m

χ2
qϕ̊ψ̊ + G′

(
|ψ̊ |2

)
ψ̊ = 0. (13)

The quantities ψ̊ and ϕ̊ are fundamental for our theory and we refer to them, respectively, as
form factor and form factor potential. In view of (12) the charge form factor ψ̊ determines
the form factor potential ϕ̊ by the formula

ϕ̊ (|x|) = ϕ̊ψ̊ (|x|) = q

∫
R3

ψ̊2(|y|)
|y − x| dy, (14)

and if we plug in the above expression into (13), we get the following nonlinear equation

−∇2ψ̊ + 2mq

χ2
ϕ̊ψ̊ ψ̊ + G′(|ψ̊ |2)ψ̊ = 0. (15)

Equation (15) signifies a complete balance of the three forces acting upon the resting charge:
(i) internal elastic deformation force associated with the term −�ψ̊ ; (ii) the charge’s elec-
tromagnetic self-interaction force associated with the term 2mq

χ2 ϕ̊ψ̊ ψ̊ ; (iii) internal nonlinear

self-interaction of the charge associated with the term G′(|ψ̊ |2)ψ̊ . We refer to (15), which
establishes an explicit relation between the form factor ψ̊ and the self-interaction nonlinear-
ity G, as the charge equilibrium equation. Hence, being given the form factor ψ̊ , we can
find from the equilibrium equation (15) the self-interaction nonlinearity G which exactly
produces this factor under the assumption that ψ̊(r) is a nonnegative, monotonically decay-
ing and sufficiently smooth function of r ≥ 0. Thus, we pick the form factor ψ̊ , and then the
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nonlinear self interaction function G is determined based on the charge equilibrium equation
(15). The later is a key feature of our approach: it allows to choose the form factor ψ̊ and
then to determine matching self-interaction nonlinearity G rather than to deal with solving
a nontrivial nonlinear partial differential equation. Note that after the nonlinearity G is de-
termined, it is fixed forever, and while solutions of (9)–(10) may evolve in time, they do not
need to coincide with {ψ̊, ϕ̊}. It is worth to point out that the nonlinearity G introduced via
the charge equilibrium equation (136) differs significantly from nonlinearities considered in
similar problems in literature including attempts to introduce nonlinearity in the quantum
mechanics, [9, 22, 45]. Important features of our nonlinearity include: (i) the boundedness
of G′(s) for s ≥ 0 from below with consequent boundedness from below of the wave en-
ergy; (ii) non analytic behavior about s = 0 that is for vanishing wave amplitudes. Details
and examples of the construction of the nonlinear self-interaction function G based on the
form factor are provided in Sect. 2.4.

We introduce for the form factor its size representation involving size parameter a > 0
and normalization constant C̊:

ψ̊(s)= ψ̊a(s) = C̊

a3/2
ψ̊1

(
s

a

)
,

ϕ̊(s)= ϕ̊a(s) = q

a
ϕ̊1

(
s

a

)
if s ≥ 0,

(16)

where the function ψ̊1(|x|) satisfies the normalization condition,

∫
R3

ψ̊2
1 (|x|)dx = 1. (17)

The corresponding nonlinearity G′(|ψ |2) also depends on the size parameter a, G′(|ψ |2) =
G′

a(|ψ |2), and the explicit form of the dependence is given below in (52).
Let us associate with the field equations (9)–(10) the following complementary point

charge equations of motion

m d2r
d2t

=qEex (t, r) + q

c

dr
dt

× Bex (t, r) ,

r(0)= r0,
dr
dt

(0) = ṙ0,

(18)

where external fields Eex and Bex are related to potentials ϕex and Aex by standard formulas
(131) and r0, ṙ0 are initial data. Obviously, (18) have the form of Newton’s law of motion
for a point charge with Lorentz force as in (1). We define now the wave-corpuscle ψ,ϕ by
the following formula:

ψ(t,x)= eiS/χ ψ̂, where S = mv · (x − r) + sp(t),

ψ̂ = ψ̊ (|x − r|) , where ϕ = ϕ̊ (|x − r|) , r = r(t).
(19)

In the above formula ψ̊ and ϕ̊ are, respectively, the form factor and the form factor potential
satisfying (12), (13). The functions v(t), sp(t) in (19) are determined based on the solution
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r(t) of (18) by the formulas

v(t)= dr
dt

(t) + q

mc
Aex (t, r(t)) ,

dsp

dt
= mv2(t)

2
− qϕex (t, r(t)) .

(20)

Notice that the function v(t) defined by the first equation in (20) if Aex �= 0 is not the charge
velocity ṙ(t), but it is simply related to the canonical momentum p̊ by the formula

v(t)= p̊(t)

m
, where p̊ = p + q

c
Aex,

and p=m
dr
dt

is the kinetic momentum.

(21)

Below we show that if the function r = r(t) satisfies (18) then under certain conditions
on the external field formula (19) defines an exact solution to the field equations (9)–(10).
We refer to the function r(t) as wave-corpuscle center or wave-corpuscle position. Since
ψ̂ is center-symmetric, this definition agrees with more general definition (88). Note that
in a simpler case when the external fields ϕex and Aex vanish, a simpler solution of (18)
is r(t) = r0 + vt with constant velocity v. In this case the wave-corpuscle solution (19) of
the field equations (9)–(10) can be obtained from the rest solution ψ̊ , ϕ̊ of (12)–(13) by a
certain Galilean-gauge transformations defined in (103)–(104). Solutions of a similar form
are known in the theory of Nonlinear Schrödinger equations, see [42] and references therein.

2.2 Accelerated Motion of Wave-Corpuscle in an External Electric Field

In this subsection we consider properties of a wave-corpuscle subjected to a purely electric
external EM field, i.e. when Aex = 0. We also present here a derivation of (18) based on the
requirement that (19) gives an exact solution to the field equations (9), (10). If the external
field is purely electric the field equations (9), (10) take the form

iχ∂tψ =−χ2∇2ψ

2m
+ q (ϕ + ϕex)ψ + χ2

2m
G′ (|ψ |2)ψ,

∇2ϕ =−4πq|ψ |2.
(22)

In this case the wave-corpuscle is defined by the formula (19) with the complementary point
charge equations (18) taking the form

m
d2r(t)

dt2
= qEex (t, r) , (23)

where Eex(t,x) = −∇ϕex(t,x). With the initial data r0 and ṙ0 as in (18) formula (20) takes
the form

v = dr

dt
, and sp =

∫ t

0

(
mv2

2
− qϕex (t, r(t))

)
dt ′. (24)

In the case when the external electric field is spatially homogeneous we show below that
the wave-corpuscle is an exact solution to the field equations (22). In fact, formula (19)
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provides also an exact solution for the EM fields with non-zero, spatially constant magnetic
field Bex(t), and in the latter case the Lorentz force involves Bex as in (18).

Looking at the exact solution (19) to the field equations that describes the accelerating
charge we would like to acknowledge the truly remarkable simplicity and transparency of
the relations between the two concepts of the charge: charge as a field {ψ,ϕ} in (19) and
charge as a point described by (23) and (24). Indeed, the wave amplitude ψ̊(|x − r(t)|) in
(19) is a soliton-like field moving exactly as the point charge described by its position r(t).
The exponential factor eiS/χ is just a plane wave with the phase S that depends only on the
point charge position r and momentum p and a time dependent gauge term, and it does
not depend on the nonlinear self-interaction. The phase S has a term in which we readily
recognize the de Broglie wave-vector k(t) described exactly in terms of the point charge
quantities, namely

χk(t) = p(t) = mv(t). (25)

Notice that the dispersion relation ω = ω(k) of the linear kinetic part of the field equations
(9) for ψ is

ω (k) = χk2

2m
, implying that the group velocity ∇kω (k) = χk

m
. (26)

Combining the expression (26) for the group velocity ∇kω(k) with the expression (25) for
wave vector k(t) we establish another exact relation, namely

v(t) = ∇kω (k(t)) , (27)

signifying the equality between the point charge velocity v(t) and the group velocity
∇kω(k(t)) at the de Broglie wave vector k(t). Similar analysis for the case of non-zero
spatially homogeneous magnetic field is given in [6].

To summarize the above analysis we may state that even when the charge accelerates
it perfectly combines the properties of a wave and a corpuscle, justifying the name wave-
corpuscle mechanics. Its wave nature manifests itself, in particular, in the de Broglie ex-
ponential factor and the equality (27), indicating the wave origin the charge motion. The
corpuscle properties are manifested in the factor ψ̊(|x − r(t)|) and in the soliton like prop-
agation with r(t) satisfying the classical point charge evolution equation (23). Importantly,
the introduced nonlinearities are stealthy in the sense that they don’t show in the dynam-
ics and kinematics of what appears to be soliton-like waves propagating as classical point
charges.

Using the relations (78) and (110) we give the following representations for the micro-
charge, the micro-current and momentum densities

ρ(t,x) = qψ̊2 (|x − r(t)|) , J(t,x) = qvψ̊2 (|x − r(t)|) , (28)

P(t,x) = m

q
J (t,x) = pψ̊2 (|x − r(t)|) . (29)

The above expressions and the charge normalization condition (11) readily imply the fol-
lowing representations for the total dressed charge field momentum P and the total current
J for the solution (19) in terms of point charge quantities, namely

P = m

q
J =

∫
R3

χq

m
Im

∇ψ̊

ψ̊
ψ̊2 dx = p = mv. (30)
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We would like to mention that an idea to use concept of a solitary wave in nonlinear
dispersive media for modelling wave-particles was quite popular. Luis de Broglie tried to
use it in his pursuit of the material wave mechanics. G. Lochak wrote in his preface to the
de Broglie’s monograph, [13, page XXXIX]: “. . . The first idea concerns the solitons, which
we would call ondes à bosses (humped waves) at the Institut Henri Poincaré. This idea of
de Broglie’s used to be considered as obsolete and too classical, but it is now quite well
known, as I mentioned above, and is likely to be developed in the future, but only provided
we realize what the obstacle is and has been for twenty-five years: It resides in the lack of
a general principle in the name of which we would be able to choose one nonlinear wave
equation from among the infinity of possible equations. If we succeed one day in finding
such an equation, a new microphysics will arise.” G. Lochak raised an interesting point
of the necessity of a general principle that would allow to choose one nonlinearity among
infinitely many. We agree to G. Lochak to the extend that there has to be an important
physical principle that would allow to choose the nonlinearity but whether it has to be unique
is different matter. In our approach such a principle is the exact balance of all forces for the
resting dressed charge via the static charge equilibrium equation (15). As to a possibility of
spatially localized excitations such as wave-packets to maintain their basic properties when
they propagate in a dispersive medium with a nonlinearity we refer to our work [3–5].

Let us derive now the equations of motion (18) for the wave-corpuscle center. If the
external field is purely electric and the electric field Eex(t) = −∇ϕex(t,x) is spatially homo-
geneous, then the potential ϕex(t,x) is linear in x and for any given trajectory r(t) we can
write

ϕex(t,x) = ϕ0,ex(t) + ϕ′
0,ex(t) · (x − r(t)) , (31)

where

ϕ′
0,ex(t) = ∇xϕex(r(t), t).

The fact that the wave-corpuscle as defined by formula (19) is an exact solution to the
field equation (22) can be verified by straightforward examination. Alternatively one can
establish the same by considering the expression for ψ in (19) and assuming that the real
valued functions r(t), v(t) and sp(t) are unknown and to be found, if possible, from the field
equations (22), and that is what we are going to do. Indeed, observe that the representation
(19) implies

∂tψ = exp

(
i
S

χ

){[
im

χ
(v̇ · (x − r) − v · ṙ) + iṡp

χ

]
ψ̂ − ṙ · ∇ψ̂

}
, (32)

and by the Leibnitz formula we have

∇2ψ = exp

(
i
S

χ

)[(
imv
χ

)2

ψ̂ + 2
im

χ
v · ∇ψ̂ + ∇2ψ̂

]
. (33)

To find if the expression (19) for ψ can solve the field equations (22) we substitute the
expression into the field equations (22) obtaining the following equation for functions v,
r, sp:

[−mv̇ · (x − r) − v · ṙ − ṡp

]
ψ̂ − iχ ṙ · ∇ψ̂ − m

2
v2ψ̂

+ iχv · ∇ψ̂ + χ2

2m
∇2ψ̂ − q (ϕ̃ex + ϕ) ψ̂ − χ2

2m
G′ψ̂ = 0. (34)
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Then using the charge equilibrium equation (15) we eliminate the nonlinearity G in the
above equation (34) and obtain the following equation equivalent to it:

−
{
m [v̇ · (x − r) − v · ṙ] + m

2
v2 + ṡp + qϕ̃ex

}
ψ̂ − iχ (ṙ − v)∇ψ̂ = 0. (35)

Now, to determine if there is a triple of functions {r(t),v(t), sp(t)} for which (35) holds, we
equate to zero the coefficients before ∇ψ̂ and ψ̂ in that equation, resulting in two equations:

v = ṙ, m [v̇ · (x − r) − v · ṙ] + m

2
v2 + ṡp + qϕ̃ex = 0, (36)

where, in view of the representation (31), the second equation in (36) can be recast as

m [v̇ · (x − r) − v · ṙ] + ṡp + mv2

2
+ q

[
ϕ0,ex + ϕ′

0,ex · (x − r)
] = 0. (37)

To find out if there is a triple of functions {r(t),v(t), sp(t)} solving (37) we equate to zero
the coefficient before (x − r) and the remaining coefficient and obtain the following pair of
equations

mv̇ = −qϕ′
0,ex(t),

ṡp − mv · ṙ + mv2

2
+ qϕ0,ex(t) = 0.

(38)

Thus, based on the first equation (36) and (38), we conclude that the wave-corpuscle defined
by the formula (18) with the complementary point charge equations (23), (24) is indeed an
exact solution to the field equations (22).

It is instructive to compare our construction of the exact solutions of the form (19) with
the quasi-classical approach which uses the WKB ansatz. The trajectories of the charges
centers as described by our model coincide with trajectories that can be found by applying
well-known quasiclassical asymptotics if one neglects the nonlinearity. Note though that
there are two important effects of the nonlinearity not presented in the formal quasiclassical
approach. First of all, due to the nonlinearity the charge preserves its shape in the course of
evolution whereas in the linear model any wavepacket disperses over time. Second of all,
the quasiclassical asymptotic expansions produce infinite asymptotic series which provide
for a formal solution, whereas the properly introduced nonlinearity as in (12), (13) allows
one to obtain an exact solution. For a treatment of mathematical aspects of the approach to
nonlinear wave mechanics based on the WKB asymptotic expansions we refer the reader to
[27] and references therein.

Using methods similar to used above let us consider a single charge in a general external
EM field which can have nonzero magnetic component. In this case the wave-corpuscle
defined by relations (19) and the complementary point charge equations (18), (20) is an
exact solution to the auxiliary field equations

iχ∂tψ =−χ2∇2ψ

2m
− χqÃex · ∇ψ

mci
+ q (ϕ + ϕ̃ex)ψ + χ2G′ψ

2m
,

∇2ϕ =−4πq|ψ |2,
(39)

with spatially linear potentials, ϕ̃ex, Ãex. Note that in applications to general external fields
the linear potential Ãex is the linearization of Aex(t,x) at r(t) and the potential ϕ̃ex is the

linearization at r(t) of the coefficient ϕex + qA2
exψ

2mc2 in (9). One way to check that ψ,ϕ is a
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solution is just to plug in ψ,ϕ defined by the formulas (19) into the auxiliary field equa-
tions (39) and, using the complementary point charge equations (18), (20), to verify that the
equality does hold. A derivation of (18), (20) and details are given in [6].

One can naturally ask how broad is the class of external EM fields for which there are
exact solutions as the wave-corpuscles? The class of such EM field is sufficiently broad
in the sense that for any accelerated motion of a point charge there is wave-corpuscle as
an exact solution to the field equations with an external field spatially homogeneous field.
To see that let us take an arbitrary vector-function r(t) and determine linear ϕex(t,x) by
formula (31) with ϕ′

0,ex(t) = −mr̈(t)/q , ϕ0,ex = 0 and let Bex = 0. Then r(t) is a solution
of (18) and wave-corpuscle (19) is a solution of (9), (10) with this ϕex(t,x). Thus, we can
conclude that the wave-corpuscle (19) as an exact solution to the field equations (9), (10)
with an appropriate choice of the external EM field can model any motion of a point charge.

2.3 Accelerated Motion of a Single Nonrelativistic Charge in a General EM Field

In the case of a general external EM field no exact closed form solution to the field equations
seems to be available, but there is an approximate wave-corpuscle solution and its accuracy
is a subject of our studies in this case. For simplicity let us consider purely electric external
field. Recall that the wave-corpuscle (19)–(20) is an exact solution to the fields equations (9),
(10) if the EM potentials are linear functions of spatial variables. Obviously, that a wave-
corpuscle of the form (19), which decays exponentially at large distances, is localized around
its center r(t), with localization radius of order a. Therefore, we construct approximate
wave-corpuscle solution to the field equations in the case where the potential of the external
EM field can be linearized at the location r(t) with a small error. The error of linearization
of the potential can be measured in terms of minimal curvature radius of the graph of the
potential, this radius introduces a spatial scale Rϕ . Hence, linearization of potentials around
the center r(t) of a wave-corpuscle with size a results in error of order a2/R2

ϕ . Using this
simple observation we define an approximate solution in two steps. First, we determine the
trajectories r(t) as a solution to (20) where Bex = 0. Then we define the wave-corpuscle
ψ(t,x) by formulas (19)–(20). It is an exact solution to the auxiliary field equation with the
field potential ϕ̃ex obtained by linearization of the electric field ϕex at r(t). Since ψ(t,x) is an
exact solution to the auxiliary field equation, and it is localized about r(t) with localization
size a, its substitution into field equations (9), (10) produces a discrepancy of order a2/R2.
Hence, the condition for an integral discrepancy to be relatively small takes the form

a2

R2
ϕ

� 1. (40)

One can use similar to the above treatment in the case when the external magnetic field is
present but estimates are more involved. In that case, if we introduce a spatial scale RM at
which magnetic field varies significantly then the conditions for an integral discrepancy to
be relatively small takes the form

|v|
c

a

RM

� 1,
a2

R2
ϕ

� 1, (41)

where v is the velocity of the wave-corpuscle center.
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2.4 Nonlinear Self-Interaction, Its Basic Properties and Examples

As we have already explained in the beginning of Sect. 2 the nonlinear self interaction func-
tion G is determined from the charge equilibrium equation (15) based on the form factor
ψ̊ and the form factor potential ϕ̊. It is worth to point out that such a nonlinearity differs
significantly from nonlinearities considered in similar problems in literature. Important fea-
tures of our nonlinearity include: (i) the boundedness of its derivative G′(s) for s ≥ 0 with
consequent boundedness from below of the wave energy; (ii) non analytic behavior about
s = 0, that is for small wave amplitudes.

In this section we consider the construction of the function G, study its properties and
provide examples for which the construction of G is carried out explicitly. Throughout this
section we have

ψ, ψ̊ ≥ 0 and hence |ψ | = ψ.

We introduce explicitly the size parameter a > 0 through the following representation of the
fundamental functions ψ̊(r) and ϕ̊(r)

ψ̊(r)= ψ̊a(r) = a−3/2ψ̊1
(
a−1r

)
,

ϕ̊(r)= ϕ̊a(r) = a−1ϕ̊1

(
a−1r

)
,

(42)

where ψ̊1(r) and ϕ̊1(r) are functions of the dimensionless parameter r, and, as a consequence
of (80), the function ψ̊a(r) satisfies the charge normalization condition

∫
R3

ψ̊2
a (|x|) dx = 1 for all a > 0. (43)

The size parameter a naturally has the dimension of length, but we do not yet identify it
with the size. Indeed, any properly defined spatial size of ψ̊a , based, for instance, on the
variance, is proportional to a with a coefficient depending on ψ̊1. The charge equilibrium
equation (15) can be written in the following form:

− χ2

2m
∇2ψ̊a + qϕ̊aψ̊a + χ2

2m
G′

a

(
ψ̊2

a

)
ψ̊a = 0, (44)

where the potential ϕ̊a is defined by (14). The function ψ̊a(r) is assumed to be a positive,
monotonically decreasing function of r ≥ 0, and to satisfy the charge normalization condi-
tion (43).

Let us look first at the case a = 1, ψ̊a = ψ̊1, ϕ̊a = ϕ̊1, for which (44) yields the following
representation for G′(ψ̊2

1 ) from (44)

G′
(
ψ̊2

1 (r)
)

= (∇2ψ̊1)(r)

ψ̊1(r)
− 2m

χ2
qϕ̊1(r). (45)

Since ψ̊2
1 (r) is a monotonic function, we can find its inverse r = r(ψ2), yielding

G′(s)=
[

∇2ψ̊1

ψ̊1

− 2m

χ2
qϕ̊1

]
(r(s)) ,

0= ψ̊2
1 (∞) ≤ s ≤ ψ̊2

1 (0).

(46)
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We extend G′(s) for s ≥ ψ̊2
1 (0) to be a constant, namely

G′(s) = G′
(
ψ̊2

1 (0)
)

if s ≥ ψ̊2
1 (0). (47)

Observe that the positivity and the monotonicity of the form factor ψ̊1 was instrumental for
recovering the function G′(s) from the charge balance equation (44).

Using the representation (46) for the function G′(s) we decompose it naturally into two
components:

G′(s) = G′
∇(s) − 2

aχ

G′
ϕ(s), (48)

where

aχ = χ2

mq2
(49)

and for all r ≥ 0

G′
∇
(
ψ̊2

1

)
(r)= (∇2ψ̊1)

ψ̊1

(r),

G′
ϕ

(
ψ̊2

1

)
(r)= ϕ̊1(r)

q
= φ̊1(r).

(50)

We refer to G′
∇(s) and G′

ϕ(s) as elastic and EM components respectively. In the case of
arbitrary size parameter a we find first that

G′
∇,a(s)=a−2G′

∇,1

(
a3s

)
,

G′
ϕ,a(s)=a−1G′

ϕ,1

(
a3s

)
, a > 0,

(51)

and then combining (51) with (48) and (50) we obtain the following representation for the
function G′

a(s)

G′
a(s) = G′

∇,1(a
3s)

a2
− 2G′

ϕ,1(a
3s)

aaχ

. (52)

Let us take a look at general properties of G′(s) and its components G′
∇(s) and G′

ϕ(s) as
they follow from defining them relations (46)–(52). Starting with the EM component G′

ϕ(s)

we notice that ϕ̊1(|x|) is a radial solution to (10). Combining that with ψ2 ≥ 0 and using the
Maximum principle we conclude that ϕ̊1(|x|)/q is a positive function without local minima,
implying that it is a monotonically decreasing function of |x|. Consequently, G′

ϕ(s) defined
by (50) is a monotonically increasing function of s, and hence

G′
ϕ(s) > 0 for all s > 0 and G′

ϕ(0) = 0. (53)

Note that G′
ϕ(s) is not differentiable at zero, which can be seen by comparing the behavior of

ϕ̊1(r) and ψ̊1(r) at infinity. Indeed, ϕ1(r)/q ∼ r−1 as r → ∞ and since ψ̊2(|x|) is integrable,
it has to decay faster than |x|−3 as |x| → ∞. Consequently, |G′

ϕ(s)| for small s has to be
greater than s1/3 which prohibits its differentiability at zero. One has to notice though that
the nonlinearity G′(|ψ |2)ψ as it enters the field equation (9)–(10) is differentiable for all ψ

including zero, hence it satisfies a Lipschitz condition required for uniqueness of solutions
of the initial value problem for (9)–(10).
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Let us look at the elastic component G′
∇(s) defined by the relations (50). Since ψ̊(|x|) >0

the sign of G′
∇(|ψ |2) coincides with the sign of ∇2ψ̊1(|x|). At the origin x = 0 the function

ψ̊1(|x|) has its maximum and, consequently, G′
∇(s) ≤ 0 for all s close to s = ψ̊2

1 (∞), im-
plying

G′
∇(s) ≤ 0 for s � 1. (54)

The Laplacian applied to radial functions ψ̊1 takes the form 1
r

∂2

∂r2 (rψ̊1|x|). Consequently,

if rψ̊1(r) is convex at r = |x| we have ∇2ψ̊1(|x|) ≥ 0. Since r2ψ̊(r) is integrable we can
naturally assume that |x|ψ̊1(|x|) → 0 as |x| → ∞. Then if the second derivative of rψ̊1(r)

has a constant sign near infinity, it must be non-negative. For an exponentially decaying
ψ̊1(r) the second derivative of rψ̊a(r) is positive implying

G′
∇(s) > 0 for s � 1. (55)

Combining this with the equality G′
ϕ(0) = 0 from (53) we readily obtain

G′(s) > 0 for s � 1. (56)

From the relations (48), (53), (54) we also obtain

G′(s) < 0 if s � 1. (57)

2.4.1 Nonlinearity for the Form Factor Decaying as a Power Law

We introduce here a form factor ψ̊1(r) decaying as a power law of the form

ψ̊1(r) = cpw

(1 + r2)5/4
, (58)

where cpw is the normalization factor, cpw = 31/2/(4π)1/2. This function evidently is positive
and monotonically decreasing as required. Let us find now G′

∇(s) and G′
ϕ based on the

relations (50). An elementary computation of ∇2ψ̊1 shows that

G′
∇(s)= 15s2/5

4c
4/5
pw

− 45s4/5

4c
8/5
pw

,

G∇(s)= 75s7/5

28c
4/5
pw

− 25s9/5

4c
8/5
pw

, for 0 ≤ s ≤ c2
pw.

(59)

To determine G′
ϕ we find by a straightforward examination that function

ϕ̊1 = q

c
2/5
pw

ψ̊
2/5
1 (60)

solves equation ∇2ϕ̊1 = −4πqψ̊2
1 , and that together with (50) yields

G′
ϕ(s) = s1/5

c
2/5
pw

, Gϕ(s) = 5s6/5

6c
2/5
pw

, for 0 ≤ s ≤ c2
pw. (61)

Observe that both components G′
∇(s) and G′

ϕ(s) in (59), (61) of the total nonlinearity G′
∇(s)

defined by (48) are not differentiable at s = 0.
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If we explicitly introduce size parameter a into the form factor using (42), we define
G′

∇,a(s) and G′
ϕ,a(s) and G′

a(s) by (51) and (52). Notice that the variance of the form factor

ψ̊2
1 (|x|) decaying as a power law (58) is infinite.

2.4.2 Nonlinearity for the Form Factor Decaying Exponentially

We introduce here an exponentially decaying form factor ψ̊1 of the form

ψ̊1(r) = cee−(r2+1)1/2
, (62)

where ce is the normalization factor,

ce =
(

4π

∫ ∞

0
r2e−2(r2+1)1/2

dr

)−1/2

 0.79195.

Evidently ψ̊1(r) is positive and monotonically decreasing as required. The dependence r(s)

defined by the relation (62) is as follows:

r = [
ln2

(
ce/

√
s
)− 1

]1/2
, if

√
s ≤ ψ̊1(0) = cee−1. (63)

An elementary computation shows that ∇2ψ̊1 = −Wψ̊1 where

W = 2

(r2 + 1)
1
2

+ 1

(r2 + 1)
+ 1

(r2 + 1)
3
2

− 1,

implying

G′
∇
(
ψ2

1 (r)
) = −W(r) = 1 − 2

(r2 + 1)
1
2

− 1

(r2 + 1)
− 1

(r2 + 1)
3
2

. (64)

Combining (63) with (64) we readily obtain the following function for s ≤ c2
e e−2

G′
∇,1(s) =

[
1 − 4

ln(c2
e/s)

− 4

ln2(c2
e/s)

− 8

ln3(c2
e/s)

]
. (65)

We extend it for larger s as follows:

G′
∇,1(s) = G′

∇,1

(
c2

e e−2
) = −3 if s ≥ c2

e e−2. (66)

The relations (65) and (66) imply G′
∇,1(s) takes values in the interval [1,−3]. It also follows

from (65) that

G′
∇,1(s)

∼= 1 − 4

ln 1/s
as s → 0, (67)

implying that the function G′
∇,1(s) is not differentiable at s = 0 and consequently is not

analytic about 0.
To determine the second component G′

ϕ we need to solve (50). Using the fact that ϕ̊1, ψ̊1

are radial functions we obtain the following equation for ϕ̊1(r)

− 1

4πr
∂2

r (rϕ̊1) = qc2
e e−2

√
r2+1. (68)
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We seek a solution of (68) that is regular at zero and behaves like the Coulomb’s potential q

r

for large r . Taking that into account we obtain after the first integration of (68)

∂r (rϕ̊1) = πqc2
e

[
1 + 2(r2 + 1)1/2

]
e−2(r2+1)1/2

, (69)

and integrating (69) yields the following formula for the form factor potential:

ϕ̊1(r) = q

r
− πqc2

e

r

∫ ∞

r

[
1 + 2

(
r2

1 + 1
)1/2

]
e−2(r2

1 +1)
1/2

dr1. (70)

The above formula shows that the form factor potential ϕ̊1(r) is exponentially close to the
Coulomb’s potential q/r for large r . Then, based on the relation (50) and (70), we find
consequently

G′
ϕ,1

(
ψ2

) = 1

q
ϕ̊1 (r(ψ)) = πc2

e

r(ψ)

∫ r(ψ)

0

[
1 + 2

(
r2

1 + 1
)1/2

]
e−2(r2

1 +1)
1/2

dr1, (71)

where

r(ψ) = [
ln2 (ce/ψ) − 1

]1/2
for ψ ≤ cee−1.

We extend G′
ϕ,1(ψ

2) for larger values of ψ as a constant:

G′
ϕ,1

(
ψ2

) = lim
r→0

ϕ̊(r)

q
= 3πc2

e e−2 for ψ ≥ cee−1. (72)

From the above expressions one can see that G′
a(s) does not depend analytically on s about

s = 0. The variance of the exponential form factor ψ̊1(r) is obviously finite. To find G′
a(s)

for arbitrary a we use its representation (52), and combine with the formulas (65) and (70).

2.5 Form Factor Potential Proximity to the Coulomb’s Potential

In this section we study the proximity of the potential form factor ϕ̊a(|x|) to the Coulomb’s
potential q/|x| for small a. This is an important issue since it is a well known experimental
fact that the Coulomb’s potential q/|x| represents the electrostatic field of the charge very
accurately even for very small values of |x|. According to the rest charge equation (15) and
(14) the potential φ̊a(|x|) = ϕ̊a(|x|)/q satisfies

∇2φ̊a (|x|) = −4πψ̊2
a (|x|) .

For the radial potential φ1(r) we obtain, [6],

φ1(r) = 1

r

[
1 − 4π

∫ ∞

r

(r1 − r) r1ψ̊
2
1 (r1) dr1

]
. (73)

Formula (73) together with (42) implies that

φa(r) = 1

r
− 4π

r

∫ ∞

a−1r

(
r1 − a−1r

)
r1ψ̊

2
1 (r1) dr1. (74)

We notice that if ψ̊2
1 decays exponentially as in (62) then the difference between the potential

φa(r) and the Coulomb’s potential 1/r is extremely small for small a. Notice that if we
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would take ψ̊1(r) = 0 for all r ≥ r0, as it is the case in the Abraham-Lorentz model, the
formula (73) would imply that ϕ̊a(r) would be exactly the Coulomb’s potential for r ≥
ar0. But for such a ψ̊1(r) we would not be able to construct the nonlinear self-interaction
component G′

ϕ which would satisfy (50) since it requires ψ̊2
1 (r) to be strictly positive for all

r ≥ 0.

2.6 Many Interacting Charges

A qualitatively new physical phenomenon in the theory of two or more charges compared
with the theory of a single charge is obviously the interaction between them. In our approach
any individual “bare” charge interacts directly only with the EM field and consequently
different charges interact with each other only indirectly through the EM field. A system
of many charges can have charges of different type, for instance electrons and protons. In
that case we naturally assume that individual Lagrangians for charges of the same type have
identical Lagrangians with the same mass m, charge q , form factor ψ̊ and consequently
the same nonlinear self-interaction G. Below we provide a sketch of the theory and more
detailed exposition of the subject is provided in our manuscript [6].

The primary focus of our studies on many charges here the correspondence between our
wave theory and the point charge mechanics in the regime of remote interaction when the
charges are separated by large distances compared to their sizes. There are two distinct ways
to correspond our field theory to the point charge mechanics: (i) via averaged quantities in
spirit of the well known in quantum mechanics Ehrenfest Theorem, [38, Sects. 7, 23]; (ii)
via a construction of approximate solutions to the field equations in terms of radial wave-
corpuscles similar to (19).

Studies of charge interactions at short distances are not within the scope of this paper,
though our approach allows to study short distance interactions and we provide as an exam-
ple the hydrogen atom model in Sect. 4.1. The main purpose of that exercise is to show a
similarity between our and Schrödinger’s hydrogen atom models, and to contrast it to any
kind of Kepler’s model. Another point we can make based on our hydrogen atom model is
that our theory does provide a basis for a regime of close interaction between two charges
which differs significantly from the regime of remote interaction, which is the primary focus
of this paper.

Let us consider a system of N charges interacting directly only with the EM field de-
scribed by its 4-vector potential Aμ = (ϕ,A). The charges are described by their wave
functions ψ� with the superscript index � = 1, . . . ,N labeling them. Our nonrelativistic
Lagrangian L̂ for many charges is constructed based on the following principles: (i) individ-
ual charges nonrelativistic Lagrangians L̂� of the form (7) and (ii) the assumption that every
charge interacts directly only with the EM field as defined by its electric potential ϕ. The
form on the Lagrangian L̂ in the presence of an external EM field with potentials ϕex(t,x),
Aex(t,x) is as follows

L̂ =
N∑

�=1

L̂� + |∇ϕ|2
8π

, (75)

L̂� = χ

2
i
[
ψ�∗∂̃�

t ψ
� − ψ�∂̃�∗

t ψ�∗
]
− χ2

2m

[
∇̃ψ� · ∇̃∗ψ�∗ + G�

a

(
ψ�∗ψ�

)]
,

∂̃�
t = ∂t + iq�(ϕ + ϕex)

χ
,

(76)
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where ψ�∗ is complex conjugate of ψ� and the covariant gradient ∇̃ is the same as in (8). The
nonlinear self-interaction terms G�

a in (75) are determined through the charge equilibrium
equation (15) and they can be the same for the same types of charges, for instance, protons
and electrons. We also indicated in the notation G�

a the dependence on the size parameter a.
The field equations for this Lagrangian are

iχ∂tψ
� = −χ2∇2ψ�

2m�
− χq�Aex · ∇ψ�

m�ci

+ q� (ϕ + ϕex)ψ� + q�2A2
exψ

�

2m�c2
+ [

G�
a

]′ (∣∣ψ�
∣∣2)ψ�, (77)

−∇2ϕ = 4π

N∑
�=1

q�
∣∣ψ�

∣∣2 .

Evidently the equations for different � are coupled only through the potential ϕ, which
consequently is responsible for the charge interaction. The Lagrangian L̂ is gauge invariant
and every �-th charge has a 4-current (ρ�,J�) defined by

ρ� = q
∣∣ψ�

∣∣2 , J� =
(

χq�

m�
Im

∇ψ�

ψ�
− q�2Aex

m�c

)∣∣ψ�
∣∣2 , (78)

satisfying the conservation/continuity equations ∂tρ
� + ∇ · J� = 0 or explicitly

m�∂t

∣∣ψ�
∣∣2 + ∇ ·

(
χ Im

∇ψ�

ψ�

∣∣ψ�
∣∣2 − q�

c
Aex

∣∣ψ�
∣∣2) = 0. (79)

In consistency with the above charge conservation equation we require the �-th charge to be
exactly q� by imposing the following charge normalization condition:

∫
R3

∣∣ψ�
∣∣2 dx = 1, t ≥ 0, � = 1, . . . ,N. (80)

Let us attribute to every �-th charge its potential ϕ� by the formula

ϕ�(t,x) = ϕ�
a (t,x) = q�

∫
R3

|ψ�
a |2(t,y)

|y − x| dy, (81)

implying together with (77) the following relations

∇2ϕ� = −4πq�
∣∣ψ�

∣∣2 , ϕ =
N∑

�=1

ϕ�. (82)

We also introduce a potential ϕ�
ex,a describing the interaction of �-th charge with all other

charges:

ϕ�
ex,a = ϕ + ϕex − ϕ�

a = ϕex +
∑
�′ �=�

ϕ�′
a . (83)

The charge gauge invariant momentum density P� for the Lagrangian L̂ is of the form

P� = iχ

2

(
ψ�∇̃�∗ψ�∗ − ψ�∗∇̃�ψ�

)
.
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Introducing the total individual momenta P� for �-th dressed charge by

P� =
∫

R3
P� dx, (84)

we obtain the following equations for the total individual momenta

dP�

dt
= q�

∫
R3

⎡
⎣
⎛
⎝∑

�′ �=�

E�′ + Eex

⎞
⎠∣∣ψ�

∣∣2 + 1

c
v� × Bex

⎤
⎦ dx, (85)

v�(t,x) = 1

m�
P�(t,x) = 1

q�
J�(t,x) is the velocity density. (86)

The external EM fields Eex, Bex in (85) corresponding to the potentials ϕex, Aex are deter-
mined by standard formulas (131). Derivation of (85) is rather elementary. Indeed, in the
simplest case where Aex = 0 we multiply (77) by ∇ψ�∗, take the real part and integrate
the result over the entire space using integration by parts and equalities (82) multiplied by
∇ψ�∗ to eliminate term with �′ = �. To obtain (85) in more involved general case one can
similarly multiply (77) by ∇̃�∗ψ�∗ and then integrate the result using some vector algebra
manipulation; a derivation based on general properties of the energy-momentum tensor is
given in [6].

Observe an important property of the Lagrangian L̂: the charge gauge invariant momen-
tum density P� equals exactly the microcurrent density J� defined by (78) multiplied by the
constant m�/q�, namely:

P� = m�

q�
J� (87)

that can be viewed as the momentum density kinematic representation.

2.6.1 Newtonian Mechanics as an Approximation

Let us show now that if the size parameter is small compared to the typical scale of variation
of EM fields the charge evolution can be described approximately by Newton equations with
Lorentz forces. For that purpose we introduce the �-th charge position r�(t) and velocity
v�(t) as the following spatial averages

r�(t)= r�
a(t) =

∫
R3

x
∣∣ψ�

a (t,x)
∣∣2 dx,

v�(t)= 1

q�

∫
R3

J�(t,x)dx.

(88)

Then one can show that a combination of the continuity equation (79) with the momentum
evolution equations (85) imply the following remarkable property: the positions r�(t) satisfy
with a high accuracy Newton’s equations of motion for the system of N point charges if the
size parameter a is small enough compared with a typical spatial scale REM of the system of
point charges. Indeed, using the charge conservation law (79) we find the following identities

dr�(t)

dt
=

∫
R3

x∂t

∣∣ψ�
∣∣2 dx = − 1

q�

∫
R3

x∇ · J� dx = 1

q�

∫
R3

J�dx = v�(t), (89)
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showing the positions and velocities defined by formulas (88) are related exactly as in the
point charge mechanics. Then integrating the momentum density kinematic representation
(87) we obtain the following kinematic representation for the dressed charge total momen-
tum

P�(t) = m�

q�

∫
R3

J�(t,x)dx = m�v�(t), (90)

which also is exactly the same as for point charges mechanics. Relations (89) and (90) yield

m� d2r�(t)

d2t
= m� d

dt
v�(t) = dP�

dt
, (91)

and we obtain from (85) the following system of equations of motion for N charges:

m� d2r�(t)

d2t
= q�

∫
R3

⎡
⎣
⎛
⎝∑

�′ �=�

E�′ + Eex

⎞
⎠∣∣ψ�

∣∣2 + 1

c
v� × Bex

⎤
⎦ dx, (92)

where � = 1, . . . ,N , and E�′
(t,x) = −∇ϕ�′

(t,x), Eex and Bex are defined by (131).
The above system is analogous to the well known in quantum mechanics Ehrenfest The-

orem, [38, Sects. 7, 23]. Notice that the system of the equations of motion (92) departs from
the corresponding system for point charges by having the averaged Lorentz density force
instead of the Lorentz force at the exact position r�(t).

Let us suppose now that for every �-th charge density |ψ�|2 and the corresponding current
density J� are localized in a�-vicinity of the position r�(t), and that the every localization
scale a� is small compared with the typical variation scale REM of the EM field. Then if REM

is bounded and a� → 0 we get

|ψ�|2(t,x)→ δ
(
x − r�(t)

)
,

v� (t, x) = J�/q� → v�(t)δ
(
x − r�(t)

)
,

(93)

where the coefficients before the Dirac delta-functions are determined by the charge nor-
malization conditions (80) and relations (88). Using potential representations (81) we infer
from (93) the convergence of the potentials ϕ� to the corresponding Coulomb’s potentials,
namely

ϕ�(t,x)→ϕ�
0(t,x) = q�

|x − r�| ,

∇rϕ
�(t,x)→ q�(x − r�)

|x − r�|3 as a� → 0.

(94)

Hence, we can recast the equations of motion (92) as the system

m� d2r�

dt2
= f� + εP� , � = 1, . . . ,N, (95)

where

f� =
∑
�′ �=�

q�E�′
0 + q�Eex

(
r�
)+ 1

c
v� × Bex

(
r�
)
,
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with small discrepancies εP� → 0 as a�/REM → 0. Notice that terms f� in (95) coincide with
the Lorentz forces. Since εP� → 0 in the limit a�/REM → 0 we see that the equations of
motion (95) take approximately the form of Newton equations for point charges interacting
via the Coulomb potential and corresponding Lorentz forces, namely for � = 1, . . . ,N

m� d2r�

dt2
= −

∑
�′ �=�

q�q�′
(r�′ − r�)

|r�′ − r�|3 + q�Eex
(
r�
)+ 1

c
v� × Bex

(
r�
)
. (96)

To quantify the conditions of the remote interaction we make use of the explicit depen-
dence on the size parameter a of the nonlinearity G� = G�

a as in (52) and take the size
parameter as a spatial scale characterizing sizes of the fields ψ�

a and ϕ�
a . The charges sepa-

ration is measured roughly by a minimal distance Rmin between any two charge positions.
Another relevant spatial scale Rex measures a typical scale of spatial inhomogeneity of ex-
ternal fields near charges. Consequently, conditions of remote interaction are measured by
the dimensionless ratio a/REM where the characteristic spatial scale REM = min(Rmin,Rex)

with the condition a/REM � 1 to define the regime of remote interaction. To summarize, we
observe that the exact equations of motion (92) form a basis for relating the field and point
mechanics under an assumption that charge fields remain localized during time interval of
interest. Notice the equations of motion (92) do not involve the nonlinear interaction terms
G� in an explicit way justifying their characterization as “stealthy” in the regime of remote
interactions. As to the assumption that the charge fields remain localized, it has to be veri-
fied based on the field equations (77) where the nonlinear interaction terms G� provide for
cohesive forces for individual charges. The fact that they can do just that is demonstrated for
a single charge represented as wave-corpuscle (19) as it accelerates in an external EM field.
The last point naturally brings us to the second way of correspondence between the charges
as fields and points when they interact, which we consider below.

2.6.2 Many Interacting Wave-Corpuscles

We show in this section that when charges are well separated their wave functions can be
represented by wave-corpuscle formulas (19)–(96) which satisfy the field equations (77)
with small discrepancies. More detailed presentation of that idea is as follows. Consider for
simplicity a case when Aex = 0. As the first step we solve the Newton’s equations of motion
(96) and find the position functions r�

0(t), � = 1, . . . ,N , which satisfy the following system
of equations

m� d2r�
0

dt2
=−q�∇ϕ�

ex,0

(
r�

0

)
,

r�
0(0)= ŕ�

0,
dr�

0

dt
(0) = v́�

0,

(97)

where

ϕ�
ex,0(t,x) = ϕex(t,x) +

∑
�′ �=�

q�′

|x − r�′ | . (98)

Obviously it coincides with (18) where Eex(x) = −∇ϕ�
ex,0(t,x). The �-th equation (77),

(82) for �-th charge has the form of field equations (9), (10) of motion of a single charge
in an external EM field. As the second step we introduce the following wave-corpuscle
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representation similar to (19), (20):

ψ�
a (t,x)= eiS�/χ ψ̊�

a

(∣∣x − r�
0

∣∣) ,

ϕ�
a(t,x)= ϕ̊�

a

(
x − r�

0

)
,

(99)

where the dependence on the size a is given by (42) and S�(t,x) is defined in the terms of
the potential ϕ�

ex,0 as follows:

S�(t,x)=p�
0 · (x − r�

0

)−
∫ t

0

p�2
0

2m�
dt ′ + q�

∫ t

0
ϕ�

ex,0

(
t ′, r�

0

)
dt ′,

p�
0 =m� dr�

0

dt
.

(100)

We assume the form factor ψ̊�
a to decay exponentially, and, hence, its contributions for

|x − r�
0| � a are negligible. Now we use the fact that the wave-corpuscle (19)–(20) is an

exact solution to the fields equations (9), (10) if the EM potentials are linear functions of
spatial variables. Since evidently the wave-corpuscle of the form (99) is localized about its
center r�(t) with the localization distance a it provides an accurate approximation to the
field equations in a vicinity of r�(t) where the potentials of the external EM field and the
Coulomb potential of other charges can be linearized. The Coulomb potentials can be lin-
earized if the charges are well separated. Let us measure the charges separation roughly by
the minimal distance Rmin between any two charges in the system. Another relevant spatial
scale Rϕ is a typical scale of spatial inhomogeneity of external fields around the charges.
Hence, the linearization of the potentials around r�(t) results an error of order a2/R2 where
R = min(Rϕ,Rmin). If the trajectories of the point charge do not collide and Rmin � a we
can define for every � the wave-corpuscle ψ�(t,x) by formulas (99)–(100). Such a wave-
corpuscle ψ�(t,x) is an exact solution to the auxiliary field equation with the field potential
ϕ̃�

ex obtained by the linearization of ϕ�
ex,0(t,x) at r�(t). Since ψ�(t,x) is an exact solution

to the auxiliary field equation, and it is localized about r�(t) with the localization distance
a it produces a discrepancy of order a2/R2 in the original field equations. Note that the
wave-corpuscle approximation (99) is based on trajectories r�

0 for the wave-corpuscle cen-
ters determined from (97) which involve the exact Coulomb potentials ϕ̊�

0 corresponding to
the size parameter a = 0, at the same time it involves the form factors and the potentials
with a > 0. Interestingly, an additional analysis of the exact motion equations (92) (where
Bex = 0) shows that though the integral discrepancy decays as a2/R2

ϕ , the positions r�(t)

given by (88) are approximated by r�
0(t) with accuracy of the order a3/R3

ϕ .
The above argument shows that the point charge mechanics features are transparently

integrated into the fields {ψ�
a ,ϕ

�
a} in (99), (100) via the de Broglie factor phases S� and

the spatial shifts r�
0. Comparing the many charge system with a single charge in external

field we observe that for the charge system the acceleration of the �-th charge center r�
0(t)

is determined not only by the Lorentz force due to the external field but also by electric
interactions with the remaining charges according to the Coulomb’s law.

We would like to point out that when analyzing the system of charges in the regime of
remote interaction we do not use any specific form of the nonlinearities that keep charges
wave functions spatially localized during the evolution. Note also that solutions of field
equations (77) depend on the size parameter a which is proportional to the radius of the
wave-corpuscle and which enters the theory through the nonlinearity G�

a , but the integral
equations (92) do not involve explicit dependence on a. Equation (99) which describes the
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structure of the wave-corpuscle involves a only through radial shape factors ψ̊� = ψ̊�
a and

through the electric potential ϕ̊� = ϕ̊�
a . The dependence of ψ̊�

a on a is explicitly singular at
zero, as should be expected since in the singular limit a → 0 the wave-corpuscle should
turn into the point charge with the square of amplitude described by a delta function as
in (3). Nevertheless, for arbitrary small a > 0 the wave-corpuscle structure of every charge
is preserved including its principal wave-vector. The dependence of ϕ̊�

a on small a can be
described as a regular convergence to the classical singular Coulomb’s potential, see (74) for
details. That allows us to apply representation (99) to charges with small a without compro-
mising the accuracy of the description and, in fact, increasing the accuracy as a → 0. Note
that to obtain point charges equations of motion (95) it is sufficient to assume localization
only for ψ�.

2.7 Symmetries and Conservation Laws

In this section we discuss symmetries of the nonrelativistic Lagrangian, conservation laws
which follow from the symmetries and the structure of the energy-momentum tensor.

2.7.1 Free Single Charge

The nonrelativistic Lagrangian L̂0 for a single charge is given by (7) and for a free charge we
set Aex = 0, ϕex = 0. Consequently, ∇̃ = ∇ and the Euler-Lagrange field equations are given
by (9), (10) with Aex = 0, ϕex = 0. The Lagrangian L̂0 is a gauge invariant with respect to
two kinds of gauge transformation: global and local, namely

ψ → eiγ ψ, (101)

where γ is any real constant, and with respect to a reduced version of the second type gauge
transformation

ψ → e− iqλ(t)
χ ψ, ϕ → ϕ + ∂tλ(t), (102)

where the function λ(t) may depend only on time.
To carry out a systematic analysis of conservation laws associated with the Lagrangian

L̂0 defined by (7) via the Noether theorem, we need to find a Lie group of transformations
which preserve it. The Lagrangian L̂0 is not invariant with respect to either the Lorentz or
the Galilean groups of transformations. But a straightforward examination shows that L̂0 is
invariant with respect to the following Galilean-gauge group of transformations

t ′ = t, x′ = x − vt, (103)

ψ(t,x) = ei m
2χ (v2t ′+2v·x′)ψ ′ (t ′,x′) , (104)

with ϕ(t,x) = ϕ′(t ′,x′). One can also verify that the above transformations form an Abelian
(commutative) group of transformations parametrized by the velocity parameter v. It is curi-
ous to observe that according to the Galilean-gauge transformations (103), (104) the charge
wave function does not transform as a scalar as in the relativistic case. These transformations
are known, [18, Sect. 7.3], and were used, in particular, in studies of nonlinear Schrödinger
equations, [42, Sect. 2.3].

The above defined Galilean-gauge group is naturally extended to the general inhomoge-
neous Galilean-gauge group by adding to it the group of spacial rotations O and space-time
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translations aμ, namely

t ′ = t + τ, x′ = Ox − vt + a, (105)

ψ ′ (t ′,x′) = ei m
2χ

[v2(t+τ)−2v·(Ox+a)]
ψ (t,x) ,

ϕ′ (t ′,x′) = ϕ(t,x).
(106)

Carrying out the Noether currents analysis for the Lagrangian L̂0 we obtain 10 conservation
laws which, as it turns out, can be formulated in terms of the canonical energy-momentum
tensor T̊ μν , which, in turn, is given by the following formula:

T̊ μν = ∂L̂0

∂ψ,μ

ψ,ν + ∂L̂0

∂ψ∗
,μ

ψ∗
,ν + ∂L̂0

∂ϕ,μ

ϕ,ν − L̂0g
μν. (107)

Namely, we get the total of ten conservation laws:

∂μT̊ μν = 0—energy-momentum conserv., (108)

T̊ ij = T̊ j i , i, j = 1,2,3—space angular momentum conserv., (109)

P i = T̊ 0i = m

q
J i, i = 1,2,3—time-space angular momentum conserv. (110)

The first four standard conservation laws (108) are associated with the Noether’s currents
with respect to space-time translations aμ. The second three conservation laws in (109)
are associated with space rotation parameters ξ , and they turn into the symmetry of the
energy-momentum tensor T̊ μν for the spatial indices. The form of the last three conservation
laws (110) is special to the nonrelativistic Lagrangian L̂0, and it is due to the Galilean-
gauge invariance (104), (106). These relations indicate that the total momentum density
P i is identically equal up to the factor m

q
to the microcurrent density J i . This important

identity is analogous to the kinematic representation p = mv of the momentum p of a point
charge. The proportionality of the momentum and the current is known to occur for systems
governed by the nonlinear Schrödinger equations, [42, Sect. 2.3].

If charge is at rest, we find the following expressions for the total energy density of the
dressed charge:

E̊ = χ2

2m

[(
∇ψ̊

)2 + G
(
ψ̊2

)]
+ ψ̊2ϕ̊ − (∇ϕ̊)2

8π
. (111)

2.7.2 Many Interacting Charges

We discuss now briefly the structure of the Lagrangian and the energy-momentum tensor.
The Lagrangian L̂ defined by (75), (76) is gauge invariant with respect to (101) and the
second gauge transformations,

ψ → e− ieλ(x)
χc ψ, Aμ → Aμ + ∂μλ. (112)

In this case every 4-current J �μ = (cρ�,J�) defined by relations (78) satisfies the conserva-
tion/continuity equations (79) and the charge normalization condition (80).

The presence of the external EM field turns the dressed charge into an open system with
consequent subtleties in the treatment of the energy-momentum, [6]. An instrumental ele-
ment in the analysis of the energy-momentum tensor is its partition between the charge and
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the EM field. In carrying out such a partition we are guided by two principles: (i) both the
energy-momenta tensors and the forces have to be gauge invariant; (ii) the forces must be
of the Lorentz form. The second principle is evidently special to the EM system consist-
ing of the charge and the EM field. In the regime of remote interactions it makes sense to
introduce dressed charges and attribute to every charge its EM field via the potential ϕ� as
defined by relations (77) and (81). Based on the potentials ϕ� we define the corresponding
energy-momentum tensor ��μν . The energy-momentum tensor can be written as a sum of
gauge invariant energy-momentum tensors T̃ μν and �μν for the charge and the EM field
respectively. The following conservations laws for the individual charges and the EM field
hold:

∂μT̃ �μν = f �ν + f �ν
ex , (113)

∂μ��μν = −f �ν, (114)

where

f �ν = 1

c
J �

μF �νμ =
(

1

c
J� · E, ρ�E

)
,

f �ν
ex =

(
1

c
J� · Eex, ρ

�Eex + 1

c
J� × Bex

)
.

(115)

We would like to point out that the energy-momentum conservation equations (113)–(115)
can be viewed as equations of motion in an elastic continuum, [29, Sect. 6.4, (6.56), (6.57)],
similar to the case of kinetic energy-momentum tensor for a single relativistic particle, [33,
Sect. 37, (3.24)]. It is important to remember though that in contrast to the point mechanics
the equations of motion (113)–(115) must always be complemented with the field equations
(77) without which they do not have to hold and are not alone sufficient to determine the
motion. We also recognize in f �ν and f �ν

ex in the equations of motion (113)–(115) respec-
tively the Lorentz force densities for the charge in the EM field of charges and the same for
the external EM field. Observe that (113)–(114) satisfy manifestly the Newton’s principle
“action equals reaction” for all involved densities at every point of the space-time. Namely,
the �-the charge EM field F�νμ acts upon the �-the charge with the force density f �ν ac-
cording to (113) whereas the action of the same charge upon its EM field F�νμ is exactly
opposite −f �ν in (114).

2.8 Stability Issues

A comprehensive analysis of the stability is complex, involved and beyond the scope of
this paper. Nevertheless, we would like to give a concise consideration to three aspects
of stability for well separated charges in the nonrelativistic regime: (i) no “blow-up” or
“collapse”; (ii) preservation with high accuracy of the form of a wave-corpuscle solution
for a limited time; (iii) preservation of spatial localization for certain solutions on long time
intervals.

Here is an argument for why there can not be a “blow-up” in finite time. A “blow-up” is
an issue since the nonlinearity G′(s) provides focusing properties with consequent soliton-
like solutions ψ̊�, ϕ̊�. In our model the possibility of “blow up” is excluded when we define
[G�

a]′ to be a constant for large amplitudes of the fields, namely for s ≥ (ψ̊�)2(0) as in (47).
This factor combined with the charge normalization condition (11) implies that the energy
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is bounded from below. Indeed, the energy of a free charge can be written in the form

E (ψ,ϕ) =
∫

R3

|∇ϕ|2
8π

+ χ2

2m

[|∇ψ |2 + G
(|ψ |2)] dx, (116)

where ϕ = ϕψ is determined from (81). In view of relations (47) the nonlinearity derivative
G′(s) is bounded, implying G(|ψ |2) ≥ −C|ψ |2 for a constant C. That combined with the
charge normalization condition (11) implies boundedness of the energy from below, namely

E (ψ,ϕ) ≥ −C for all ψ,ϕ, ‖ψ‖2 =
∫

R3
|ψ |2 dx = 1. (117)

A similar argument in the case of many interacting charges also shows that the energy is
bounded from below. Since energy is a conserved quantity, using the boundedness of the
energy from below one can prove along lines of [24] the global existence of a unique solution
ψ�(t,x), ϕ�(t,x) to (77), (82) for all times 0 ≤ t < ∞ for given initial data ψ�(0,x). Note
that finite time stability does not require charges center to be separated, they may overlap
as in hydrogen atom model. This may lead to a substantial change of size and shape, for
example in hydrogen atom electron size shrinks several times thanks to attraction to proton.

The second aspect of the stability is about a preservation of the wave-corpuscle shape
with high accuracy for limited times. The discrepancies in the field equations (22) after
substitution of wave-corpuscles are of the order |q||ϕ̄|a2/R2 for the charge in an external
EM field, where |ϕ̄| is a measure of variation of the external potential ϕex around trajectory.
Therefore the fields ψ,ϕ have to be close to the wave-corpuscle of the form (19) on time
intervals of order |q||ϕ̄|a2/(χR2) where R is a spatial scale of inhomogeneity of the external
field, and |q||ϕ̄| is a global variation of the external field potential energy near the trajectory
of the wave-corpuscle.

The third aspect is a stability on very long time intervals which is understood in a broader
sense, namely when a charge maintains its spatial localization without necessarily preserv-
ing the exact form of a wave-corpuscle. It is shown in Sect. 2.6 that such a broad localization
assumption is sufficient to identify the corresponding point charge trajectory. Now let us
consider the following argument for the charge stability based on properties of the energy.
For simplicity let us consider a single free charge described by (9)–(10) with zero external
fields with energy (116). The energy conservation law implies

E (ψ(t), ϕ(t)) = E (ψ(0), ϕ(0)) , for all 0 ≤ t < ∞. (118)

Note that the rest solution ψ̊ as in (12), (13) is a critical point of E defined by (116). Let
us assume that the rest solution ψ̊ is the global minimum under the charge normalization
constraint, namely

E
(
ψ̊, ϕψ̊

)
= min

‖ψ‖=1
E
(
ψ,ϕψ

) = E0. (119)

Consider then the initial data ψ0 for (9)–(10) at t = 0 that (i) satisfies the charge
normalization condition (11); (ii) is close to ψ̊ and has almost the same energy, i.e.
|E (ψ(0), ϕ(0)) − E0| � 1. Note that since every spatial shift ψ̊(x − r), ϕψ̊(x − r) of ψ̊(x),
ϕψ̊(x) produces fields satisfying the charge normalization condition (11) and of the same
energy, the minimum in (119) has to be degenerate. But if we assume that all the degeneracy
is due to the spatial translations, rotations and the multiplication by eis , then the condition
|E (ψ(t), ϕ(t))−E0| � 1 though allowing for spatial translation of ψ̊(x), ϕψ̊(x) to large dis-
tances and times, still implies that form of |ψ(t,x − r(t))|, ϕ(t,x − r(t)) has to be almost
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the same as the form of ψ̊(x), ϕ̊(x). The same argument works for a local minimum that is
non-degenerate modulo spatial translations, rotations and the multiplication by eis .

3 Relativistic Theory

In this section we give a sketch of the relativistic theory for a single free charge and many
interacting charges with more detailed exposition available in [6].

3.1 Single Free Relativistic Charge

We describe a bare single elementary charge by a complex-valued scalar field ψ = ψ(x) =
ψ(t,x), where x = (t,x) ∈ R

4 is the space-time variable and it is coupled with the EM field
described by its 4-potential Aμ = (ϕ,A). The relativistic Lagrangian of a single charge is

L0 (ψ,Aμ) = χ2

2m

{
1

c2

∣∣∣∂̃tψ

∣∣∣2 −
∣∣∣∇̃ψ

∣∣∣2 − κ2
0 |ψ |2 − G(ψ∗ψ)

}

+ 1

8π

[(
∇ϕ + 1

c
∂tA

)2

− (∇ × A)2

]
, (120)

where the covariant derivatives ∂̃t and ∇̃ are defined by the formulas

ψ;μ =
(

1

c
∂̃tψ,−∇̃ψ

)
, ∂̃t = ∂t + iqϕ

χ
, ∇̃ = ∇ − iq�A

χc
(121)

and

κ0 = mc

χ
. (122)

The Lagrangian L defined by (120) is manifestly local, Lorentz invariant, and gauge invari-
ant with respect to the second-kind (local) gauge transformation

ψ → e− iqλ(x)
χc ψ, Aμ → Aμ + ∂μλ(x), (123)

as well as with respect to the group of global (the first-kind) gauge transformations

ψ → e−iqλψ, Aμ → Aμ, (124)

for any real numbers λ. Using the gauge invariance of the Lagrangian L0 we derive the
following expression for the conserved charge 4-vector micro-current Jμ = (ρc,J)

ρ =−q|ψ |2
mc2

(
χ Im

∂tψ

ψ
+ qϕ

)
,

J� = q|ψ |2
m

(
χ Im

∇ψ

ψ
− qA

c

)
,

(125)

satisfying the conservation/continuity equations ∂νJ
ν = 0 or

∂tρ + ∇ · J = 0. (126)
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The formulas for the 4-microcurrent density Jμ = (ρc,J) are well known in the literature,
see for instance, [46, (11.3)], [30, Sect. 3.3, (3.3.27), (3.3.34), (3.3.35)]. As a consequence
of the continuity equations (155) the space integral of every ρ(x) is a conserved quantity,
which we assign to be exactly q , i.e. we assume the following charge normalization

∫
R3

ρ(x)

q
dx = − 1

mc2

∫
R3

(
χ Im

∂tψ

ψ
+ qϕ

)
|ψ |2 dx = 1. (127)

To emphasize the fact that our charge is always coupled with the EM field we name the pair
{ψ,Aμ} dressed charge. So whenever we use the term dressed charge we mean the charge
and the EM field as an inseparable entity.

The Euler-Lagrange equations for the Lagrangian L0 are

[
c−2∂̃2

t − ∇̃2 + κ2 + G′ (|ψ |2)]ψ = 0, (128)

∇ ·
(

1

c
∂tA + ∇ϕ

)
= −4π

∑
�

ρ�, (129)

∇ × (∇ × A) + 1

c
∂t

(
1

c
∂tA + ∇ϕ

)
= 4π

c

∑
�

J�. (130)

with usual relations between EM potentials and fields

E = −∇ϕ − 1

c
∂tA, B = ∇ × A. (131)

Observe that (129)–(130), which are a detalization of (6), coincide exactly with the Maxwell
equation written for the potentials.

Evidently the Lagrangian L0 defined by the formulas (120) is obtained from the Klein-
Gordon Lagrangian, [20, Sects. 7.1, 11.2], [7, Sect. III.3], by adding to it the nonlinear term
G(ψ∗ψ). The Lagrangian expression indicates that the charge is coupled to the EM field
through the covariant derivatives, and such a coupling is well known and called minimal.
The Klein-Gordon Lagrangian is a commonly used model for a relativistic spinless charge,
and the introduced nonlinearity G(ψ∗ψ) can provide for a binding self-force. Nonlinear al-
terations of the Klein-Gordon Lagrangian were considered in the literature, see, for instance,
[20, Sects. 11.7, 11.8] and [8], for rigorous mathematical studies. Our way to choose of the
nonlinearity G(ψ∗ψ) differs from those.

Let us take a closer look at the components of the Lagrangian (120). It involves constants
κ0, c, χ and m and, acting similarly to the case of the Klein-Gordon equation for a relativistic
particle (see [32, Sects. 1, 18, 19]), we introduce a fundamental frequency ω0 = mc2

χ
relating

it to the above constants by formulas (154). A key component of the Lagrangian in (120)
is a real-valued nonlinear function G(s) providing for the charge cohesive self-interaction.
The second part of the expression (120) is the standard Lagrangian of the EM field coupled
to the charge via the covariant derivatives. Observe that the Lagrangian L0 is manifestly
(i) local; (ii) Lorentz and gauge invariant, and (iii) it has a local nonlinear term providing
for a cohesive self-force similar to the Poincaré force for the Lorentz-Poincaré model of an
extended charge.

Since a single charge is coupled at all times to the EM field we always deal with the
system “charge-EM field” or, shortly, with the dressed charge. As in the nonrelativistic case
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dressed charge is considered to be at rest at the origin x = 0 if it is a radial solution to the
field equations (128)–(130) of the following special form

ψ(t,x)= e−iω0t ψ̊ (|x|) , ϕ(t,x) = ϕ̊ (|x|) ,

A(t,x)=0, ω0 = mc2

χ
,

(132)

and we refer to such a solution as ω0-static. Plugging the above expression into (128)–(130)
we get the following system of equations

−∇2ϕ̊ = 4πρ̊, ρ̊ = q

(
1 − qϕ̊

mc2

)
ψ̊2, (133)

−∇2ψ̊ + mϕ̊

χ2
q

(
2 − qϕ̊

mc2

)
ψ̊ + G′

(
|ψ̊ |2

)
ψ̊ = 0, (134)

where � = ∇2 is the Laplace operator, this system is relativistic version of (12)–(13). We
refer to the state of the dressed charge of the form (132) as ω0-static. Using Green’s function
to solve (133) we see that the charge form factor ψ̊ determines the Coulomb-like potential
ϕ̊ = ϕ̊ψ̊ by the formula

ϕ̊ = ϕ̊ψ̊ = 4πq

(
−∇2 + 4πq2

mc2
ψ̊2

)−1

ψ̊2. (135)

−∇2ψ̊ + mϕ̊ψ̊

χ2
q

(
2 − qϕ̊ψ̊

mc2

)
ψ̊ + G′

(
|ψ̊ |2

)
ψ̊ = 0. (136)

The radial functions ψ̊ and ϕ̊ play instrumental role in our constructions, and we name them
respectively charge form factor and form factor potential. As it follows from (133), the
charge form factor ψ̊ = ϕ̊ψ̊ determines the form factor potential ϕ̊ by the formula (135).
Consequently, plugging in the above expression into (134) we get the nonlinear equa-
tion (136). Equation (136) signifies a complete balance (equilibrium) of the three forces
acting upon the resting charge: (i) internal elastic deformation force associated with the
term −�ψ̊ ; (ii) charge’s electromagnetic self-interaction force associated with the term
mϕ̊

ψ̊

χ2 (2q − q2ϕ̊
ψ̊

mc2 )ψ̊ ; (iii) internal nonlinear self-interaction of the charge associated with

the term G′(|ψ̊ |2)ψ̊ . We refer to (136) as charge equilibrium equation. Importantly, as in
non-relativistic case, the charge equilibrium equation (136) establishes an explicit relation
between the form factor ψ̊ and the self-interaction nonlinearity G.

Hence being given the form factor ψ̊ we can find from the equilibrium equation (136) the
self-interaction nonlinearity G which exactly produces this factor under an assumption that
ψ̊(r) is a nonnegative, monotonically decaying and sufficiently smooth function of r ≥ 0.
Having fixed the nonlinear self-interaction G based on the charge equilibrium equation (136)
the challenge is to figure out the dynamics of the charge as it interacts with other charges or
is acted upon by an external EM field and hence accelerates. The nonlinear self-interaction
G evidently brings into the charge model non-electromagnetic forces, the necessity of which
for a consistent relativistic electromagnetic theory was argued convincingly by W. Pauli in
[33, Sect. 63].
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For the fundamental pair {ψ̊, ϕ̊} the corresponding microcharge density is defined by
(125) turns into

ρ = ρ (|x|) = q

(
1 − qϕ̊(|x|)

mc2

)
ψ̊2 (|x|) . (137)

The symmetric and gauge invariant energy-momenta tensors T μν and �μν for, respectively,
the charge and the EM field are as follows, [6],

T μν = χ2

2m

{[
ψ ;μ∗ψ ;ν + ψ ;μψ ;ν∗]− [

ψ∗
;μψ ;μ − κ2

0 ψ∗ψ − G(ψ∗ψ)
]
gμν

}
, (138)

�μν = 1

4π

(
gμγ Fγ ξF

ξν + 1

4
gμνFγ ξF

γ ξ

)
, (139)

where gμν is the Minkowski tensor, Fγξ is EM tensor as in (114). The energy conservation
equations are given by

∂μT μν = f ν, ∂μ�μν = −f ν, (140)

where

f ν = 1

c
JμF νμ =

(
1

c
J · E, ρE + 1

c
J × B

)
(141)

is the Lorentz force density.
Using the Lorentz invariance of the system we can obtain, as it is often done, a represen-

tation for the dressed charge moving with a constant velocity v simply by applying to the
rest solution (132) the Lorentz transformation from the original “rest frame” to the frame in
which the “rest frame” moves with the constant velocity v. Namely, introducing

β = v
c
, β = |β| , γ =

(
1 −

(v

c

)2
)−1/2

, (142)

ω = γω0, k = γβ
ω0

c
, (143)

we obtain the following representation for the dressed charge moving with velocity v

ψ(t,x)= e−i(ωt−k·x)ψ̊
(
x′) ,

ϕ(t,x)=γ ϕ̊
(∣∣x′∣∣) , A (t,x) = γβϕ̊

(∣∣x′∣∣) ,
(144)

where

x′ = x + γ − 1

β2
(β · x)β − γ vt, or x′

‖ = γ
(
x‖ − vt

)
, x′

⊥ = x⊥, (145)

x‖ and x⊥ refer, respectively, to the components of x parallel and perpendicular to the ve-
locity v, with the fields given by

E(t,x)=−γ∇ϕ̊
(∣∣x′∣∣)+ γ 2

γ + 1

(
β · ∇ϕ̊

(∣∣x′∣∣))β,

B(t,x)=γβ × ∇ϕ̊
(∣∣x′∣∣) .

(146)
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The above formulas provide for a solution to the field equations (128)–(130). They show,
in particular, that the fields of the dressed charge contract by the factor γ as it moves with
the velocity v compared to their rest state. The second factor in the formula (144) for ψ

involves the form factor ψ̊(r), which is a monotonically decreasing function of r ≥ 0 decay-
ing at infinity. For such a form factor the form factor potential ϕ̊(r) decays at infinity as the
Coulomb’s potential as it follows from (135), i.e. ϕ̊(r) ∼ qr−1 for large r . Consequently, the
dressed charge moving with constant velocity v as described by (144)–(145) remains well
localized and does not disperse in the space at all times justifying its characterization as a
wave-corpuscle. Observe that our relations (148) under the assumption that χ = � are iden-
tical to those of a free charge as described by the Klein-Gordon equation, [32, Sects. 1, 18],
but there are several significant differences between the two models which are as follows.
First of all, our charge is a dressed charge described by the pair {ψ,Aμ}. From the very
outset it includes the EM field as its inseparable part whereas the Klein-Gordon model de-
scribes a free charge by a complex-valued wave function ψ which is not coupled to its own
EM field (not to be confused with an external EM field). Second, our free dressed charge
when it moves, evidently preserves its shape up to the natural Lorentz construction whereas
any wavepacket satisfying Klein-Gordon equation spreads out in the course of time.

The first oscillatory exponential factor in (144) is the de Broglie plane wave of the fre-
quency ω = ω(k) and the de Broglie wave-vector k, satisfying

ω2 − c2k2 = ω2
0, χω0 = mc2. (147)

Notice that the equalities (142)–(143) readily imply the following relations between ω, k
and v

ω = ω (k) =
√

ω2
0 + c2k2, v = ∇kω (k) , (148)

where ω0 = ω is given by (154). Notice that the above relations show, in particular, that
for the freely moving dressed charge defined by equalities (142)–(145) its velocity v equals
exactly the group velocity ∇kω(k) computed for the de Broglie wave vector k. This fact
clearly points to the wave origin of the charge kinematics as it moves in the three dimen-

sional space continuum with the dispersion relation ω =
√

ω2
0 + c2k2. Notice that this dis-

persion relation is identical to the dispersion relation of the Klein-Gordon equation as a
model for a free charge, [32, Sect. 18]. Based on the Lagrangian L0 we found the symmet-
ric energy-momentum tensor, which shows that the dressed charge moving with a constant
velocity v and described by (142)–(145) has momentum P and energy E, which satisfy the
Einstein-de Broglie relations

P = �k = γβ
�ω0

c
= γ m̃v, (149)

E = �ω = �γω0 = γ m̃c2 = c
√

P2 + m̃2c2, (150)

E = �ω, P = �k. (151)

The total 4-momentum P is obtained from its density by integration over the space R
3, since

the dressed charge is a closed system, its total 4-momentum Pν = (E, cP) is 4-vector. We
would like to point out that, though the above argument used to obtain the relations (151) is
rather standard, in our case relations (151) are deduced rather than rationally imposed.
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3.2 Many Interacting Charges

Relativistic theory of many interacting point particles is known to have fundamental diffi-
culties. “The invariant formulation of the motion of two or more interacting particles is com-
plicated by the fact that each particle will have a different proper time. . . . No exact general
theory seems to be available”, [7, Sect. II.1, System of colliding particles]. Some of these
difficulties are analyzed by H. Goldstein in his classical monograph, [17, Sect. 7.10]: “The
great stumbling block however is the treatment of the type of interaction that is so natural
and common in nonrelativistic mechanics—direct interaction between particles. . . . In spe-
cial relativity, where signals cannot travel faster than the speed of light, action-at-a-distance
seems outlawed. And in a certain sense this seems to be the correct picture. It has been
proven that if we require certain properties of the system to behave in the normal way (such
as conservation of total linear momentum), then there can be no covariant direct interac-
tion between particles except through contact forces.” Another argument, due to von Laue,
[44], on the incompatibility of the relativity with any finite dimensional mechanical system
was articulated by W. Pauli, [33, Sect. 45]: “. . . This in itself raised strong doubts as to the
possibility of introducing the concept of a rigid body into relativistic mechanics247. The fi-
nal clarification was brought about in a paper by Laue248, who showed by quite elementary
arguments that the number of kinematic degrees of freedom of a body cannot be limited,
according to the theory of relativity.”

Now we ask ourselves what features of point charges mechanics can be integrated into a
relativistic mechanics of fields? It seems that the above arguments by Goldstein, von Laue
and Pauli completely rule out any Lagrangian mechanics with finitely many degrees of free-
dom even as an approximation because of its incompatibility with a basic relativity require-
ment for the signal speed not to exceed the speed of light. On the constructive side, these
arguments suggest that (i) the EM field has to be an integral part of charges mechanics, (ii)
every charge of the system has to be some kind of elastic continuum coupled to the EM field.
We anticipate though that point mechanics features that can be integrated into a relativistic
field mechanics are limited and have subtler manifestation compared to the nonrelativistic
theory. We expect point mechanics features to manifest themselves in (i) identification of
the energy-momentum tensor for every individual bare charge; (ii) certain partition of the
EM field into a sum of EM fields attributed to individual charges with consequent formation
of dressed charges, that is bare charges with attached to them EM fields.

In the theory proposed here we address the above challenges by (i) the principal depar-
ture from the concept of point charge, which is substituted by a concept of wave-corpuscle
described by a complex valued function in the space-time; (ii) requirement for every charge
to interact directly to only the EM field implying that different charges interact only via
the EM field. We describe �-th elementary spinless charge by a complex-valued scalar field
ψ� = ψ�(t,x), where x = (t,x) ∈ R

4 is the space-time variable and the EM field by its
4-potential Aμ = (ϕ,A). The system Lagrangian L is a function of the 4-potential and the
covariant derivatives ψ�

;μ defined by the following formulas

ψ�
;μ =

(
1

c
∂̃�

t ψ
�,−∇̃�ψ�

)
, where

∂̃�
t = ∂t + iq�ϕ

χ
, ∇̃� = ∇ − iq�A

χc
,

(152)
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and ψ�∗ denotes complex conjugate to ψ�, c is the speed of light. The system Lagrangian L
has the following form:

L
({ψ�,ψ�

;μ},Aμ
) =

N∑
�=1

χ2

2m�

{
ψ�∗

;μψ�;μ − κ�2ψ�∗ψ� − G�
(
ψ�∗ψ�

)}

+ 1

8π

[(
∇ϕ + 1

c
∂tA

)2

− (∇ × A)2

]
, (153)

where common summation convention is used for the index μ, G� is a nonlinear self-
interaction function and

κ� = ω�

c
= m�c

χ
, ω� = m�c2

χ
. (154)

We assume that for every �: (i) m� > 0 is the charge mass; (ii) q� is a real valued (positive
or negative) charge; (iii) χ > 0 is a parameter similar to the Planck constant � .

The gauges invariance of the system Lagrangian L yields for �-th charge a conserved
4-vector micro-current J �μ = (ρ�c,J�) defined by the formulas (125) with natural substitu-
tions ψ → ψ�, m → m� and q → q�. The conservation/continuity equation takes the form

∂νJ
�ν = 0 or ∂tρ

� + ∇ · J� = 0, � = 1, . . . ,N. (155)

As a consequence of the continuity equations (155) the space integral of every ρ�(x) is a
conserved quantity, which we assign to be exactly q�, i.e. we assume the following charge
normalization for � = 1, . . . ,N :

∫
R3

ρ�(x)

q�
dx = − 1

m�c2

∫
R3

(
χ Im

∂tψ
�

ψ�
+ q�ϕ

)∣∣ψ�
∣∣2 dx = 1. (156)

The Euler-Lagrange equations derived from L can be written in the form
[
c−2∂̃�2

t − ∇̃�2 + κ�2 + G�′
(∣∣ψ�

∣∣2)]ψ� = 0, � = 1, . . . ,N, (157)

∇ ·
(

1

c
∂tA + ∇ϕ

)
= −4π

∑
�

ρ�, (158)

∇ × (∇ × A) + 1

c
∂t

(
1

c
∂tA + ∇ϕ

)
= 4π

c

∑
�

J�. (159)

Equations (157)–(159) together with the normalization (156) constitute a complete set of
equations describing the fields {ψ�,E,B}. Observe that (158)–(159) are exactly the Maxwell
equations written in terms of the field potentials, [23].

In any classical field theory over the four-dimensional continuum of space-time the
energy-momentum tensor is of a fundamental importance. It provides the density of the en-
ergy, the momentum and the surface forces as well as the conservation laws that govern the
energy and momentum transport. In this case we can naturally assign to every �-th particle
its energy momentum tensor T �μν by formula (138) which together with energy momentum
�μν of the EM field satisfy the following conservations laws

∂μT �μν = f �ν, ∂μ�μν = −f ν, (160)
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where f �ν and f ν are the Lorentz forces densities defined by

f �ν = 1

c
J �

μF νμ, f ν =
∑

�

f �ν = 1

c
JμF νμ, Jμ =

∑
�

J �
μ. (161)

It is worth to point out that it is the differential form of the energy-momentum conserva-
tion (160)–(161) which involve the densities of energy, momentum and forces rather than
the original field equations are more directly related to corpuscular properties of the fields.
In particular, for the charge model we study here the Lorentz force density arises in the
differential form of the energy-momentum conservation equations and not in the original
field equations. For detailed considerations of the structure and properties of the energy-
momentum tensor including its symmetry, gauge invariance and conservation laws we refer
the reader to [6].

3.3 Relations Between Relativistic and Non-relativistic Theories

The time harmonic factor e−iω0t which appears in ω0-static states as in (132) plays a very
important role in this theory, including the nonrelativistic case. To reflect that we introduce
a change of variables

ψ(t,x) → e−iω0tψ(t,x) (162)

and substitute it in the Lagrangian L0 for a single charge defined by (153) with N = 1 to
obtain the Lagrangian Lω0 , which we call frequency shifted, it has the form

Lω0

(
ψ,ψ∗,Aμ

) = χ

2
i
(
ψ∗∂̃tψ − ψ∂̃∗

t ψ∗
)

+ χ2

2m

{
1

c2
∂̃tψ∂̃∗

t ψ∗ − ∇̃ψ∇̃∗ψ∗ − G(ψ∗ψ)

}

+ 1

8π

[(
∇ϕ + 1

c
∂tA

)2

− (∇ × A)2

]
, (163)

where we use notation (152) with index � omitted. The Lagrangian Lω0 defined by the for-
mula (163) is gauge and space-time translation invariant, it also invariant with respect to
space rotations but it is not invariant with respect to the entire group of Lorentz transforma-
tions. Notice also that ω0-static states for the original Lagrangian defined by (153) turn into
regular static states for the Lagrangian Lω0 , and that was one of the reasons to introduce it.

We describe now briefly how relativistic Lagrangian was modified to obtain non-
relativistic. The first step in this modification is the change of variables (162) which results
in the construction of the frequency-shifted Lagrangian Lω0 defined by (163). Then a gauge
invariant and nonrelativistic Lagrangian L̂0 given by (7) is obtained from the Lagrangian

Lω0 by omitting in (163) the term χ2

2mc2 ∂̃tψ∂̃∗
t ψ∗ and setting A = 0. To make transition from

relativistic Lagrangian and equations to non-relativistic more transparent, we introduce here
changes of variables allowing to recast the original field equations into a dimensionless form.
These equations in dimensionless form allow to clarify three aspects of the theory for a sin-
gle charge: (i) out of all the constants involved there is only one parameter of significance
denoted by α, and it coincides with the Sommerfeld fine structure constant αS  1/137 if
χ = � and q,m are the electron charge and mass respectively; (ii) the non-relativistic La-
grangian (7) can be obtained from the relativistic one via the frequency-shifted Lagrangian
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(163) by setting there α = 0; (iii) the simultaneous fulfillment of charge and energy normal-
ization conditions in relativistic case follows from smallness of α.

Recall that the single charge nonrelativistic Lagrangian L̊0 defined by (7) is constructed
in Sect. 2.7 based on the relativistic one via the frequency shifted Lagrangian Lω0 defined
by (162)–(163). Let us introduce the following constants and new variables:

aχ = χ2

mq2
, α = q2

χc
, ω0 = mc2

χ
= c

αaχ

, (164)

α2ω0t = τ, x = aχ y,

ψ(x) = 1

a
3/2
χ

�

(
x
aχ

)
, (165)

ϕ(x) = q

aχ

�

(
x
aχ

)
, A(x) = q

aχ

A

(
x
aχ

)
.

In those new variables the field equations derived from the Lagrangian Lω0 turn into the
following dimensionless form:

α2
(
∂τ + i�̄

)2
� − 2i

(
∂τ + i�̄

)
� − (∇y − iαĀ

)2
� + G′ (|�|2)� = 0,

1

4π
∇y · (α∂τ A + ∇y�

) =
(

α2 Im
∂τ�

�
+ α2�

)
|�|2 − |�|2 , (166)

− (∇y × (∇y × A
)+ α∂τ

(
α∂τ A + ∇y�

)) = −4πα

(
Im

∇y�

�
+ αĀ

)
|�|2 .

Now we would like to show that the dimensionless form of the non-relativistic equations
field equations (9), (10) can be obtained from the field equations (166) in the limit α → 0.
To have a nonvanishing external magnetic field in the limit α → 0 we set

Aex = α−1A0
ex. (167)

Plugging in the expression (167) into (166) we obtain in the limit α → 0 the following
dimensionless version of the field equations (9), (10):

i∂τ� =−1

2

(∇y − iA0
ex

)2
� + (� + �ex)� + 1

2
G′ (|�|2)�,

−∇2
y · �=4π |�|2 ,

(∇y × (∇y × A
)) = 0.

(168)

To get an insight in the nonrelativistic case as an approximation to the relativistic one we
would like to make a few comments on the relative magnitude of terms that have to be
omitted in (166) in order to obtain (168). The nonrelativistic case is defined as one when
the charge velocity v is much smaller than the speed of light c, and a careful look at those
omitted terms in (166) that have factors α and α2 shows that they can be small not only
because of α, but also because of the smallness of typical values of velocities compared to
the speed of light. Indeed, every term that has factor α involves time derivatives with only
one exception: the term α2(i�̄)2� . An estimation of the magnitude of the omitted terms for
solutions of the form of wave-corpuscles (19) indicated that every such a term is of order
α|v|/c where v is the wave-corpuscle velocity. The only omitted term in (166) which does
not involve time derivatives is α2�2� and, in fact, it can be preserved in the nonrelativistic
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system which would be similar to (168) with properties analogous to (9). Analysis of that
system is more involved and the treatment is similar to the one for the rest solution of the
relativistic equation, [6].

4 Relation to Quantum Theory

While our neo-classical model is clearly different in setup from a conventional quantum
model, the incorporation of nonlinear Schroedinger or Klein-Gordon equations on spacetime
implies that some phenomena which are conventionally thought of as belonging to the realm
of quantum theory properties, such as spectral lines of hydrogen or the interference pattern
in the double slit experiment, which usually are computed with one-particle wave functions,
may very well feature in our model as well. The following three subsections are meant as a
first attempt to sort out which quantum phenomena may and which may not be accounted
for by our model.

4.1 Hydrogen Atom Model

The purpose of this section is to introduce a hydrogen atom model within the framework of
our non-relativistic theory for two interacting charges: an electron and a proton. We have no
intend though to study this model in detail here but leave it as a subject for a separate paper.
Our modest effort on the subject in this paper is, first, to indicate a similarity between our and
Schrödinger’s hydrogen atom models and to contrast it to any kind of Kepler model. Another
point we can make based on our hydrogen atom model is that our theory does provide
a basis for a regime of close interaction between two charges which differs significantly
from the regime of remote interaction which is the primary focus of this paper and which
was considered in detail in previous sections. Evidently, the results on interaction of many
charges in the regime of remote interaction do not apply to the case of two charges in the
hydrogen atom since they are in close proximity and the potentials can vary significantly
over their locations. Hence, other methods have to be developed for the hydrogen atom
model.

To model interaction of two charges at a short distance we must consider the original
system (77) for two charges with −q1 = q2 = q > 0, that is

iχ∂tψ1 =−χ2∇2ψ1

2m1
− q (ϕ1 + ϕ2)ψ1 + χ2G′

1

(|ψ1|2
)
ψ1

2m1
,

−∇2ϕ1 =−4πq |ψ1|2 ,

iχ∂tψ2 =−χ2∇2ψ2

2m2
+ q (ϕ1 + ϕ2)ψ2 + χ2G′

2

(|ψ2|2
)
ψ2

2m2
,

∇2ϕ2 =−4πq |ψ2|2 .

(169)

Note that the model describes proton-electron interaction if q = e is the electron charge,
χ = � is the Planck constant, m1 and m2 are the electron and the proton masses respectively.
Let us look now at time-harmonic solutions to the system (169) in the form

ψ1(t,x)= e−iω1t u1(x), ψ2 = e−iω2t u2(x),

�1 =−ϕ1

q
, �2 = ϕ2

q
.

(170)
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The system (169) for such solutions turns into the following nonlinear eigenvalue problem:

−a1

2
∇2u1 + (�1 − �2)u1 + a1

2
G′

1

(|u1|2
)
u1 = χ

q2
ω1u1,

−a2

2
∇2u2 + (�2 − �1)u2 + a2

2
G′

2

(|u2|2
)
u2 = χ

q2
ω2u2, (171)

where a1 = χ2

q2m1
, a2 = χ2

q2m2
.

Here a1 coincides with Bohr radius. We seek solutions of (171) satisfying the charge nor-
malization conditions

∫
R3

|u1|2 dx = 1,

∫
R3

|u2|2 dx = 1. (172)

The potentials �i are presented using (169) as follows:

�i = 4π
(−∇2

)−1 |ui |2 =
∫

R3

|ui |2(y)

|y − x| dy, i = 1,2. (173)

Let us introduce now the following energy functional

E (u1, u2) = q2
∫

R3

{
a1[|∇u1|2 + G1(|u1|2)]

2
+ a2[|∇u2|2 + a2G2(|u2|2)]

2

− (�1 − �2)
(|u2|2 − |u1|2

)− |∇(�1 − �2)|2
8π

}
dx, (174)

where �1,�2 are determined in terms of u1, u2 by (173). Notice that (171) describe station-
ary points of the energy functional E and can be obtained by its variation under constraints
(172) with the frequencies ω1,ω2 being the Lagrange multipliers. Hence variational meth-
ods can be applied to study the nonlinear eigenvalue problem (171)–(172). Our analysis is
based on two points. First, the hydrogen linear Schrödinger operator’s negative eigenval-
ues, which describe hydrogen spectrum, coincide with the critical points of corresponding
quadratic functional Elin(u1) under the first constraint of (172), the eigenvalues can be de-
termined by a min-max method. The second point is that under certain conditions, when
applying the min-max method to the nonlinear functional E (u1, u2) subjected to the con-
straints, we can approximate it by Elin(u1) + C with a certain constant C. The smallness
of the ratio m1/m2

∼= 1/1836 of electron to proton masses plays an important role in the
analysis, this smallness implies that for the critical points with low energies the potential �2

of the proton is close to the Coulomb’s potential 1/|x| at spatial scales of the order a1. If
one assumes the characteristic size a1 of a free electron is 10–100 times larger then the Bohr
radius, then our preliminary analysis shows that the energy levels of our model for hydro-
gen atom are in a good agreement with the classical spectral theory of hydrogen. As to the
assumption that a free electron significantly contracts in size when it is bound to a proton, it
seems to us to be quite reasonable. Note also that the existence of the discrete energy levels
of nonlinear functionals under certain general restrictions is well known. Since the energy
functional and the constraints are invariant with respect to multiplication by −1, one can
apply the Lusternik-Schnirelman theory which guarantees the existence of an infinite set of
critical points under appropriate conditions see, for example, [21, 28] and references therein.
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Note that (171) provide a preliminary model for hydrogen atom and we need to modify
the way electrostatic compensation is introduced. The reason for the modification can be
seen from the first equation (171) for the electron. Our analysis shows that since m1/m2 is
small, when we consider levels of the energy we can replace with a good accuracy controlled
by m1/m2 the energy E (u1, u2) of the proton-electron system by energy of the electron with
the potential of the proton electrostatic field replaced by Coulomb potential 1

|x| :

E1 (u1) = q2
∫

R3

a1[|∇u1|2 + G1(|u1|2)]
2

+
(

�1 − 1

|x|
)

|u1|2 − |∇�1|2
8π

dx. (175)

The equation for the electron takes then the form

−a1

2
∇2u1 +

(
�1 − 1

|x|
)

u1 + a1

2
G′

1

(|u1|2
)
u1 = χ

q2
ω1u1,

�1 =
∫

R3

|u1|2(y)

|y − x| dy.

(176)

The energy E1(u1) looks like the energy of Elin(u1) of the linear Schrodinger hydrogen
model, with two differences: nonlinear term G1(|u1|2) and electrostatic self-interaction term
�1|u1|2. Note that for a free electron these two terms exactly compensate one another pro-
ducing the equilibrium. We can show that if the size parameter a in G′

1 = G′
1,a is large

compared with the Bohr radius a1, the contribution of nonlinear term to energy levels is
small. At the same time, the electrostatic self-interaction term �1|u1|2 gives a contribution
which preserves discreteness of the lower energy levels, but we cannot make it arbitrary
small by variation of the size parameter a. To be able to obtain quantitative agreement with
the Schrödinger hydrogen model energy levels, we need to modify electrostatic compensa-
tion. We need to define it in such a way that it completely compensates electrostatic repelling
not only in the regime of distant interaction but in all regimes.

4.2 Brief Comparison with the Schrödinger Wave Mechanics

The nonrelativistic version of our wave mechanics has many features in common with the
Schrödinger wave mechanics. In particular, the charges wave functions are complex valued,
they satisfy equations resembling the Schrödinger equation, the charge normalization condi-
tion is the same as in the Schrödinger wave mechanics. Our theory provides for a hydrogen
atom model which has a lot in common with that of Schrödinger, but its detailed study is
outside of the scope of this article. There are features of our wave theory though that distin-
guish it significantly from the Schrödinger wave mechanics, and they are listed below with
more detailed considerations available in [6].

• The single-particle wave function is interpreted as a material wave, as in Schrödinger’s
original thinking, and not as a probability amplitude in the sense of Born.

• Every single-particle Lagrangian has a nonlinear self-interaction term providing for a
cohesive force holding it together as it moves freely or accelerates.

• A single charge either free or in external EM field is described by a soliton-like wave
function parametrized by the position and the momentum related to the corresponding
point mechanics. It propagates in the space without dispersion even when it accelerates,
and this addresses one of the above mentioned “grave difficulties” with the Schrödinger’s
interpretation of the wave function expressed by M. Born.
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• Charges are always coupled with and inseparable from the EM field.
• When dressed charges are separated by distances considerably larger than their sizes, their

wave functions and the corresponding EM fields maintain soliton-like representation.
• The correspondence between the wave mechanics and a point mechanics comes through

the closed form soliton-like representation of wave functions in which point mechanics
positions and momenta enter as parameters. In particular, the wave function representation
includes the de Broglie wave vector as an exact parameter, it equals (up to the Planck
constant) the point mechanics momentum. In addition to that, the corresponding group
velocity matches exactly the velocity of a soliton-like solution and the point mechanics
velocity.

• The orthodox Schrödinger wave equation is linear, and any freely propagating wavepacket
spreads out with time, whereas our wave corpuscle preserves its shape. Though the spa-
tial spread of a wave corpuscle is non-zero, the velocity of wave corpuscle is precisely
defined, indicating that Heisenberg uncertainty principle between the position and mo-
mentum of a particle cannot be a universal principle in our model.

• In the case of many interacting charges every charge is described by its own wave function
over the same three dimensional space in contrast to the Schrödinger wave mechanics for
many charges requiring multidimensional configuration space.

• Our theory has a relativistic version based on a local, gauge and Lorentz invariant La-
grangian with most of the above listed features.

4.3 Quantum Statistics and Non-locality

In this subsection, we address the question whether the quantum statistical predictions could
possibly arise from our model.

A key element of the WCM that has not been studied yet is the regime of a time limited
close interaction. More precisely, it is the regime when initially free moving charge under-
goes for a naturally limited time a close interaction with another charge or an external EM
field after which the charge continues to move freely again but with altered location and ve-
locity. A typical example of such an interaction is when one moving charge is scattered by
another one, or when a charge passes through a bounded domain in the space with a strong
external EM field. Let us try to imagine what can happen according to the WCM to a charge
during a time limited close interaction. We recall the reader that in the WCM when charges
are far apart every charge is represented by a particle-like well localized wave function as
in (19) as a result of a fine balance of forces including the nonlinear self-interaction. Impor-
tantly, the cohesive action of the nonlinear self-interaction is very subtle, and by no means
it is a brute attractive force since there is no action at distance in the WCM. Now, when one
charge comes close to another or if it enters a domain with an external EM field varying at
a sufficiently small scale, a fine balance of forces holding the charge together is disrupted.
We can already see consequences of such a disruption in the WCM hydrogen atom model in
Sect. 4.1 where possibly the electron size reduces by a factor of order 10–100 compared to
that of the free electron under attractive action of a single proton. A disruption of the subtle
cohesive action of the nonlinear self-interaction can also cause the charge wave function to
spread out substantially, obtain a smaller amplitude and become wave-like. We can imagine
further that during the time of interaction the evolution of the extended wave function is
determined by an interplay of two factors: (i) the linear Schrödinger component of the field
equation; (ii) its nonlinear component due the nonlinear self-interaction. Shortly after the
interaction ends the wave-function of the charge restores the particle-like form but its posi-
tion and velocity after the contraction will depend sensitively on details of the interaction.



Wave-Corpuscle Mechanics for Electric Charges 951

So, effectively, a limited time interaction switches one particle-like state of the charge to
another.

Based on the above hypothetical features of a time limited close interaction one can
explain how the entirely deterministic WCM can conceivably lead to some of probabilis-
tic aspects of the QM. Suppose for the sake of argument that the time scale of details of the
interaction process is smaller than an observer can resolve, and, consequently, he sees the in-
teraction result as a transition from one particle-like state to another. The interaction process
can alter the total momentum of the charge quite considerably. This momentum alteration
combined with effects of the nonlinear self-interaction can cause an extreme sensitivity to
the initial data and that in turn can make the transition look like it is random and, hence, a
subject to a statistical theory. An interesting feature of the nonlinear self-interaction in the
WCM that might be relevant to the extreme sensitivity is that it is not analytic and singular
for small wave-amplitudes (see examples of the WCM nonlinearity in Sect. 2.4). Conse-
quently, small wave amplitudes can play far more important role in the WCM than in the
case of conventional nonlinearities which are analytic for small amplitudes. Going further
we observe that the WCM field equations are similar to the Schrödinger equation. Hence,
it is conceivable that the statistics of the transition will be determined with certain degree
of accuracy by a wave function satisfying an effective linear Schrödinger equation. Some
general ideas on the “determinism beneath quantum mechanics” at the Planck scale were
put forward recently by ’t Hooft (see [43] and references therein).

Let us use the described above hypothetical scenario of interaction to explain the double-
slit experiment. Suppose that a single electron is fired by a device and moves freely as a
particle-like wave toward a double-slit apparatus. As the electron approaches and interacts
with the double-slit apparatus its wave function spreads out quite substantially, its amplitude
reduces and consequently the electron turns into a “real wave”. This extended wave pene-
trates through the both slits and over a limited time leaves the apparatus. Being outside of
the apparatus in a free space the electron wave function contracts back to its particle-like
shape and proceeds toward a sensitive screen until it hits it at a well defined impact loca-
tion. Assume for the sake of argument that the initial condition of the fired electron can not
be controlled with a sufficient accuracy (which may be higher than in the existing experi-
ments). Then, the impact location can appear to be random with a statistics consistent with
well known interference pattern as described in the modern double-slit experiments, [19,
Sect. 1.1].

Another qualitatively important regime is the regime of close interaction for an extended
or even infinite period of time. This regime can occur, in particular, in complex systems
involving many charges such as atoms, molecules or solids. As we have already indicated
in Sect. 4.1 the WCM hydrogen atom has features which are very similar the Schrödinger
one. In particular, the primary binding force in that model between the electron and the
nucleus is the EM attraction. As to solids, let us briefly recall basics of their treatment in the
QM. As any theory of many particles, the fundamental QM theory of a solid is of enormous
complexity, but the standard simplified QM treatment of charges in crystalline solids is based
on a free-electron model with the following basics assumptions, [2, Chap. 1]: (i) positively
charged ionized atoms, consisting of nuclei and tightly bound to them “core electrons”,
form an immobile periodic lattice structure; (ii) “valence electrons” called also conductance
electrons are “allowed to wander far away from their parent atoms”; (iii) the conductance
electrons are non-interacting and independent and the interaction between a conductance
electron and the periodic lattice is modeled via a periodic potential. Such a simplified QM
theory is effectively reduced to the one-electron theory for the Schrödinger operator with
the periodic potential. Consequently, the eigenfunctions of such an operator are of the Bloch
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form and are extended over the entire crystal. The fundamental WCM theory of a solid
is of an enormous complexity as well, but similarly to the QM theory we can introduce a
simplified WCM model for a solid based on the same assumptions as in the QM theory.
Hence, as in the QM model there is an immobile periodic lattice of ionized atoms described
by a periodic potential corresponding to an external electric field. The one-electron WCM
model is similar to the QM one, but it differs from it by the presence of nonlinear self-
interaction. In this non-relativistic WCM model a mobile conductance/valence electron is
subjected to (i) attractive forces of the periodic lattice; (ii) electric force of its own electric
field; (iii) nonlinear-self interaction forces. Since in a solid the distance between atoms is
pretty small, it is of order the atom Bohr radius, the cohesive action of the nonlinear self-
interaction can be disrupted and the wave function can spread out significantly and even
it might resemble a Bloch eigenmode, in which case the electron would occupy the entire
crystal sample.

The above considerations bring us naturally to issues of the charge size and the WCM
theory locality. As the above considerations suggest in the WCM the electron size can vary
significantly depending on whether it is free or if it is bound in a atom, or if it is a con-
ductance electron in a crystalline solid. In particular, the size of the electron can increase
dramatically when it undergoes a strong close interaction with an external EM field or a
system of other charges. We expect a free electron to have size more than 20 times larger
than Bohr radius, which would lead to an interaction with many hundreds of atoms when
it approaches a crystal lattice even in the beginning of interaction when it still preserves its
size. As to the locality of the WCM it is perfectly local in one sense but can be non-local
in another sense. Namely, the WCM theory is perfectly local in the sense that there is no
action of distance. But the charge evidently is not perfectly local since in the WCM it is not
a point but at the best a localized wave which can spread out significantly. Consequently,
it is conceivable within the WCM that an elementary charge being a spatially distributed
quantity can be simultaneously at two distant spatial locations, and in this sense the WCM
might deviate significantly from being a local theory.

One can also wonder what is a relation between the WCM and hidden variables theo-
ries, see [18, Sect. 12.2], [22, Sects. 1.5, 3.7.2], and a review article [16] with references
therein. Particularly, it is interesting to look how does the WCM compare with the Bohmian
Mechanics (BM), [10], [22, Sects. 3.1, 3.2], [15], [14, Sect. 8], a well known example of
hidden variables theories. Even a brief look on the WCM and the BM shows their signifi-
cant differences: (i) in the BM an elementary charge is a point whereas in the WCM it is a
distributed quantity, a wave; (ii) the WCM theory is local in the sense that there is no action
at distance, and it is no so for the BM; (iii) the WCM is a genuine Lagrangian Mechanics
and, consequently, the Third Newton Law is always satisfied, and it is not so for the BM,
[22, Sect. 3.3.2]. In addition to that, as we have already indicated above, the WCM might
account for the QM statistics via the dynamic instability approximately, and the verification
of that, including the accuracy of approximation, is a subject of future studies. But it is ab-
solutely clear already that the statistical predictions of the WCM can not be precisely the
same as those of the QM, since the WCM field equations might only approximately and un-
der certain conditions produce the QM evolution equation. The later factor evidently differs
the WCM from the BM in which the Schrödinger equation is an exact equation for the wave
function as a part of the BM variables.
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