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1 Motivation and outlook

Exceptional field theory (EFT) provides a unified framework where to describe massless

type II and eleven-dimensional supergravity [1–7]. It is therefore natural to ask whether

the unifying abilities of EFT could also allow for an implementation of the massive IIA

theory [8]. In EFT, En(n) covariance is made manifest by adding extra internal coordi-

nates to the ten- or eleven-dimensional spacetime in order to gain new insights into the

structure of string/M-theory. Consistency of the theory eventually requires to impose a

section constraint which restricts all fields to depend at most on ten or eleven physical

coordinates. After solving the section constraint, EFT reduces (locally) to an exceptional

generalised geometry (EGG) formulation of massless type II or eleven-dimensional super-

gravities [9, 10]. Applications range from the study of consistent truncations [11–13] to

loop computations of higher derivative corrections to the M-theory effective action [14].
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While the embedding of the eleven-dimensional and massless type II supergravities

into EFT is well understood, the one of massive IIA supergravity remains so far an open

question. In fact, a puzzle arises when facing this issue. On the one hand, being a fully

consistent ten-dimensional maximal supergravity in its own right, massive IIA should posses

an associated EGG capturing its degrees of freedom and local symmetries in the same

fashion as for the massless type II theories. It is therefore natural to expect that such

a generalised geometry would descend from EFT after choosing some specific solution of

the section constraint. On the other hand, solutions of the section constraint in EFT

have been classified and are known to exclusively correspond to the massless type II and

eleven-dimensional supergravities [14–18]. It thus seems that some violation of the section

constraint is needed in order to reproduce the Romans mass. In the context of double field

theory (DFT), the Romans mass was implemented by allowing a Ramond-Ramond (RR)

potential to depend on a non-geometric (winding) coordinate [19], thus again suggesting

that a similar scenario should take place in EFT. In this case, however, there would be

no direct relation with an EGG for massive IIA in ten dimensions. This paper provides a

solution to this puzzle and, in doing so, unveils an extension of the EFT framework.

The Romans mass mR has always manifested itself as a deformation parameter in any

construction related to type IIA. This is the case, for instance, for the supersymmetric AdS

vacua of [20–22]. When considering dual holographic models, the Romans mass translates

into a deformation of the field theory in the form of a Chern-Simons term with level k

given by k/(2πls) = mR [23, 24] (see also [25, 26]). A more recent example involves the

consistent reduction of the massive IIA theory on the six-sphere [24, 27]. In this case it was

shown [24, 28] that, after truncation to four dimensions, the Romans mass appears as an

electric-magnetic deformation parameter of the types constructed in [29, 30] and classified

in [31, 32]. These results suggest that, in order to embed the massive IIA theory in EFT,

one should investigate the possible deformations of the latter.

In this paper, we will show that EFT does admit consistent deformations which still

allow for ten- and/or eleven-dimensional solutions of the section constraint. For one of

these deformations, there exists a purely geometric ten-dimensional solution which precisely

corresponds to massive IIA supergravity, and thus define as a byproduct the associated

EGG. This new deformed EFT framework endows massive IIA supergravity with the same

geometrical and group-theoretical tools so far exclusive to the massless theories.

We now present a brief summary of the structure of the deformed EFT framework.

EFT is based on an ‘external’ spacetime and an ‘internal’ extended space with coordinates

xµ and yM , where µ = 0, . . . , D − 1 , M = 1, . . . , dim Rv and Rv denotes the En(n)

representation of the vector fields in the theory (see table 1). Internal generalised diffeo-

morphisms act on fields by means of a generalised Lie derivative LΛ . While all fields and

parameters formally depend on the full set of coordinates (xµ, yM ) , the dependence on the

internal coordinates is ultimately restricted to a physical subset by the section constraint

Y PQ
MN ∂P ⊗ ∂Q = 0 , (1.1)

where ∂M ≡ ∂
∂yM

and Y MN
PQ is a specific En(n)×R

+ invariant tensor [16]. After choosing

a maximal solution of this constraint, EFT effectively reduces to eleven-dimensional or

– 2 –



J
H
E
P
0
8
(
2
0
1
6
)
1
5
4

D 9 8 7 6 5 4

En(n) SL(2)× R
+ SL(2)× SL(3) SL(5) SO(5, 5) E(6) E7(7)

Rv 23 + 1−4 (2,3′) 10′ 16c 27′ 56

RX 2−3 + 34 (2,3) + (2,6′) 15+ 40′ 144c 351′ 912

Table 1. Relevant En(n) representations for the vector fields Aµ
M and the X deformation [40].

type IIB supergravity in a D + n or D + (n − 1) dimensional split, respectively. Such

a split of the physical coordinates into the D-dimensional external spacetime and the

n- or (n − 1)-dimensional internal space explicitly breaks the Lorentz covariance of the

eleven- or ten-dimensional theory but does not truncate any of its degrees of freedom. The

generalised Lie derivative then encodes the ordinary internal diffeomorphisms and p-form

gauge transformations of the physical theory in the corresponding dimensional split.

The central result of this work is the construction of ‘X deformed’ exceptional field

theories (XFT’s) based on the following modification of the generalised Lie derivative by

non-derivative terms

L̃Λ = LΛ + ΛMXM , (1.2)

where XM turns out to be En(n) Lie algebra valued. In particular, it takes the form

(XM )N
P ≡ XMN

P when acting on a field in the Rv representation. Closure of the

deformed generalised Lie derivative (1.2) and consistency of the tensor hierarchy require

X to be restricted to a specific En(n) representation (see table 1) and to satisfy a quadratic

constraint

X R
MP X Q

NR −X R
NP X Q

MR +X R
MN X Q

RP = 0 , (1.3)

in analogy with the constraints appearing in gauged maximal supergravity [33–39]. Fur-

thermore, an additional constraint involving both X and ∂M must be imposed

XMN
P ∂P = 0 . (1.4)

This ‘X-constraint’ can be interpreted as a compatibility condition between the X defor-

mation and the yM dependence of the fields and parameters. Together with the section

constraint (1.1) these conditions guarantee the consistency of the algebra of internal gen-

eralised diffeomorphisms and, ultimately, of the whole XFT.

For specific choices of X, (1.4) is still compatible with solutions of the section con-

straint (1.1) that preserve n or (n − 1) internal coordinates. The resulting XFT’s ulti-

mately describe three types of eleven- and ten-dimensional maximal supergravities:

◦ 11-dimensional and massless type IIA supergravities with background fluxes.

◦ Type IIB supergravity with background fluxes.

◦ Massive type IIA supergravity with background fluxes.

– 3 –
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The latter case is a genuine result of XFT. Indeed, the massive IIA supergravity, which

cannot be described in EFT without violating the section constraint, now admits a geomet-

ric description using the XFT framework. The background fluxes can be reabsorbed in the

dynamical fields of the theory without violating the section constraint. This is however not

possible for the Romans mass. As a result, the EGG of type IIA supergravity admits two

inequivalent generalised Lie derivatives corresponding to the massless and massive theories,

respectively.1 It will also be shown how the XFT describing massive IIA can be related to

a non-geometric extension of EFT, thus making contact with the DFT construction in [19].

The outline of the paper is as follows. In section 2 we review the main features of EFT

and its generalised Lie derivative. From this formalism we reproduce the gauge transfor-

mations of the massless IIA theory and argue that a deformation of the generalised Lie

derivative is needed in order to account for the gauge transformations in the massive case.

In section 3 we present the general structure of the X deformation, show that it contains

the Romans mass parameter and classify deformations of the SL(5) EFT compatible with

ten- or eleven-dimensional solutions of the section- and X-constraints. In section 4 we

present the bosonic action, tensor hierarchy and transformation rules for the E7(7) XFT.

In section 5 we discuss the relation between XFT and a certain, possibly non-geometric,

extension of EFT. We also comment on the construction of internal covariant derivatives.

We finally discuss some applications of our results in section 6.

2 Exceptional field theory and type IIA supergravity

Exceptional field theories (EFT’s) embed the eleven-dimensional and massless type II su-

pergravities in a unified framework, which renders the structure of their hidden excep-

tional symmetries manifest and captures the generalised geometries underlying them. More

concretely, the spacetime of eleven-dimensional supergravity is decomposed into a D di-

mensional ‘external’ spacetime and an n = 11 − D dimensional ‘internal’ space, without

performing any truncation of degrees of freedom. The internal diffeomorphisms are then

extended to generalised diffeomorphisms accounting also for internal gauge transformations

of the three- and six-form potentials (and of the dual graviton in D = 4, 3). A similar situa-

tion occurs for the D+(n−1) dimensional split of the massless type II supergravities. The

set of internal coordinates is then extended to yM , M = 1, . . . , dimRv , to complete the

representation of En(n), which can be regarded as conjugate to the internal momenta and

half-BPS charges of the theory [14, 41]. A section constraint is imposed for consistency,

restricting the coordinate dependence of fields and gauge parameters to a subset of the in-

ternal coordinates. As long as one does not commit to a specific solution of this constraint,

EFT can be regarded as being (formally) invariant under global En(n)×R
+ transformations.

The embedding of the original ten- and eleven-dimensional supergravities is recovered by

choosing the appropriate solution of the section constraint. The generalised Lie derivative

and other structures in EFT then reproduce (locally in a coordinate patch) the exceptional

generalised geometry associated with the corresponding supergravity theory.

1When it is non-vanishing, mR can be rescaled by field redefinitions.
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In their latest formulations, EFT’s have been constructed in any D ≥ 3 [1–7] following

a prescription that mimics the structure of the maximal supergravities in the correspond-

ing dimension [33–39]. In both the EFT’s and the maximal supergravities, internal and

spacetime symmetries completely specify the field content as well as its interactions in an

elegant and unambiguous manner. In this section we introduce the basics of the EFT’s

which we will be extensively using. We will focus on D ≥ 4 throughout this paper.

2.1 Generalised diffeomorphisms

EFT fields depend on spacetime coordinates xµ, µ = 0, . . . , D − 1, and extended internal

coordinates yM . The fields and gauge parameters of the theory are arranged in objects

that transform consistently under a set of exceptional generalised diffeomorphisms. On

covariant objects generalised diffeomorphisms act with a generalised Lie derivative LΛ .

For instance, the action of LΛ on a vector UM of weight λ(U) = λU reads2

LΛU
M = ΛN∂NUM − UN∂NΛM + Y MN

PQ ∂NΛP UQ + (λU − ω) ∂PΛ
PUM , (2.1)

where ΛM (x, y) is the gauge parameter, Y MN
PQ is a specific, constant En(n)×R

+ invari-

ant tensor (so that δΛY
MN

PQ = LΛY
MN

PQ = 0 ), and ω = 1/(D− 2) . All parameters of

generalised diffeomorphisms carry weight ω .

Consistency of the generalised diffeomorphisms requires the algebra of the generalised

Lie derivative to close, namely

[LΛ,LΣ]W
M = L[Λ,Σ]EW

M , (2.2)

where the so-called E-bracket for parameters Λ and Σ is defined as

[
Λ,Σ

]M
E

≡
1

2
(LΛΣ

M − LΣΛ
M ) = ΛP∂PΣ

M +
1

2
Y MN

PQ ∂NΛP ΣQ − (Λ ↔ Σ) . (2.3)

The requirement (2.2) translates into a set of conditions [16] which severely restricts the

dependence of the fields and parameters in the EFT on the generalised coordinates:

Y PQ
MN ∂P ⊗ ∂Q=0,

(
Y M(P

TQ Y T |N)
RS − Y M(P

RS δ
N)
Q

)
(∂P∂N )=0,

(
Y MN

TQ Y TP
[SR] + 2Y MN

[R|T | Y
TP

S]Q − Y MN
[RS] δ

P
Q − 2Y MN

[S|Q| δ
P
R]

)
∂(N ⊗ ∂P )=0,

(
Y MN

TQ Y TP
(SR) + 2Y MN

(R|T | Y
TP

S)Q − Y MN
(RS) δ

P
Q − 2Y MN

(S|Q| δ
P
R)

)
∂[N ⊗ ∂P ]=0.

(2.4)

The first condition in (2.4) is usually referred to as the section constraint. We will always

impose that it holds on any combination of fields and/or parameters, including derivatives

and products. As a result, the section constraint restricts all objects in the EFT to depend

only on a subset of the internal coordinates. The other equations in (2.4) then follow from

the section constraint for all the En(n) EFT’s [16].

2The transformation rule for a covariant tensor VM is deduced by requiring that the contraction S =

UMVM transforms as a scalar density of weight λU + λV . The transformation rule for tensors follows

immediately.
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The E-bracket in (2.3) fails to satisfy the Jacobi identity:

[
[Λ,Σ]E,Γ

]
E
+ cycl. =

1

3

{
[Λ,Σ]E,Γ

}
E
+ cycl. . (2.5)

This fact plays a central role in the construction of EFT’s, as it requires the introduction

of a hierarchy of p-form fields and gauge transformations [1–4, 42] similar to the one of

gauged supergravities [43, 44], in order to guarantee invariance of the equations of motion

under generalised diffeomorphisms. For vectors of weight ω, one finds that the symmetric

bracket {Λ,Σ}E , reads

{
Λ,Σ

}M

E
=

1

2
(LΛΣ

M + LΣΛ
M ) =

1

2
Y MN

PQ

[
ΣQ∂NΛP + ΛQ∂NΣP

]
, (2.6)

so that LΛΣ
M = [Λ,Σ]ME +

{
Λ,Σ}ME . Consistency of the EFT tensor hierarchy then follows

from the fact that, upon using the section constraint, {Λ,Σ}E is a trivial gauge parameter,

namely, L{Λ,Σ}E vanishes identically.

Covariance under internal generalised diffeomorphisms with parameters dependent on

spacetime coordinates xµ requires the introduction of appropriate covariant derivatives

and associated connections [42]

∂µ → Dµ ≡ ∂µ − LAµ , (2.7)

where Aµ
M (x, y) are the vector fields of EFT. The requirement that Dµ is covariant fixes

the transformation properties of Aµ
M up to the addition of trivial gauge parameters. It

is customary to choose

δΛAµ
M = DµΛ

M = ∂µΛ
M − LAµΛ

M . (2.8)

Making use of the fact that {Λ, Aµ
M}E is a trivial parameter, we can also give a different

expression for δΛAµ
M which will be convenient in the following section:

δΛAµ
M = ∂µΛ

M + LΛAµ
M . (2.9)

The difference between any two choices of δΛAµ
M is absorbed into the gauge transforma-

tions associated with the two-forms of the EFT tensor hierarchy. The specifics of these

tensor hierarchies depend on the dimension D , although a systematic treatment has been

recently developed in [45]. We will discuss the D = 4 case thoroughly in section 4.

2.2 Massless IIA gauge transformations from EFT

In order to make contact with the eleven-dimensional and massless type II supergravities,

it is necessary to pick a specific solution of the section constraint in (2.4). As preparation

for the implementation of the Romans mass as a deformation parameter, here we will

briefly exemplify how to recover the gauge transformations of ten-dimensional massless

IIA supergravity from those of EFT.

Let us start by introducing the massless gauge transformations of the IIA ten-

dimensional p-form potentials A
M̂

, A
M̂N̂

and A
M̂N̂P̂

. These are specified by gauge

– 6 –
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parameters λ , Ξ
M̂

and θ
N̂P̂

= −θ
P̂ N̂

, where M̂, N̂ , . . . are ten-dimensional spacetime

indices, and take the form (we follow the conventions of ref. [46])

δA
M̂

= ∂
M̂
λ , δA

M̂N̂
= 2 ∂[M̂ Ξ

N̂ ] , δA
M̂N̂P̂

= 3 ∂[M̂ θ
N̂P̂ ] − 3A[M̂N̂

∂
P̂ ]λ .

(2.10)

For the sake of concreteness, we will consider a 7 + 3 dimensional split of the fields and

parameters of the ten-dimensional type IIA supergravity. The p-forms of type IIA super-

gravity are decomposed in scalars, vectors and so on after appropriate Kaluza-Klein (KK)

like redefinitions which are needed to achieve covariance under the seven-dimensional ex-

ternal diffeomorphisms explicit. All fields and gauge parameters still depend on the ten-

dimensional coordinates xµ , yα with µ = 0, . . . , 6 and α = 1, 2, 3 . For instance the

D = 7 vectors arising from the ten-dimensional p-form potentials can be written as

AKK
µ = Aµ−Bµ

δ Aδ , AKK
µβ = Aµβ−Bµ

δ Aδβ , AKK
µβγ = Aµβγ−Bµ

δ Aδβγ , (2.11)

where Bµ
α are the KK vector fields coming from the metric. It is convenient to perform

a second set of non-linear redefinitions3

Cµ = AKK
µ , Cµβ = AKK

µβ and Cµβγ = AKK
µβγ +AKK

µ Aβγ . (2.12)

After some algebra manipulations it can be shown that, under (2.10), these vectors trans-

form as follows under internal diffeomorphisms with parameter ξα and internal gauge

transformations with parameters λ , Ξα , θαβ :

δBµ
α = (∂µ −Bµ

δ ∂δ) ξ
α + ξδ ∂δBµ

α ,

δCµ = ξδ ∂δCµ + (∂µ −Bµ
δ ∂δ)λ ,

δCµβ = ξδ ∂δCµβ + Cµδ ∂βξ
δ + (∂µ −Bµ

δ ∂δ) Ξβ +Bµ
δ ∂β Ξδ ,

δCµβγ = ξδ ∂δCµβγ + 2Cµδ[γ ∂β]ξ
δ + (∂µ −Bµ

δ ∂δ) θβγ + 2Bµ
δ ∂[β| θδ|γ]

+ 2Cµ ∂[βΞγ] − 2Cµ[β ∂γ]λ .

(2.13)

The 7+3 dimensional split we have adopted to describe the massless IIA supergravity

can be compared with the D = 7 EFT, based on E4(4) ≡ SL(5) [6, 15, 17]. Analogous

comparisons can be performed for other D+(n−1) dimensional splits. The SL(5) EFT is

characterised by generalised vectors ΛM in the 10′ representation, i.e. Λmn = −Λnm , with

m = 1, . . . , 5 being a fundamental SL(5) index. The structure tensor of the SL(5) EFT is

given by4

Y mnpq
rs tu = ǫmnpqz ǫrstuz , (2.14)

and the section constraint reduces to

ǫmnpqz ∂mn ⊗ ∂pq = 0 . (2.15)

3Similar redefinitions were discussed in refs [27, 47, 48].
4The entries in Y mnpq

rs tu are 0,±1 . Therefore, whenever an index pair mn is contracted, a factor of
1
2
must be explicitly included.
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There are two inequivalent solutions of (2.15) (up to SL(5) transformations [17]) corre-

sponding to M-theory (more precisely, eleven-dimensional supergravity) and type IIB:

M-theory: ∂α4 6= 0 , ∂45 6= 0 and ∂α5 = ∂αβ = 0 ,

type IIB: ∂αβ 6= 0 and ∂α4 = ∂α5 = ∂45 = 0 .
(2.16)

The massless IIA case is obtained by further restricting to only three coordinates in the

M-theory solution. We will set ∂45 = 0 .

The SL(5) EFT contains 10′ vector fields Aµ
M ≡ Aµ

mn that transform under a gener-

alised diffeomorphism as in (2.9). Using the massless IIA solution of the section constraint

(∂α4 6= 0), we can identify the field content and gauge parameters of the supergravity

theory with those of the EFT:

Aµ
mn = (Aµ

α5 , Aµ
α4 , Aµ

αβ , Aµ
45 ) =

(
1

2
ǫαβγ Cµβγ , Bµ

α , ǫαβγ Cµγ , Cµ

)
,

Λmn = (Λα5 , Λα4 , Λαβ , Λ45 ) =

(
1

2
ǫαβγ θβγ , ξα , ǫαβγ Ξγ , λ

)
,

∂mn = ( ∂α5 , ∂α4 , ∂αβ , ∂45 ) = ( 0 , ∂α , 0 , 0 , 0 ) .

(2.17)

After imposing the massless IIA solution of the section constraint, an explicit computation

of the vector field transformations directly from (2.9) reproduces (2.13). A similar analysis

can be repeated for the other types of fields like the scalars or the two- and three-form

potentials. However, the vector gauge transformations are enough for our purposes in the

next section.

2.3 Massive IIA gauge transformations from a deformed Lie derivative

Let us now look at the gauge transformations of the ten-dimensional massive IIA super-

gravity also in the 7 + 3 dimensional split. After performing the field redefinitions (2.11)

and (2.12), the internal gauge transformations are modified by the Romans mass mR,

yielding

δBµ
α = (∂µ −Bµ

δ ∂δ) ξ
α + ξδ ∂δBµ

α ,

δCµ = ξδ ∂δCµ + (∂µ −Bµ
δ ∂δ)λ−mRBµ

δ Ξδ ,

δCµβ = ξδ ∂δCµβ + Cµδ ∂βξ
δ + (∂µ −Bµ

δ ∂δ) Ξβ +Bµ
δ ∂β Ξδ ,

δCµβγ = ξδ ∂δCµβγ + 2Cµδ[γ ∂β]ξ
δ + (∂µ −Bµ

δ ∂δ) θβγ + 2Bµ
δ ∂[β| θδ|γ]

+ 2Cµ ∂[βΞγ] − 2Cµ[β ∂γ]λ− 2mRCµ[β Ξγ] .

(2.18)

Note that the extra terms in (2.18) compared to (2.13) do not contain internal

derivatives. This poses an obstruction to recovering such variations from a standard

EFT/generalised geometry Lie derivative like (2.1), whose terms always contain deriva-

tives of either the gauge parameter or the field it acts on. However, the fact that massive

IIA supergravity is a geometrically well-defined theory means that an exceptional gener-

alised geometry describing it should still exist. This suggests that the solution to the above

obstruction is to implement mR as a deformation of LΛ , thus modifying the notion of

– 8 –
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covariance in the exceptional generalised geometry associated with type IIA supergravity.

The procedure we follow to deduce this deformation is the converse of what we discussed

in the previous section: we still use the dictionary (2.17) for the SL(5) EFT, but we now

repackage (2.18) into an expression

δΛAµ
mn = ∂µΛ

mn + L̃ΛAµ
mn , (2.19)

where L̃Λ accounts for mR and reduces to the standard EFT Lie derivative in the limit

mR → 0 . We stress that vector fields transform faithfully under internal generalised dif-

feomorphisms, so that by covariance this procedure uniquely identifies the deformation

induced by mR for every other field, too. The resulting deformed Lie derivative reads

L̃ΛAµ
mn = LΛAµ

mn −Xpq rs
mn Λpq Aµ

rs , (2.20)

where the second term in the r.h.s. of (2.20) is specified by an X deformation of the form

Xmnpq
rs = 2Xmn [p

[r δ
s]
q] , (2.21)

with non-vanishing entries given by

Xαβ γ
5 = −2mR ǫαβγ , (2.22)

and where ǫαβγ is the Levi-Civita symbol in three dimensions with ǫ123 = +1 . Note

at this point that equations (2.21) and (2.22) correspond to the embedding tensor of the

gauged maximal supergravity induced by a three-torus compactification of massive IIA

supergravity.5

Consistency requirements like closure of L̃ will follow from consistency of the original

massive IIA theory, at least as long as we restrict to the solution of the section constraint

that corresponds to the type IIA theory. As we shall see, however, the structures unveiled

in this section can be immediately generalised to other dimensions as well as to generic

X deformations. Therefore we will discuss consistency of the deformed EFT’s in a more

general setting in the next section, to later come back to the case of the Romans mass.

3 Deformations of exceptional field theory

Motivated by the Romans mass deformation of the SL(5) EFT found in the previous

section, we move to investigate general deformations of EFT. In this section we will focus

on the structure of generalised diffeomorphisms and discuss their closure and consistency

conditions.

3.1 Some notions of gauged maximal supergravity

It will be useful for our purposes to first review a few basic aspects of the embedding tensor

formalism of gauged maximal supergravities. An incomplete list of references dealing with

gauged maximal supergravities in d = 4, 7, 9 dimensions includes refs [34, 37, 39].

5The reduced theory is a seven-dimensional gauged maximal supergravity with three vectors Aµ
αβ

spanning an abelian R
3 gauging specified by the three commuting generators tγ5 .
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The gauge group of a gauged maximal supergravity in D dimensions must be a sub-

group of En(n) , where n = 11−D . This is the global exceptional symmetry of the ungauged

theory. We will exclude in our discussion the gauging of the R
+ trombone symmetry of

maximal supergravities [49, 50]. The supergravity Lagrangian and symmetry variations

are entirely specified by an embedding tensor ΘM
α , where α is an En(n) adjoint index

and M is in the Rv representation. Equivalently, introducing En(n) generators [tα]M
P ,

we can construct an object with Rv indices only

XMN
P = ΘM

α [tα]N
P , (3.1)

which captures the same information as ΘM
α .6

Despite its name, the embedding tensor should be taken as a fixed object, which

therefore explicitly breaks the global En(n) symmetry in order to gauge a subgroup. Its

variations under diffeomorphisms, gauge transformations and supersymmetry all vanish by

definition. However, it is often convenient to regard XMN
P as a spurious object, which

is allowed to transform under En(n) together with the fields of the theory, thus obtaining

a formally En(n) covariant treatment of gauged maximal supergravity. A set of quadratic

and linear constraints must be imposed on the embedding tensor for consistency of the

gauged theory. The quadratic one

X R
MP X Q

NR −X R
NP X Q

MR +X R
MN X Q

RP = 0 , (3.2)

ensures closure of the gauge algebra and requires that the embedding tensor, when regarded

as a spurious object, is invariant under the gauge transformations it defines. The linear

constraint is required both by supersymmetry and, at the bosonic level, by imposing that

the hierarchy of p-form fields induced by the gauging is consistent with the representation

content and counting of degrees of freedom of the ungauged theory. In practice, the linear

constraint restricts the embedding tensor to specific irreps (denoted by RX in table 1)

contained in the tensor product of Rv and the adjoint representation

Θ ∈ RX ⊂ Rv ⊗ adj . (3.3)

3.2 Deformed generalised Lie derivative

Motivated by our discussion of the internal gauge variations of massive IIA supergravity,

we will now consider generic deformations of the exceptional generalised Lie derivative LΛ

of the D-dimensional EFT by non-derivative terms specified by a constant object XMN
P .

As we will see, this object satisfies the same requirements as the embedding tensor of the

D-dimensional gauged maximal supergravity: the quadratic constraint (3.2) arises from

the closure and Jacobi identity for the generalised diffeomorphisms, while the linear or

representation constraint (see table 1) is required for consistency of the resulting hierarchy

of tensor fields. We exclude deformations of the trombone type from our discussion.

We thus start by introducing a deformed generalised Lie derivative which acts on

vectors as

L̃ΛU
M = LΛU

M −XNP
M ΛN UP , (3.4)

6This is not necessarily true for non-maximal theories.

– 10 –



J
H
E
P
0
8
(
2
0
1
6
)
1
5
4

where the standard (undeformed) generalised Lie derivative LΛ is defined in (2.1). A first

consistency requirement is that L̃Λ is compatible with the global En(n) structure of the

theory: thus XMN
P must decompose just as in (3.1). We can thus say that in general

L̃Λ ≡ LΛ + ΛMXM , (3.5)

where XM is En(n) Lie algebra valued and acts in the appropriate representation.

Closure of generalised diffeomorphisms translates in the deformed version of (2.2):
[
L̃Λ, L̃Σ

]
= L̃[Λ,Σ]X , (3.6)

where the X-bracket [·, ·]X takes the form

[
Λ,Σ

]M
X

≡
1

2
(L̃ΛΣ

M − L̃ΣΛ
M ) =

[
Λ,Σ

]M
E

−X[PQ]
M ΛP ΣQ . (3.7)

Requiring (3.6) induces a new set of consistency constraints. Since Λ and Σ are arbi-

trary parameters, these constraints can be separated based on the number of derivatives.

The two-derivative ones do not contain XM and therefore reduce to the original section

constraint (2.4). An explicit computation yields

[L̃Λ, L̃Σ]W
M − L̃[Λ,Σ]XW

M = AM
NPS ΛNΣPWS +X[NP ]

Q ΛNΣP∂QW
M

+BMQ
NRS (ΛN∂QΣ

RWS − ∂QΛ
RΣNWS) ,

(3.8)

where, without loss of generality, we have already assumed (2.4) to hold. The r.h.s. of (3.8)

therefore defines X-dependent conditions. The A and B terms read

AM
NPS = 2X[N |Q

MXP ]S
Q −XQS

MX[NP ]
Q ,

BMQ
NRS = X(NR)

MδQS −XNS
QδMR

+ Y MQ
RPXNS

P − Y PQ
RSXNP

M + Y MQ
PSX[NR]

P −
1

2
Y PQ

RNXPS
M .

(3.9)

Note that the first line is the antisymmetric part of the quadratic constraint (3.2). Alto-

gether, we have the requirements

AM
NPS = 0 , X Q

[NP ] ∂Q = 0 and BMQ
NRS ∂Q = 0 . (3.10)

The conditions above are not yet final. Just as for the E-bracket, the X-bracket fails

to define a Lie algebra as the Jacobi identity does not hold. Instead, it yields a Jacobiator

[
[Λ,Σ]X ,Γ

]
X
+ cycl. =

1

3

{
[Λ,Σ]X ,Γ

}
X
+ cycl. , (3.11)

where the X-modified symmetric bracket turns out to be

{
Λ,Σ

}M

X
≡

1

2
(L̃ΛΣ

M + L̃ΣΛ
M ) =

{
Λ,Σ

}M

E
−X(PQ)

MΛPΣQ . (3.12)

Consistency of the XFT requires that the Jacobiator again corresponds to a trivial gauge

parameter, namely, L̃{Λ,Σ}X vanishes. A direct computation shows that

L̃{Λ,Σ}XU
M = CMR

SPQ (ΛQ∂RΣ
PUS + ∂RΛ

PΣQUS)−X(PQ)
R ΛPΣQ ∂RU

M (3.13)

+X(PQ)
R XRS

M ΛPΣQUS ,
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with

CMR
SPQ = X(PQ)

MδRS − Y MR
TS X(PQ)

T −
1

2
Y TR

PQXTS
M , (3.14)

and where we have used the conditions (3.10) derived from (3.8). Therefore we must impose

X(PQ)
R XRS

M = 0 , X(PQ)
R ∂R = 0 and CMR

SPQ ∂R = 0 . (3.15)

The first equation in (3.15) combines with the first equation in (3.10) to produce the full

set of quadratic constraints in (3.2). The middle equations in (3.10) and (3.15) combine

into the X-constraint XMN
P ∂P = 0 . A careful analysis of the representation content

of the remaining conditions (namely, the ‘B’ and ‘C’ terms) shows that they are entirely

equivalent to the X-constraint. We thus arrive at the final set of consistency conditions

for the deformed generalised Lie derivative (3.5):

Y MN
PQ ∂M ⊗ ∂N = 0 ( section constraint ) , (3.16)

X P
MN ∂P = 0 ( X-constraint ) , (3.17)

and XM must additionally satisfy the quadratic constraint in (3.2). The above conditions

should be intended as acting on any field, parameter and combinations thereof. As a result,

the new X-constraint (3.17) restricts the coordinate dependence to those coordinates left

invariant by the En(n) elements generated by XM . Together with the linear and quadratic

constraints on X, this is the only new condition required for consistency of the deformed

EFT.

We should also emphasise that our notion of covariance under internal generalised

diffeomorphisms is now given in terms of L̃ , so that δΛT = L̃ΛT for any tensor T .

The deformation XMN
P by definition does not vary under any (internal or external)

diffeomorphism and gauge transformations. Its generalised Lie derivative, instead, does

not necessarily vanish. Using the constraints above one can compute

L̃ΛXMN
P = 2 ∂[M ΛR X|R|N ]

P + Y PQ
RN ∂QΛ

S XSM
R , (3.18)

where we assign the weight λ(X) = −ω, as can be deduced by requiring that generalised

Lie derivatives of tensors maintain a definite weight.

We close the section by stressing again that XMN
P is restricted to the En(n) repre-

sentations displayed in table 1 for consistency of the tensor hierarchy.

3.3 Section constraint and massive IIA supergravity

Equipped with the new generalised Lie derivative L̃ and consistency conditions derived

in the previous section, we now look at specific X deformations to discuss their interpre-

tation. We will come back to the construction of the full XFT action in section 4 where

we discuss the E7(7) case in detail. Starting from the M-theory solution of the section

constraint (3.16), we now show how turning on the X deformation corresponding to the

Romans parameter mR , to which we refer as XR , proves no longer compatible with a

dependence of the fields and parameters on the M-theory coordinate as a consequence of

– 12 –
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the X-constraint (3.17). The resulting XFT will then describe the massive IIA theory. The

deformation XR always corresponds to the embedding tensor obtained from reduction of

massive IIA supergravity on a torus. We will also show that other solutions of the sec-

tion and X-constraints compatible with XR exist and correspond to type II theories with

background RR p-form fluxes T-dual to mR . For the D = 4 case, we will also find an

eleven-dimensional supergravity solution. Several of these solutions would be equivalent

to each other in standard EFT, as they belong to the same En(n) orbit. However, the

presence of XR breaks En(n) to a subgroup which always contains at least an SL(n − 1)

factor, and solutions to the constraints must be classified in orbits of this subgroup only.

SL(2) × R
+ XFT. The EFT with (D,n) = (9, 2) features an SL(2) × R

+ structure

and has recently been constructed in ref. [7]. The extended space has coordinates yM =

(yα , y3) with α = 1, 2 being a fundamental SL(2) index. The SL(2) × R
+ invariant

Y -tensor is given by

Y α3
β3 = Y α3

3β = Y 3α
β3 = Y 3α

3β = δαβ , (3.19)

and the section constraint in (3.16) reduces to ∂α ⊗ ∂3 = 0 . There are two inequivalent

solutions corresponding to M-theory and type IIB supergravity

i) ∂α 6= 0 , ∂3 = 0 (M-theory) and ii) ∂3 6= 0 , ∂α = 0 (type IIB) . (3.20)

In the context of maximal D = 9 supergravity [39, 51, 52], the Romans mass parameter

induces an embedding tensor7 with only non-vanishing entry [XR]32
1 = mR . Taking it to

be the X deformation in XFT and substituting it into the X-constraint (3.17) yields

mR ∂1 = 0 . (3.21)

As a result, any dependence on the M-theory coordinate y1 is removed by the X-

constraint (3.21) reflecting the fact that massive IIA cannot be embedded into M-theory.

Using (3.21) to simplify the section constraint in (3.16) one finds ∂2 ⊗ ∂3 = 0 , which gives

rise to the type IIA and IIB solutions

i) ∂2 6= 0 , ∂3 = 0 (type IIA) and ii) ∂3 6= 0 , ∂2 = 0 (type IIB) . (3.22)

In the IIA solution, the XR deformation is identified with the Romans mass. In the

IIB solution, the same XR deformation corresponds to turning on a RR background flux

F(1) along the y3 coordinate. The two solutions are related by a T-duality transformation

i) massive IIA
T

−→ ii) IIB with F(1) , (3.23)

exchanging y2 ↔ y3 .

7The corresponding gauging is simply a shift symmetry R generated by t21 ∈ SL(2) and spanned by

the vector field Aµ
3 [51, 53].
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SL(5) XFT. The EFT with (D,n) = (7, 4) possesses an SL(5) structure and has already

been discussed in section 2.2. The SL(5) invariant Y -tensor and the section constraint, as

well as its solutions, can be found in (2.14), (2.15) and (2.16). The consistent XR defor-

mation induced by the Romans mass was presented in section 2.3, resulting in eqs. (2.21)

and (2.22). The X-constraint (3.17) reads in this case

mR ∂α5 = mR ∂45 = 0 . (3.24)

Note again that any dependence on the M-theory coordinate y45 as well as on the ‘brane

coordinates’ yα5 is killed by the X-constraint (3.24). Substituting (3.24) in the section

constraint (3.16) produces ǫαβγ∂α4 ⊗ ∂βγ = 0 , which gives rise to the ‘natural’ type IIA

and IIB solutions

i) ∂α4 6= 0 , ∂αβ = 0 (type IIA) and iv) ∂αβ 6= 0 , ∂α4 = 0 (type IIB) , (3.25)

together with two more solutions (with α 6= β 6= γ)

ii) ∂α4 , ∂β4 , ∂αβ 6= 0 , ∂γ4 = ∂βγ = ∂γα = 0 (type IIB) ,

iii) ∂α4 , ∂αβ , ∂γα 6= 0 , ∂β4 = ∂γ4 = ∂βγ = 0 (type IIA) .
(3.26)

In the IIA solution i), the XR deformation is identified with the Romans mass. In

the IIB solution ii), it corresponds to a RR background flux F(1) along the single coordi-

nate yαβ . In the IIA solution iii), it maps to a RR background flux F(2) along the two

coordinates (yαβ , yγα) . Finally, in the IIB solution iv), the X deformation corresponds

to a RR background flux F(3) . The four solutions are connected via a chain of T-duality

transformations

i) massive IIA
Tγ
−→ ii) IIB with F(1)

Tβ
−→ iii) IIA with F(2)

Tα−→ iv) IIB with F(3) ,

(3.27)

where Tγ exchanges yγ4 ↔ yαβ , with α 6= β 6= γ.

E7(7) XFT. The EFT with (D,n) = (4, 7) features an E7(7) structure and the coor-

dinates yM of the extended space transform in the 56 fundamental representation. The

E7(7) invariant Y -tensor reads [16]

Y MN
PQ = −12 [tα]

MN [tα]PQ −
1

2
ΩMN ΩPQ , (3.28)

where [tα]M
N are the E7(7) generators. Fundamental indices are raised and lowered using

the Sp(56)-invariant (and thus E7(7)-invariant) antisymmetric tensor ΩMN .8 It will prove

convenient to move to an SL(8)-covariant description of the theory where one has the

E7(7) ⊃ SL(8) branching 56 → 28′ + 28. For instance, the coordinates yM = (yAB , yAB)

8We use the NW-SE conventions of ref. [2] such that [tα]
MN = ΩMP [tα]P

N , [tα]MN = [tα]M
P ΩPN

and ΩMPΩNP = δMN .
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are expressed in terms of an antisymmetric pair AB of SL(8) fundamental indices A,B =

1, . . . , 8 . The section constraint (3.16) reads

∂[AB ⊗ ∂CD] −
1

4!
ǫABCDEFGH ∂EF ⊗ ∂GH = 0 ,

∂AC ⊗ ∂BC + ∂BC ⊗ ∂AC −
1

8
δBA

(
∂CD ⊗ ∂CD + ∂CD ⊗ ∂CD

)
= 0 ,

∂CD ⊗ ∂CD − ∂CD ⊗ ∂CD = 0 .

(3.29)

Branching now the SL(8) index with respect to SL(7) ⊂ SL(8) , namely A = (I, 8) with

I = 1, . . . , 7 , two solutions of (3.29) were identified in [2] (see also the discussion in sec-

tion 3.2 of ref. [54]) which are the ordinary M-theory and type IIB solutions.9 These are

the only maximal solutions up to E7(7) transformations [14, 18] and involve a non-trivial

dependence on the extended space of the form

i) ∂I8 6= 0 (M-theory) and ii) ∂α8 6= 0 , ∂α̂7 6= 0 (type IIB) , (3.30)

where we have further split I = (m, 7) and m = (α, α̂) with m = 1, . . . , 6 , α = 1, 2, 3

and α̂ = 4, 5, 6 .

In the context of maximal D = 4 supergravity [34], the Romans mass induces a

consistent embedding tensor of the form10

[XR]AB EF
CD = −[XR]ABEF

CD = −8 δ
[A
[Cξ

B][Eδ
F ]
D] , (3.31)

with ξAB = mR δA8 δB8 . Taking now (3.31) to be the X deformation in XFT produces an

X-constraint (3.17) of the form

mR ∂I8 = mR ∂IJ = 0 , (3.32)

which removes any dependence on the M-theory coordinate y78 as well as on the ‘brane

coordinates’ ym8 and yIJ . Substituting (3.32) in the section constraint (3.16) reduces it to

two conditions ∂[IJ ⊗∂KL] = 0 and ∂IJ ⊗∂J8+∂J8⊗∂IJ = 0 . Various type IIA/IIB solu-

tions are recovered with a non-trivial dependence on the internal extended space of the form

i) ∂m7 6= 0 (type IIA) ,

ii) ∂17, . . . , ∂57 6= 0 , ∂68 6= 0 (type IIB) ,

iii) ∂17, . . . , ∂47 6= 0 , ∂58 , ∂68 6= 0 (type IIA) ,

iv) ∂17, . . . , ∂37 6= 0 , ∂48, . . . ∂68 6= 0 (type IIB) ,

v) ∂17, . . . , ∂27 6= 0 , ∂38, . . . ∂68 6= 0 (type IIA) ,

vi) ∂17 6= 0, ∂28, . . . ∂68 6= 0 (type IIB) ,

vii) ∂m8 6= 0 (type IIA) .

(3.33)

9As a representative of the IIB solutions, we pick the one that is obtained by acting with three T-dualities

upon the ‘natural’ IIA solution (which follows from the M-theory one after imposing ∂78 = 0).
10The induced gauging in four dimensions is an abelian R

7 symmetry associated to the generators

tI8 ∈ SL(8) and it is spanned by the vector fields Aµ I8 [28].
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Note that vii) is actually a type IIA solution embeddable into a dual M-theory solution with

viii) ∂I8 6= 0 (dual M-theory) . (3.34)

The different cases in (3.33) are related by a chain of T-duality transformations, in

complete analogy with what we found in other XFT’s. Starting from i), where the XR

deformation is identified with the Romans mass, one finds

i) massive IIA
T67−→ ii) IIB with F(1)

T57−→ iii) IIA with F(2)
T47−→

iv) IIB with F(3)
T37−→ v) IIA with F(4)

T27−→ vi) IIB with F(5)
T17−→

vii) IIA with F(6) ! viii) dual M-theory with F(7) = ⋆
11D

F(4) ,

(3.35)

where the chain of T-duality transformations Tm7, with m = 1, . . . , 6, exchanges the

internal coordinates ym7 ↔ ym8. The original Romans mass parameter gets consis-

tently mapped into different RR p-form fluxes upon T-dualities. In the dual M-theory

case, obtained by oxidation of IIA with F(6) , the XR deformation corresponds to the

Freund-Rubin (FR) parameter [55].11

3.4 Extension to other background fluxes

In the previous section we have seen how, starting from a type IIA solution of the sec-

tion constraint with a non-vanishing Romans mass mR 6= 0 , other type II (or M-theory)

background fluxes are obtained upon choosing T-dual solutions (with an extra oxidation).

In these dual descriptions, the mass parameter mR gets consistently mapped into other

types of flux parameters which are still compatible with the quadratic constraints (3.2),

the section constraint (3.16) and the X-constraint (3.17) in XFT. It is therefore natural

to wonder whether different types of fluxes can coexist in X for one choice of solution of

the section constraint. This is what we investigate in this section where, for the sake of

concreteness, we use again the SL(5) XFT. We will select representative M-theory, type IIA

and type IIB solutions of the section constraint and find all the X deformations that solve

the X-constraint without imposing further restrictions on the coordinate dependence.

The structure of X deformations in SL(5) XFT parallels that of maximal D = 7

supergravity [37]. In the latter, deformations are described in terms of an embedding

tensor that falls into the 15+ 40′ irreps of SL(5), thus yielding two pieces Ymn = Y(mn)

and Zmn,p = Z [mn],p with m = 1, . . . , 5 and Z [mn,p] = 0 . Using these two pieces, one

builds an X deformation in XFT of the form

Xmnpq
rs = 2Xmn [p

[r δ
s]
q] with Xmnp

r = δr[m Yn]p − 2 ǫmnpst Z
st,r . (3.36)

11Note the difference with the SL(5) XFT discussed before for which a dual M-theory interpretation of

the Romans mass was not possible. The reason is that, in the D = 7 case, the FR parameter in M-theory

maps into a Neveu-Schwarz-Neveu-Schwarz (NSNS) background flux H(3) in type IIA. The latter is not

related to the Romans mass via duality transformations.
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SL(5) R
+
1 × SL(4) R

+
1 × R

+
2 × SL(3)

10
(

∂M

)

4
−

3
2

(

∂i

)

+ 61 1(− 3
2
, 3
2
) + 3(− 3

2
,− 1

2
)

(

∂α

)

+ 3(1,1) + 3
′

(1,−1)

24 4
′

−
5
2

(

Ajkl

)

+ 4 5
2
+ (1+ 15)0 1(− 5

2
,− 3

2
) + 3

′

(− 5
2
, 1
2
)

(

Bβγ

)

+ 1( 5
2
, 3
2
) + 3( 5

2
,− 1

2
)

+1(0,0)

(

φ
)

+ 8(0,0) + 3(0,−2)

(

Aβ

)

+ 3
′

(0,2) + 1(0,0)

15
(

YMN

)

1−4

(

∂[iAjkl]

)

+ 4
−

3
2
+ 101 1(−4,0)

(

∂[αBβγ]

)

+ 1(− 3
2
, 3
2
) + 3(− 3

2
,− 1

2
)

(

∂αφ
)

+1(1,3) + 3(1,1) + 6(1,−1)

40
′
(

ZMN,P
)

20
′

−
3
2

+ 61 + 10
′

1 + 4
′

7
2

8(− 3
2
, 3
2
) + 6

′

(− 3
2
,− 1

2
)
+ 3

′

(− 3
2
,− 5

2
)

(

∂[αAβ]

)

+ 3(− 3
2
,− 1

2
)

(

∂αφ
)

+3(1,1) + 3
′

(1,−1) + 1(1,−3)

mR

+ 3
′

(1,−1) + 6
′

(1,1)

+1( 7
2
,− 3

2
) + 3

′

( 7
2
, 1
2
)

Table 2. Group theory decompositions relevant for the embeddings of M-theory and type IIA into

SL(5) XFT. The internal derivatives (⊂ 10 ), gauge potentials and dilaton (⊂ 24 ) and gauge fluxes

(⊂ 15+ 40′ ) are highlighted both in the M-theory (blue) and the natural type IIA (red) solutions

of the section constraint. The Romans mass parameter mR is singled out. Note that only a linear

combination of the two 3(− 3
2
,− 1

2
) ⊂ 15 , 40′ is sourced by the dilaton flux ∂αφ so that there are

1 and 8 free real deformation parameters in M-theory and type IIA, respectively.

Type IIA fluxes in SL(5) XFT. We start by selecting the type IIA solution of the

section constraint in (3.25) according to which the three internal coordinates are identified

with yα4 (α = 1, 2, 3) , equivalently ∂α4 6= 0 . An explicit computation shows that the

most general X deformation compatible with this solution of the section constraint, as well

as with the X-constraint, has (independent) non-vanishing components of the form

1

4
Yα4 =

1

2
ǫαβγ Z

βγ,5 ≡ Hα , Y44 ≡
1

3!
ǫαβγ Hαβγ , Z5α,5 ≡

1

2
ǫαβγFβγ , Z45,5 ≡

1

2
mR ,

(3.37)

thus accounting for 3 + 1 + 3 + 1 = 8 free real parameters. Using the dictionary between

the type IIA fluxes and deformations in table 2, the components in (3.37) are identified

with the dilaton (Hα ), NSNS three-form (Hαβγ ) and RR two-form (Fαβ ) fluxes, as well

as with the Romans mass parameter12 mR .

The X deformation induced by (3.37) accounts for all the background gauge fluxes

that can thread the three-dimensional internal space. However, this by no means implies

that all the parameters can be turned on simultaneously as they still have to obey the

quadratic constraints in (3.2). These take the form of

mRHα = 0 and
1

2
ǫαβγ Hα Fβγ +

1

4!

1

3!
ǫαβγ mRHαβγ = 0 , (3.38)

12The Romans mass can be dynamically generated in a non-geometric manner (not even locally geometric

in the language of ref. [56]) by allowing the RR one-form to have a non-trivial dependence on the type IIB co-

ordinates ỹα ≡ 1
2
ǫαβγ y

βγ associated with ∂̃α ≡ 3
′

(1,−1) (see table 3). Using representation theory one finds

mR ≡ 1(1,−3) = 3
′

(1,−1) ⊗ 3(0,−2)

∣

∣

1
≡ ∂̃

α
Aα .

As discussed in ref. [19] in the context of DFT, the dependence on ỹα would violate the section constraint

and, in order to recover massive IIA, one would have to explore the non-geometric side of the EFT’s where

the fields pick up a dependence on physical and dual coordinates at the same time. We elaborate on this

non-geometric approach in section 5.
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SL(5) R
+
1 × R

+
2 × SL(3)

10 (∂M ) 1(− 3
2
, 3
2
) + 3(− 3

2
,− 1

2
) + 3(1,1) + 3′(1,−1)

(
∂̃α ≡ 1

2 ǫ
αβγ ∂βγ

)

24 1(− 5
2
,− 3

2
)

(
C0

)
+ 3′

(− 5
2
, 1
2
)
+ 1( 5

2
, 3
2
)

(
γ0
)
+ 3( 5

2
,− 1

2
)

(
Bβγ

)

+1(0,0)
(
φ
)
+ 8(0,0) + 3(0,−2)

(
Cβγ

)
+ 3′(0,2) + 1(0,0)

15 (YMN ) 1(−4,0) + 1(− 3
2
, 3
2
) + 3(− 3

2
,− 1

2
) + 1(1,3) + 3(1,1) + 6(1,−1)

40′ (ZMN,P ) 8(− 3
2
, 3
2
) + 6′

(− 3
2
,− 1

2
)
+ 3′

(− 3
2
,− 5

2
)

(
∂̃αC0

)
+ 3(− 3

2
,− 1

2
)

+3(1,1) + 3′(1,−1)

(
∂̃αφ

)
+ 1(1,−3)

(
∂̃[αCβγ]

)
+ 3′(1,−1)

(
∂̃αφ

)
+ 6′(1,1)

+1( 7
2
,− 3

2
)

(
∂̃[αBβγ]

)
+ 3′

( 7
2
, 1
2
)

(
∂̃αγ0

)

Table 3. Group theory decompositions relevant for the embedding of type IIB into SL(5) XFT.

The purely internal derivatives (⊂ 10 ), gauge potentials and scalars (⊂ 24 ) and gauge fluxes

(⊂ 40′ ) are highlighted (red). Note that only a linear combination of the two 3′

(1,−1) ⊂ 40′ is

sourced by the dilaton flux ∂̃αφ so that there are 11 free real deformation parameters in type IIB.

The R
+
S ∈ SL(2) charge of the type IIB theory (S-duality) is given by qS = q

R
+

1
+ q

R
+

2
.

and correspond to the flux-induced tadpole cancellation conditions in absence of O8/D8 and

O6/D6 sources, respectively. Solving the quadratic constraints (3.38) yields two families

of X deformations, equivalently, consistent XFT’s. The first one is a six-parameter family

of XFT’s specified by the two conditions

a) ǫαβγ Hα Fβγ = 0 , mR = 0 , (3.39)

whereas the second one is a four-parameter family of XFT’s specified by the four conditions

b) Hαβγ = 0 , Hα = 0 . (3.40)

As a result, the dilaton flux Hα and the H(3) flux on the one hand, and the Romans mass

parameter mR on the other cannot be turned on simultaneously.

M-theory fluxes in SL(5) XFT. The same analysis can be performed for the M-theory

extension of the type IIA solution in (3.25). In this case, the four internal coordinates yi of

the eleven-dimensional supergravity are identified with yα4 and y45 , the latter being the

M-theory coordinate. The most general X deformation compatible with the X-constraint

has a unique non-vanishing component given by

Y44 ≡ fFR , (3.41)

and is identified (see table 2) with the Freund-Rubin parameter [55]. This parameter corre-

sponds to a purely internal background for the field strength of the three-form potential of

eleven-dimensional supergravity and is compatible with the quadratic constraint in (3.2).

Therefore, there is a one-parameter family of XFT’s that describes such eleven-dimensional

backgrounds with an fFR flux.
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Type IIB fluxes in SL(5) XFT. Lastly there is the type IIB case in (3.25) where

the three internal coordinates are identified with ỹα ≡ 1
2 ǫαβγ y

βγ , equivalently, ∂̃α 6= 0 .

The most general X deformation satisfying the X-constraint is compatible with the SL(2)

symmetry (S-duality) of the IIB theory and has (independent) non-vanishing components

of the form

SL(2)-doublet: Z45,5 ≡
1

3!
ǫαβγ F

αβγ , Z45,4 ≡
1

3!
ǫαβγ H

αβγ ,

SL(2)-triplet: Zα5,5 ≡ Fα , Zα5,4 = Zα4,5 ≡ Hα , Zα4,4 ≡ F̂α ,
(3.42)

accounting for 2 × 1 + 3 × 3 = 11 free real parameters. Using the dictionary between

type IIB fluxes and deformations in table 3, one identifies an SL(2)-doublet of RR (Fαβγ )

and NSNS (Hαβγ ) three-form fluxes.13 In addition, there is also an SL(2)-triplet of one-

form deformations14 (Fα, Hα, F̂α) . The latter account for an internal dependence of the

type IIB axion-dilaton and can be dualised into nine-form fluxes for the SL(2)-triplet of

RR eight-form potentials of the IIB theory [58, 59].

The computation of the quadratic constraints in (3.2) for the type IIB fluxes in (3.42)

produces the set of relations

ǫαβγ F
β Hγ = 0 , ǫαβγ F

β F̂ γ = 0 and ǫαβγ F̂
β Hγ = 0 , (3.43)

which corresponds to flux-induced tadpole cancellation conditions for an SL(2)-triplet of

7-branes (and related orientifold planes). Again such objects must be absent in order to

preserve maximal supersymmetry. Note that (3.43) is SL(2)-covariant and can be rewritten

as H[A ∧HB] = 0 with A = 1, 2, 3 and HA = (F,H, F̂ ) . Solving (3.43) yields a seven-

parameter family of XFT’s that describes such ten-dimensional type IIB backgrounds.

Let us close the section commenting on the number of deformation parameters per-

mitted in other XFT’s. For a given D ≥ 4 , the most general X deformation compatible

with the section constraint (3.16) and X-constraint (3.17) includes: i) the Freund-Rubin

parameter in M-theory (only for D = 7, 4 ) ii) the Romans mass mR (any D) as well as

dilaton (any D) and standard p-form gauge fluxes (whenever permitted by D) in type IIA

iii) the SL(2)-triplet of one-form deformations (any D) as well as standard p-form gauge

fluxes (whenever permitted by D) in type IIB. In order to specify a consistent XFT, the re-

sulting X deformation must still be supplemented with the quadratic constraint (3.2). This

can be translated into tadpole cancellation conditions requiring the absence of sources of

13See also ref. [57] for a discussion on generalised fluxes in SL(5) EFT.
14In the ‘gauge-unfixed’ approach of ref. [56], one may consider an additional scalar γ0 ≡ 1( 5

2
, 3
2
) . Using

again representation theory, one finds

F̂
α

≡ 3
′

( 7
2
, 1
2
) = 3

′

(1,−1) ⊗ 1( 5
2
, 3
2
) ⊕ 3(1,1) ⊗ 3( 5

2
,− 1

2
)

∣

∣

3′
≡ ∂̃

α
γ0 ⊕ ∂̂βB

βα
,

which includes two different types of contributions. In the language of ref. [56], the first term in the r.h.s.

corresponds to a locally geometric way of generating F̂α by turning on a flux for the spurious scalar γ0 .

The second term is generated when the NSNS two-form potential depends on the dual coordinates ŷα ,

namely ∂̂βB
βα 6= 0 , with ∂̂α ≡ 3(1,1) . Note that these are not the type IIA coordinates (see table 2). This

case is analogous to what happens in type IIA for the Romans mass and produces an F̂α flux which is not

even locally geometric, thus violating the section constraint in EFT.
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supersymmetry breaking. A last remark concerns the incompatibility of the X-constraint

with the presence of a metric flux ω of the Scherk-Schwarz (SS) type [60]. Suppose

that it was possible to introduce ω in XFT while allowing fields to depend arbitrarily

on ten or eleven physical coordinates after solution of the X-constraint. The resulting

X-deformation would modify the action of ordinary internal diffeomorphisms rather than

that of p-form gauge transformations, which is not possible. Consistently, we find that the

X-constraint actually excludes metric fluxes.

4 Dynamics of E7(7) XFT

In this section we illustrate the generic features of the deformations introduced in section 3.2

by constructing explicitly the gauge invariant E7(7) XFT. While the field content of the

theory remains identical to the one of E7(7) EFT, changes occur at the level of the tensor

hierarchy and in the action due to the presence of theX deformation. We refer to section 3.3

for a detailed discussion of the section constraint of the E7(7) XFT. We present below

some specifics of the deformed E7(7) generalised diffeomorphisms, followed by the tensor

hierarchy and the full bosonic action. The latter consistently reduces to the action of D = 4

gauged maximal supergravity when all fields are taken independent of the 56 exceptional

coordinates yM , and to the one of the E7(7) EFT when the X deformation is turned off.

Finally, when fixing X to (3.31) and choosing an appropriate solution of the section and

X-constraints (see (3.33)), one recovers the bosonic sector of massive type IIA supergravity

in a 4 + 6 dimensional split. The results of this section are in parallel with those of ref. [2]

to which we refer for an in-depth discussion of the E7(7) EFT dynamics.

4.1 Modified Lie derivative and trivial parameters

The expression of the E7(7) invariant Y -tensor is given in (3.28). Both the E7(7) generators

[tα]M
N and the symplectic form ΩMN are invariant under the deformed generalised Lie

derivative (3.5). For E7(7) the distinguished weight to be introduced in (2.1) is ω = 1
2 .

The section constraint decomposes into two irreducible pieces in the 1+ 133 irreps:

ΩMN∂M ⊗ ∂N = 0 , [tα]
MN∂M ⊗ ∂N = 0 . (4.1)

We will use the shorthand notation (P1+133)
MN∂M ⊗ ∂N = 0 to reflect these two con-

straints.

As explained previously, the X deformation satisfies the same linear and quadratic

constraints as the embedding tensor in gauged maximal supergravity [34]. The linear

constraints in D = 4 read

XNM
M = XMN

M = 0 , X(MNP ) = 0 , (4.2)

and restrict X to belong to the 912 representation. Consequently, the quadratic con-

straint (3.2) can be rephrased as

ΩMN XM ⊗XN = 0 . (4.3)
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The deformed EFT requires to impose the section- and the X-constraint (3.16). In D = 4

the latter can be decomposed into the 133+1539 irreps, corresponding to X(MN)
P∂P and

X[MN ]
P∂P respectively. Using representation theory it is possible to find other equivalent

ways to express these constraints. Two such expressions are particularly useful

ΩMNΘM
α∂N = 0 , ΘM

(α[tβ)]MN∂N = 0 , (4.4)

and correspond to the 133 and 1539, respectively.

The construction of the E7(7) XFT tensor hierarchy relies on the form of certain trivial

parameters appearing in the symmetric X-bracket (3.12). Specifically, for two arbitrary

generalised vectors of weight ω we have

{
U, V

}M

X
= − 6 [tα]

MN [tα]PQ ∂N
[
UPV Q

]
− UNV PX(NP )

M

−
1

4
ΩMN ΩPQ

[
V Q ∂NUP + UQ ∂NV P

]
.

(4.5)

Both lines of (4.5) are trivial parameters provided all fields satisfy the section constraint

and the symmetric part of theX-constraint (3.17). This ensures that the Jacobi identity for

L̃ is satisfied. More generally, the following generic parameters do not generate generalised

diffeomorphisms:

ΛM = [tα]MN∂Nχα +
1

6
ZM,α χα , (4.6)

ΛM = ΩMNχN , (4.7)

for arbitrary χα . The intertwining tensor ZM,α is constructed from XMN
P making use of

the linear constraint:

ZM,α = −XPQ
M [tα]PQ = −

1

2
ΩMNΘN

α . (4.8)

Similarly to the EFT case, χM is covariantly constrained in the sense that it must itself

satisfy the section constraints

(
P1+133

)MN
χM∂N = 0 =

(
P1+133

)MN
χMχN , (4.9)

where P1+133 denotes the projector onto the 1⊕ 133 representation of the 56⊗ 56 . In

XFT, the field χM is further covariantly constrained by

X(MN)
PχP = 0 , (4.10)

or equivalently by ΩMNΘM
α χN = 0 . The importance of the covariantly constrained

parameters (4.7) will become apparent when constructing the tensor hierarchy.

4.2 Yang-Mills sector and tensor hierarchy

Analogously to EFT, we introduce an external derivative which is covariant under modified

internal generalised diffeomorphisms

Dµ ≡ ∂µ − L̃Aµ . (4.11)
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Covariance determines the variation of Aµ
M to be

δΛAµ
M = DµΛ

M ≃ ∂µΛ
M + L̃ΛAµ

M , (4.12)

where the equivalence holds up to the addition of a trivial gauge parameter, to be reab-

sorbed in other gauge transformations higher up in the tensor hierarchy. This is completely

in line with the situation for the undeformed EFT.

Following the construction of the tensor hierarchy in the original EFT’s, we first define

the field strength for the vector fields Aµ
M as

Fµν
M = 2 ∂[µAν]

M −
[
Aµ, Aν

]M
X

. (4.13)

Since the Jacobiator of the X-bracket does not vanish, the above expression does not

transform covariantly under generalised diffeomorphisms. The procedure to restore gauge

covariance is analogous to those of gauged supergravity and EFT. In fact, it turns out to

be a superposition of the two cases. We define a modified field strength by introducing the

two-form fields Bµν α and Bµν M in the form of the two trivial parameters (4.6) and (4.7)

Fµν
M = Fµν

M − 12 [tα]MN∂NBµν α − 2ZM,αBµν α −
1

2
ΩMNBµν N , (4.14)

where Bµν K is a covariantly constrained field as in (4.9) and (4.10). Note that this

construction only deviates from EFT by the term proportional to ZM,α , which is precisely

the one needed to make contact with gauged supergravities when all the fields are taken

to be yM -independent. It is easy to verify that, since Fµν
M only differs from Fµν

M by a

trivial parameter, we have

[
Dµ,Dν

]
= −2 L̃∂[µAν]

+ 2 L̃A[µ
L̃Aν]

= −L̃Fµν = −L̃Fµν . (4.15)

Using the explicit expression for the symmetric X-bracket (4.5), the general variation of

the modified field strength (4.14) now reads

δFµν
M = 2D[µδAν]

M − 12 [tα]MN∂N∆Bµν α − 2ZM,α∆Bµν α −
1

2
ΩMN ∆Bµν N , (4.16)

where, as in EFT, we have defined

∆Bµν α = δBµν α + [tα]NPA[µ
NδAν]

P ,

∆Bµν N = δBµν N +ΩPQ

[
A[µ

Q∂NδAν]
P + ∂NA[µ

P δAν]
Q
]
.

(4.17)

We define the vector gauge variations of the two-forms as follows:15

∆ΛBµν α = [tα]NPΛ
NFµν

P ,

∆ΛBµν N = ΩPQ

[
ΛQ∂NFµν

P + Fµν
Q∂NΛP

]
.

(4.18)

Substituting the above variations back in (4.16) and making use of (4.5) and (4.15) yields

δΛFµν
M =

[
Dµ,Dν

]
ΛM + 2

{
Λ,Fµν

}M

X
= L̃ΛFµν

M , (4.19)

15It will be convenient for compatibility with [2] to take δΛAµ
M = DµΛ

M as the variation for the vector

fields under generalised diffeomorphisms (cfr. the discussion below (4.12)).
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which shows that Fµν transforms covariantly.

On top of the generalised diffeomorphisms (i.e. vector gauge transformations), the

field strength (4.14) is invariant under tensor gauge transformations associated with the

two-forms

δΞAµ
M = 12[tα]MN∂NΞµα + 2ZM,α Ξµα +

1

2
ΩMNΞµN ,

∆ΞBµν α = 2D[µΞν]α ,

∆ΞBµν M = 2D[µΞν]M + 48 [tα]L
K(∂K∂MA[µ

L)Ξν]α + 4ΘP
α ∂MA[µ

P Ξν]α ,

(4.20)

where the tensor gauge parameters Ξµα and ΞµM carry weight 1 and 1
2 , respectively. For

an arbitrary generalised vector Wα in the adjoint of E7(7) with weight λ′, the deformed

generalised Lie derivative acts as follows:

L̃ΛWα = ΛR∂RWα − 12 fγα
β [tγ ]L

K ∂KΛLWβ + λ′∂RΛ
RWα − ΛNΘN

γfγα
βWβ , (4.21)

where we have used the definition (3.5) and the relation between the generators in the

adjoint and the structure constants [tγ ]α
β = −fγα

β. In order to verify the invariance of

the field strength under tensor gauge transformations, it is necessary to study the following

expression in terms of a covariant object Wα :

TM ≡ [tα]MN∂NWα +
1

6
ZM,αWα . (4.22)

Under generalised diffeomorphisms, it transforms as

δΛT
M = L̃ΛT

M +ΩMN

(
[tα]L

KWα∂N∂KΛK +
1

12
ΘP

αWα∂NΛP

)

+ (λ′ − 1)[tα]MNWα∂N∂KΛK .

(4.23)

where TM carries weight λ(TM ) = (λ′ − 1
2) . As in ref. [2], in order to cancel the non-

covariant terms in the first line, a compensating field WM subject to the covariant con-

straints (4.9), (4.10) is introduced such that the combination

T̂M ≡ TM +
1

24
ΩMN WN , (4.24)

transforms covariantly with λ(T̂M ) = 1
2 provided that λ′ = 1. This is ensured only if the

compensating field transforms under generalised diffeomorphisms as

δΛWM = L̃ΛWM − 24 [tα]L
KWα∂M∂KΛL − 2ΘP

αWα∂MΛP , (4.25)

where λ(WM ) = 1
2 . Note that (4.25) preserves the covariant constraints (4.9) and (4.10) by

virtue of the section constraint (3.16) and the X-constraint (3.17). With the observation

that structures of the form (4.24) transform covariantly, it becomes straightforward to

verify the invariance of the field strength under both tensor gauge transformations.

The field strengths Hµνρα and HµνρM associated to the two-forms are defined through

the Bianchi identity

3D[µFνρ]
M = −12 [tα]MN∂NHµνρα − 2ZM,αHµνρα −

1

2
ΩMN HµνρN , (4.26)
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up to terms that get projected out under 6 [tα]MN∂N +ZM,α . The field strength HµνρM

is again covariantly constrained as in (4.9) and (4.10) and transforms according to (4.25)

under generalised diffeomorphisms.

4.3 Bosonic action

In analogy with ref. [2], the full dynamics of the theory can be encoded into an E7(7)

covariant (pseudo-)action supplemented by a first-order duality equation for the 56 gauge

fields Aµ
M

Fµν
M = −

1

2
e εµνρσ Ω

MN MNKFρσK , (4.27)

where e denotes the determinant of the vierbein and MMN is the scalar matrix pa-

rameterising the coset space E7(7)/SU(8) . This ensures that only half of the vectors are

independent.

The field equations can be conveniently derived by varying the following gauge invariant

pseudo-action, and subsequently imposing (4.27):

SXFT =

∫
d4x d56y e

[
R̂(X) +

1

48
gµν DµM

MN DνMMN

−
1

8
MMNFµνMFµν

N+e−1Ltop(X)−VXFT(M, g,X)

]
.

(4.28)

For the purpose of this paper we shall always assume that integration over the internal

space is actually performed only on the physical coordinates after choosing a solution of

the section constraint, so that global integration over the internal manifold is well defined.

While the general form of the action matches the one of EFT, the differences with the

latter lie in the expressions of the field strengths, the covariant derivatives and the ‘scalar

potential’ which explicitly depend on the X deformation. As in EFT, the XFT action is

uniquely determined by requiring gauge invariance under the bosonic symmetries. More

specifically, each term in (4.28) is invariant under internal generalised diffeomorphisms

while the relative coefficients are fixed by external diffeomorphisms.

In what follows we discuss the invariance of the different terms under vector (i.e.

generalised diffeomorphisms) and tensor gauge transformations. In the forthcoming com-

putations we will consistently drop all the vector gauge transformations of scalar density

of weight 1. Indeed, these take the form of boundary terms in the extended space.

The kinetic terms. The first term in the action is the Einstein-Hilbert term. As in

EFT, it is built from a modified Riemann tensor

R̂µν
ab(X) = Rµν

ab[ω] + Fµν
M eaρ ∂Meρ

b , (4.29)

where the curvature of the four dimensional spin connection ωµ
ab reads

Rµν
ab[ω] = 2D[µων]

ab − 2ω[µ
ac ων]c

b . (4.30)

The second term in (4.29) has been added in order for the modified Riemann tensor to

transform covariantly under the four dimensional local Lorentz transformations acting on
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the spin connection as δλωµ
ab = −Dµλ

ab. The spin connection can in turn be expressed

via Cartan’s (covariantised) first structure equation in terms of the vierbein eµ
a which is

an E7(7) scalar of weight 1
2 . Consequently, the spin connection and the Riemann tensor

both carry weight 0. Furthermore, using the section constraint and the X-constraint, it is

straightforward to show that the internal derivative of an E7(7) scalar S of weight λ(S)

transforms under vector gauge transformations as

δΛ(∂MS) = L̃Λ(∂MS) + λ(S)S ∂M∂NΛN , with weight λ(∂MS) = λ(S)−
1

2
. (4.31)

Hence, the modified Riemann tensor does not transform covariantly due to the second term

in (4.29). The non-covariant part of the variation vanishes when contracted with vierbeine

and therefore, the modified Ricci scalar R̂(X) is a scalar of weight 0. This proves the

invariance of the XFT Einstein-Hilbert term under gauge transformations.

The second and third term in (4.28) are respectively the kinetic terms for the scalars

and the vector fields. They only differ from the ones in EFT by the implicit presence of

the X deformation. The scalar matrix MMN is a tensor of weight 0 while Fµν
N carries

weight 1
2 . Using (4.19) and δΞFµν

M = 0 , it is clear that both terms are invariant under

vector and tensor gauge transformations.

The topological term. Following ref. [2], we present the topological term as a surface

term in five spacetime dimensions

Stop(X) = −
1

24

∫

Σ5

d5x

∫
d56y εµνρστFµν

M DρFστ M

≡

∫

∂Σ5

d5x

∫
d56yLtop(X) ,

(4.32)

where once again the difference with EFT lies in the definition of the field strength and the

covariant derivative. Although this term is manifestly gauge invariant, its general variation

is needed to derive the field equations for the vectors and two-forms

δLtop = −
1

4
εµνρσ

[
δAµ

M DνFρσM

+ Fµν M

(
6 [tα]MN∂N∆Bρσ α + ZM,α∆Bρσ α +

1

4
ΩMN∆Bρσ N

)]
.

(4.33)

This requires to use the Bianchi identity (4.26) and the fact that for any three vectors of

weight 1
2 the following identity holds

ΩMN UM
{
V,W

}N

X
+ cyclic = 12 [tα](M

Q[tα]NP ) ∂Q(U
MV NWP ) . (4.34)

The X-dependent part of the l.h.s. vanishes using (4.2), and hence the identity takes the

same form as in EFT. Using these results one can explicitly verify that (4.33) vanishes for

vector and tensor gauge transformations.
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The potential. The scalar potential of XFT takes the following form:

VXFT(M, g,X) = VEFT(M, g) + VSUGRA(M, X) + Vcross(M, X) , (4.35)

where the scalar potential of EFT is independent of the X deformation

VEFT = −
1

48
MMN ∂MMKL ∂NMKL +

1

2
MMN ∂MMKL ∂LMNK

−
1

2
g−1∂Mg∂NMMN−

1

4
MMNg−1∂Mgg−1∂Ng−

1

4
MMN∂Mgµν∂Ngµν ,

(4.36)

while the parts exclusive to XFT are

VSUGRA =
1

168

[
XMN

PXQR
SMMQMNRMPS + 7XMN

PXQP
NMMQ

]
, (4.37)

and

Vcross =
1

12
MMNMKLXMK

P ∂NMPL . (4.38)

The full potential boils down to the one of EFT when the X deformation is set to zero.

Additionally, it precisely reduces to the potential of gauged maximal supergravity (4.37)

when the fields are taken to be yM -independent.16 The term in (4.38) is a purely novel

feature as it is absent in both EFT and gauged maximal supergravity.

We finally give a few guidelines on the construction of the XFT potential. The various

terms and coefficients in (4.35) are uniquely determined by requiring invariance under

vector gauge transformations up to boundary terms, while each term is manifestly invariant

under tensor gauge transformations. Throughout the computation, one has to repeatedly

make use of the section constraint, the linear (or representation) constraint and the X-

constraint. The starting point is the variation of the EFT potential under vector gauge

transformations which can easily be computed using (4.31) and

δΛ(∂MMKL) = L̃Λ(∂MMKL) + 2MN(K ∂L)∂MΛN +MKL ∂M∂NΛN

− 2Y QR
N(KML)Q ∂M∂R ΛN + 2XN(K

QML)Q ∂MΛN ,
(4.39)

where λ(∂MMKL) =
1
2 . After the cancellations described in ref. [2], the only non-covariant

variations remaining are the ones depending (linearly) on the X deformation. In order to

cancel them, one needs to add counterterms to the potential which are of first order in

the derivatives and the X. The only term17 of this type which does not vanish by virtue

of the various constraints is (4.38). At this stage of the computation, it is important to

realise that both the X and the combination M−1XM take value in the E7(7) Lie algebra.

Consequently, the adjoint projector satisfies

(P133)
M

N
K

LXPK
L =XPN

M ,

(P133)
M

N
K

LMLPXQP
RMRK = MMPXQP

RMRN .
(4.40)

16The different normalisation of VSUGRA with respect to ref. [34] is due to the different normalisation of

the Einstein-Hilbert term.
17Up to equivalent rewriting using the linear constraint for the X deformation.
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The vector gauge transformation of (4.38) also yields additional non-covariant variations

which are quadratic in X. These must be cancelled by extending further the potential

with counterterms quadratic in X and that do not contain derivatives. It again turns out

that (4.37) are the only non-vanishing terms of this type.

5 Relation to EFT and (non-)geometry

The main focus of this article is to describe deformations of EFT which are able to cap-

ture the exceptional generalised geometry of massive IIA supergravity. It is interesting to

note that the Romans mass was implemented in DFT non-geometrically by introducing a

dependence of a RR potential on a dual (winding) coordinate [19]. This was made possible

by the observation that RR fields in DFT only need to satisfy a weaker form of the section

constraint in order to guarantee consistency of the theory. It is therefore natural to try to

relate this construction to the XFT framework. A first obstacle is that in EFT all fields are

packaged in En(n) representations, and as a consequence it is not so straightforward to relax

the section constraint on what would be the RR fields. The very distinction between NSNS

and RR sectors relies on at least a partial solution of the EFT section constraint. We will

find a solution to this problem in terms of a factorisation Ansatz for the fields and parame-

ters of the EFT theory that resembles a generalised Scherk-Schwarz (SS) Ansatz [11, 61–63],

but allows to perform a controlled, potentially non-geometric extension of the coordinate

dependence of fields and parameters rather than a truncation. On the one hand, a disadvan-

tage of this approach when compared to the XFT formalism is that it requires to break the

section constraint of standard EFT in order to describe massive IIA supergravity, despite

the fact that the latter is well-defined and entirely geometric in its own right. For the same

reason, it also becomes unclear whether the objects that are introduced in this context are

globally well-defined. On the other hand, the mapping that we now discuss allows us to elu-

cidate how EFT admits (locally) consistent extensions to section-violating configurations,

in such a way that no ten-dimensional background has been fixed yet and no truncation

of degrees of freedom occurs. This is in striking contrast to non-geometric Scherk-Schwarz

like compactifications that aim at reproducing lower dimensional gauged supergravities.

We will also discuss the transformation properties of generalised affine connections in

both the XFT context and the non-geometric EFT setting we are about to introduce, as

further evidence for the consistency of these frameworks.

5.1 The factorisation Ansatz

In this section we denote fields and parameters in the standard EFT theory with bold

letters and the associated internal indices by A, B, and so on. We begin by introducing a

factorisation Ansatz for the vectors and gauge parameters of EFT

VA(x, y) = V M (x, y)EM
A(y) , (5.1)

for some invertible matrix EM
A(y) ∈ En(n)×R

+ .18 With an abuse of language we will refer

to EM
A(y) as a frame, but we will not investigate global definiteness of the construction

18The indicesM,N, . . . should not be regarded as ‘flat’ in any sense. We propose the terminology ‘flurved’.
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here. A similar factorisation Ansatz can be straightforwardly introduced for any other

covariant object in EFT.19 Equation (5.1) resembles a Scherk-Schwarz Ansatz, however

note that we do not yet commit to a specific y-dependence of V M (x, y) and EM
A(y). In

particular the coefficients V M (x, y) are still allowed to depend on the internal coordinates.

In any case, given the consistency conditions that we will introduce shortly, one still obtains

that the frame EM
A(y) factorises out of any relevant EFT expression, leaving us with a

theory based on the coefficient fields. If we impose the section constraint on VA(x, y)

and other tensors, then V M (x, y) and EM
A(y) are restricted to depend on the same set of

internal coordinates, and (5.1) reduces to local field and parameter redefinitions. Instead,

we will relax the constraint and impose an alternative set of conditions that guarantee

(local) consistency.

A Weitzenböck connection and the corresponding torsion are associated to the frame

EM
A as follows [62, 64]:

W C
AB = ∂AE

M
B E C

M , T (W ) C
AB = 2W C

[AB] + Y CD
EBW

E
DA , (5.2)

where EM
AEA

N = δNM and EA
MEM

B = δBA . For the purpose of this paper we require

that the induced torsion with XFT indices is constant and entirely contained in the RX

representation, so that

T (W ) P
MN ≡ X P

MN ∈ RX . (5.3)

Hence we have the identity

LEM
E A

N = −X P
MN E A

P , (5.4)

where the XFT indices are treated as spectators by the Lie derivative. This indicates that

the vectors EM
A give rise to a Leibnitz algebra under the EFT Lie derivative.

In order to make contact with the construction of the previous sections we need to

impose a constraint on the coefficient V M (x, y) in the factorisation Ansatz. In fact, XFT

contains partial derivatives ∂M which have not appeared in EFT yet. We thus require

E A
M ∂AV

N = δAM∂AV
N ≡ ∂MV N , (5.5)

and regard this constraint analogously to the section constraint. Namely, as an algebraic

equation on the set of coordinates on which V M (x, y) is allowed to depend, rather than as

a differential equation. We will refer to this requirement as the E-constraint.20 Note that

in a generalised (non-)geometric SS reduction this constraint is trivially satisfied as the

coefficients in the SS expansion only depend on the external coordinates (see for instance

the discussion in ref. [65] in the context of DFT). If VA(x, y) satisfies the section constraint,

then the E-constraint implies the X-constraint on V M (x, y), with XMN
P defined in (5.3).

We stress that this is no longer guaranteed if EM
A(y) introduces a violation of the EFT

19To extend the Ansatz to fields of R+ weight different from ω, one must decompose EM
A = UM

Aρℓ,

where U ∈ En(n), ρ > 0 and the power ℓ is related to the weight of the field. See for instance [11].
20There could be more general backgrounds that do not satisfy this constraint. In such a situation the

connection to an XFT framework seems unclear.
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section condition. From now on we assume that the E-constraint has been imposed unless

otherwise specified. Now consider a gauge parameter ΛA(x, y) = ΛM (x, y)EM
A(y). Then

direct computation shows that

LΛV
A = (L̃ΛV

M )E A
M , (5.6)

which already reveals the structure of the underlying XFT. Closure of the EFT generalised

Lie derivative is then granted if the XFT generalised Lie derivative closes, which reduces

to the section- and X-constraints being imposed on ΛM and V M , but not on EM
A. The

factorisation property also follows for the Jacobiator, E-bracket and symmetric E-bracket,

which are mapped to the corresponding expressions of the deformed theory.

Let us now make the connection between EFT and XFT more precise. The factorisa-

tion Ansatz (5.1) introduces a local redundancy, because we can write

V M (x, y) → V ′M (x, y) = V N (x, y)Q−1(y) M
N ,

E(y) A
M → E′(y) A

M = Q(y) N
M E(y) A

N , Q(y) N
M ∈ En(n) × R

+ ,
(5.7)

provided that V ′M still solves the section-, X- and E-constraints, and that E′
M

A sat-

isfies (5.4) for the same XMN
P . Denoting the associated infinitesimal transformation

q(y)M
N , the latter requirement translates into the equation

q D
A X C

DB + q D
A X C

AD −X D
AB q C

D − 2∂[Aq
C

B] + Y CD
EB∂Dq

E
A = 0 , (5.8)

where we made use of the E-constraint. We must gauge-fix these q-transformations in

order to lift the redundancy introduced in the factorisation. To this end we note that

under a generalised diffeomorphism generated by ΛA(x, y) = ΛM (x, y)EM
A(y) the frame

transforms as
δΛE

A
M = LΛE

A
M = −q[Λ] N

M E A
N ,

q[Λ] N
M ≡ ∂MΛN − Y NP

QM∂PΛ
Q + ΛPX N

PM ,
(5.9)

and q[Λ]M
N satisfies (5.8) together with all the coordinate constraints. For any parameter

ΛA we can therefore define an improved variation

δ̂Λ ≡ δΛ + δq[Λ] , ΛM = ΛAE M
A , (5.10)

such that if ΛA satisfies the factorisation Ansatz and the associated coordinate constraints,

then δ̂ΛEM
A = 0.21 Now, under a generalised diffeomorphism in EFT, V M transforms as a

scalar: δΛV
M = ΛA∂AV

M . This implies that under the improved variation it transforms as

δ̂ΛV
M = ΛA∂AV

M − V Nq[Λ] M
N = L̃ΛV

M , (5.11)

which reproduces the generalised Lie derivative of the deformed theory. We can thus

reconstruct the geometry of XFT from the factorisation (5.1) and the improved varia-

tions (5.10). In particular, we can define the XFT general diffeomorphism transformations

21This procedure is analogous to the construction of general coordinate transformations compensated by

local Lorentz ones, such that under an isometry ξµ , δ̂ξeµ
a = 0 .
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from the EFT ones and from the q-transformations associated with the ambiguity in the

factorisation Ansatz:

δΛ ≡ δ̂Λ . (5.12)

As a final remark, note that this construction can be used as a cross-check for the

completeness of the action (4.28). All terms in the EFT action except for the scalar poten-

tial are built from covariant objects, so that the mapping to XFT using the factorisation

Ansatz is immediate. Moreover, the decomposition of the EFT scalar potential can only

yield terms with two internal derivatives and no X-deformation (matching the form of the

original EFT potential), terms with one derivative and one X, and terms with no deriva-

tives and two X. All such possible terms have already been implemented in (4.35) and their

coefficients are fixed by requiring invariance under internal generalised diffeomorphisms.

5.2 Romans mass and T-dual backgrounds

Let us now specialise to the case of the Romans mass deformation X = XR . As discussed

in section 3.3, every type II internal flux T-dual to the Romans mass can be implemented

in XFT in terms of the same XR deformation, by choosing different solutions of the section

and X-constraints. Moreover, we saw that in D = 4 there is a further ‘dual M-theory’

solution of these constraints where the same XR deformation can be interpreted as a

constant Freund-Rubin parameter. We will now show how (5.1) can be used to map the

deformed generalised Lie derivative with X = XR to a certain background in EFT.

Since X
R

MN
P vanishes after any contraction with another copy of itself, a possible

choice of frame E(y)M
A that generates it under (5.3) is

E(y) A
M = δAM −

1

c
yP X

R

PM
A , (5.13)

where we have temporarily suspended the distinction between EFT and XFT indices. The

constant c is introduced to match the normalisation of (5.3).

In the D = 9 case, there is only one coordinate entering (5.13) which is the winding

coordinate y3 from the point of view of the ‘natural’ (massive) IIA frame (with physical

coordinate y2 ). In the D = 7 case, the coordinates entering (5.13) are the three winding

coordinates ỹα from the massive IIA viewpoint (with physical coordinates yα4 ). In the

D = 4 case, (5.13) activates not only the six winding coordinates ym8 from the point of

view of the massive IIA theory (with physical coordinates ym7 ), but further includes the

seventh ‘dual M-theory’ coordinate y78 . In all these cases (and in any other dimensions,

too) the coordinates activated by (5.13) constitute themselves a solution of the section

and XR-constraint. In other words, the frame E(y)M
A specified by (5.13) satisfies these

constraints itself, and the E-constraint reduces to the X-constraint. Importantly, there

is no overlap between the coordinates entering (5.13) and the physical coordinates in the

‘natural’ (massive) type IIA solution.

The Ansatz (5.13) is not unique. Denoting y∗ one of the y-coordinates entering

E(y)M
A in (5.13), one can also construct a frame that depends only on that specific

y∗ :

E(y∗)
A

M = δAM −
1

c′
y∗X

R

y∗M
A . (5.14)
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This observation is important for the following reason. Recalling the discussion in sec-

tion 3.4, the XR deformation can be interpreted as a RR background flux (also a FR

parameter in the D = 4 case) after applying T-duality transformations. In the resulting

T-dual frames, the coordinate y∗ entering (5.14) can always be chosen so that it becomes

part of the physical coordinates permitted by the section and X-constraint. As a result,

the factorisation Ansatz (5.1) that maps EFT and XFT becomes purely geometric. In

other words, eq. (5.1) induces nothing more than local field and parameter redefinitions in

the standard EFT. Analysing its action on the EFT scalar fields, one can see that (5.1)

combined with (5.14) and a solution of the constraints compatible with y∗ , induces a redef-

inition of some Ramond-Ramond p-form potential of the associated supergravity theory by

a term linear in y∗ . The latter then induces the constant flux encoded in XR. When XR is

identified with the FR parameter of eleven-dimensional supergravity (which is only possible

in D = 4 ), the p-form potential acquiring a linear dependence on y∗ is the internal A(6).

The one exception to this situation is the ‘natural’ massive IIA frame where XR is

identified with the Romans mass: there is no potential that can be redefined to introduce

the constant F(0) ≡ mR . This translates into the fact that, when one chooses the solution

of the XFT constraints corresponding to massive IIA supergravity, the physical coordinates

are incompatible with any of the y-coordinates entering (5.13). Therefore, (5.1) and (5.14)

necessarily introduce a non-geometric dependence of some internal RR potentials on a

winding coordinate.22 This is consistent with the picture in DFT, where a similar winding

dependence is introduced for a RR potential in order to generate the Romans mass [19].

Our findings in this section, after fixing the q-transformations, can be interpreted as a

generalisation of the non-geometric construction in DFT, appropriately covariantised under

En(n) and under the complete set of exceptional generalised diffeomorphisms.

5.3 Affine connections in EFT and XFT

It is natural to ask whether the modified notion of covariance introduced in XFT and/or

the (possibly non-geometric) factorisation Ansatz (5.1) in EFT allow for the definition of

consistent affine connections and thus, a notion of internal covariant derivative. We will

provide here a positive answer both directly for XFT, and for EFT backgrounds of the

form specified by (5.1). Since in both cases some modifications appear with respect to

the standard transformation properties of an affine connection in exceptional generalised

geometry, it is convenient to discuss the two frameworks at the same time and see, as a

consistency check, that the objects in XFT also descend from the EFT embedding (5.1).

We will first show that for EFT backgrounds satisfying the factorisation Ansatz (5.1)

and the necessary coordinate constraints discussed in section 5.1, it is possible to define an

affine connection. First we introduce a covariant derivative acting on a vector in EFT

DAV
B = ∂AV

B + Γ B
AC VC , (5.15)

and deduce the transformation property of ΓAC
B from the required covariance

δΛDAV
B = LΛDAV

B ⇒ δΛΓ
B

AC VC = LΛDAV
B −DALΛV

B . (5.16)

22In D = 4, alternatively, one can introduce dependence on y78 , which can be regarded as a ‘dual

M-theory’ coordinate.
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This is just the standard procedure to deduce the transformation of the affine connection.

The crucial requirement for (5.16) to be consistent is that the right hand side must not

contain derivatives of VA . This is usually guaranteed by the section constraint, but also

holds for the backgrounds under investigation. Indeed, assuming that both ΛA and VA

satisfy (5.1), and making use of the X- and E-constraints on V M , we deduce

δΛΓ
C

AB = δ̂ΛΓ
C

AB = LΛΓ
C

AB + ∂A∂BΛ
C − Y CE

FB∂E∂AΛ
F

+ Y DE
FA∂EΛ

FW C
DB .

(5.17)

The last term is new and specific to the frame EM
A(y) in (5.1). If ΛA and VA satisfy the

section constraint, then this extra term vanishes identically and the standard transforma-

tion rule for the generalised affine connection holds. Note that the standard and improved

Λ-variations are equal for ΓAB
C .

The covariance of DAV
B is not enough to guarantee its consistency when the section

constraint is violated by VB . Closure of the EFT generalised Lie derivative is guaranteed

in this setting only if DAV
B can be factorised similarly to (5.1):

E A
M DAV

BE N
B ≡ DMV N , (5.18)

and DMV N satisfies the section, X- and E-constraints. In this case we can further define

DMV N = ∂MV N + Γ̃ N
MP V P , Γ̃ P

MN = Γ P
MN −W P

MN , (5.19)

where in the last expression EFT and XFT indices are exchanged by contraction with

EA
M and its inverse.

The right hand side of eq. (5.18) corresponds to a covariant derivative in XFT. Let us

then discuss the introduction of affine connections directly in the deformed theory. The pro-

cedure is analogous to what we have discussed so far, but now fields and parameters directly

satisfy the section and X-constraint. The transformation property of Γ̃AB
C is found to be

δΛΓ̃
P

MN = L̃ΛΓ̃
P

MN + ∂M∂NΛP − Y PQ
RN∂Q∂MΛR + ∂MΛQX P

QN . (5.20)

Note that this expression contains extra X-dependent terms with respect to the trans-

formation of an affine connection in EFT in a geometric setting. This fact reflects the

different notion of covariance of XFT, defined in terms of L̃ rather than L . Eq. (5.20)

can also be deduced from (5.17) by making use of the E-constraint, showing that these

definitions are mutually consistent and that the EFT factorisation Ansatz reproduces the

correct structures naturally defined in XFT.

We now make another observation: the torsion associated with Γ̃MN
P decomposes as

T (Γ̃) P
MN = 2Γ̃ P

[MN ] + Y PQ
RN Γ̃ R

QM = −X P
MN + E A

M E B
N T (Γ) C

AB E P
C . (5.21)

This means that, given a torsionless ΓMN
P , we can write the XFT generalised Lie

derivative also as a covariant Lie derivative: L̃Λ = L
D
Λ . Finally, using the transforma-

tion (5.20), it is possible to deduce that δΛXMN
P = 0 . This is compatible with the

general construction of XFT and with (3.18). In the EFT embedding, the same fact

descends directly from δΛEM
A ≡ δ̂ΛEM

A = 0 .
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6 Applications and future directions

We close the paper with a discussion on some potential applications of the En(n) XFT

framework. An immediate one is the investigation of consistent reductions of massive

IIA on non-trivial geometries. Amongst these, the study of Sn−1 sphere reductions to

gauged maximal supergravities in D = 11 − n dimensions is of special interest. The

n = 7 case has recently been shown to determine a consistent truncation in refs [27, 28]

where a central role was played by the duality hierarchy in the gauged maximal D = 4

supergravity [34, 44, 66, 67]. In contrast, the n = 4, 5 cases were presented in ref. [68] only

for the massless IIA theory. Therefore, it would be very interesting to perform a systematic

analysis of massive IIA reductions on Sn−1 in the context of generalised Scherk-Schwarz

reductions of En(n) XFT along the lines of refs [11–13].

A first step in this direction is to ask under what circumstances a consistent generalised

SS Ansatz for massless IIA is automatically (i.e. without making any modification to the

Ansatz itself) a consistent Ansatz for massive IIA. This has been shown to be true for

instance for the S6 case [27, 28]. Generalised SS reductions of massless IIA are based

on a truncation Ansatz of the form V M (x, y) = vN (x)S(y)N
M for any covariant object,

with S(y)N
M ∈ En(n) × R

+ and the y-dependence being restricted to IIA coordinates.23

The frame S(y)N
M must satisfy the analogue of (5.4) for some embedding tensor X(S)

MN
P .

Generic sphere Ansätze of this type have been constructed in [11], so it would be useful

to know when they can be implemented directly also in XFT. In the XFT framework

describing massive IIA, S(y)N
M must satisfy analogous conditions, now containing extra

terms related to the XR-deformation of the generalised Lie derivative, which encodes the

Romans mass. It is straightforward to see that, if we want to keep the same S(y)N
M

as in the massless Ansatz, then consistency is only obtained if S(y)N
M stabilises X

R

MN
P

(up to a global En(n) ×R
+ transformation that can be always reabsorbed). The resulting

D-dimensional gauged supergravity will then be based on an embedding tensor X = X(S)+

XR . Truncations on Sn−1 down to D = 11 − n dimensions are based on twist matrices

valued in an SL(n) × R
+ subgroup of En(n) × R

+ . One can check that the stabiliser of

XR in En(n) contains only an SL(n− 1) group for n < 7 , which means that the massless

IIA truncation Ansätze on spheres of dimension lower than six are not consistent for the

massive theory.24 Only in D = 4 does XR break E7(7) to SL(7) (plus a solvable piece),

which shows that the massless IIA Ansatz for S6 can be directly utilised on the massive

theory, as was indeed done in [27, 28].

23Tensors of weight λ 6= ω are described as in footnote 19.
24An alternative road is to investigate whether the deformation X = X(S) +XR′

, where XR′

represents

a generic element in the En(n) orbit of the XR deformation, satisfies the quadratic constraint in (3.2).

For instance, let us focus once more on the SL(5) XFT and its counterpart, the gauged maximal D = 7

supergravity. In ref. [37], the reduction of massless IIA on S3 ∼=
SO(4)
SO(3)

was connected to an ISO(4)-gauged

maximal supergravity given (in our conventions of section 3.4) by a deformation of the form YMN =

R−1 diag(1, 1, 1, 0, 1) , where R relates to the S3 radius. Such a YMN determines X(S) . Adding now a

generic element XR′

in the SL(5) orbit of the XR deformation and computing the resulting quadratic

constraints (3.2) for X = X(S)+XR′

, one finds that a consistent truncation on S3 ∼=
SO(4)
SO(3)

(finite R ) to a

maximal D = 7 supergravity is possible only in the massless case (mR = 0). Let us emphasise again that

we are assuming the same reduction Ansatz both in the massive and massless cases.
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Also in the context of massive IIA, it would of course be interesting to implement in

our formalism a way to reproduce the equations of motion and Bianchi identities associated

with general type IIA backgrounds, where the value of the Romans mass mR is allowed to

change by discrete values when crossing a D8-brane. In order to achieve this, we proceed

by allowing for a non-constant rescaling of the Romans X
R

deformation

X
R

MN
P → M(x, y)X

R

MN
P , (6.1)

where M(x, y) plays the role of a spacetime-dependent Romans mass.25 Constancy of

the latter can be imposed by adding p-form Lagrange multipliers to the XFT action

that enforce ∂µM = ∂MM = 0 . This approach would be equivalent to the original

construction of ref. [53], if the extended coordinates yM are restricted to the massive

IIA coordinates. Such a construction can be made more general by making the full X

deformation x and y dependent and introducing Lagrange multipliers to enforce its

constancy as well as its (linear and quadratic) constraints. This is the standard approach

to derive the complete tensor hierarchy of gauged supergravities [33, 66], and it would be

interesting to investigate the consistency of such an approach in XFT where the section

constraint and the tensor hierarchy must be taken into account appropriately. The study

of D8-branes in XFT, especially the interpretation of the X-constraint in (3.17) as a

projector into specific U-duality brane charges, might help in understanding mutually

1/2-BPS configurations [14] in the massive IIA theory.

Moving now to the context of the type IIB theory, we saw in section 3.4 that, together

with ordinary p-form fluxes, all the En(n) XFT’s are compatible with an SL(2)-triplet

of one-form deformations HA ≡ (F,H, F̂ ) . These are connected to the triplet of eight-

form potentials in type IIB [59], thus becoming relevant in the study of S-duality orbits of

7-branes [58] and potentially of F-theory. An SL(2) invariant constraint guarantees that

the three eight-form potentials are dual to the two scalar degrees of freedom of the IIB

axion-dilaton. The XFT consistency constraints do not impose this extra requirement.

Therefore it would be interesting to investigate if XFT allows to describe more general

type IIB backgrounds, and clarify whether HA in XFT is entirely geometric or contains a

bit of ‘global non-geometry’ (see discussion on γ-deformations in [56]).

Finally there are other interesting directions which are more tangential to the content

of the present paper. The first one is the construction of a supersymmetric version of the

XFT’s similar to the ones for the undeformed EFT’s [69, 70]. The analysis of section 5.3

suggests that there should be no obstruction in defining the K(En(n)) connections that are

required for introducing fermions. The second one is the formal truncation of the En(n)

XFT to a deformed O(n− 1, n− 1) DFT. Such a deformed DFT should connect with the

formalism introduced in [71] to account for non-Abelian gauge couplings in the DFT formu-

lation of the heterotic string, except that a non-trivial O(n− 1, n− 1)-valued deformation

fMN
P should appear together with extra constraints (partially) reproducing the embedding

tensor constraints in half-maximal supergravity. The structure of such DFT deformations

must also be similar to the formalism introduced in [65] to describe dimensional reductions

25We can set to unit value the constant mR parameter contained in XR.
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of DFT. The crucial difference with respect to the construction in [65] is that no truncation

of the coordinate dependence is required, thus resulting in a deformation of the generalised

Lie derivative of the full theory. The last question concerns the existence of an E8(8) XFT

and its relation to gauged maximal D = 3 supergravity [33]. A difference in the E8(8) case

is the presence of an extra covariantly constrainted vector gauge parameter required for

closure of generalised diffeomorphisms [3] (for an alternative approach see also [72]). Inves-

tigating the potential implications of this new term on the X deformation goes beyond the

scope of this paper. We hope to come back to these and related questions in the near future.

Note added. Shortly after this manuscript appeared on the arXiv, the preprint [73]

appeared with a detailed construction of the exceptional generalised geometry for mas-

sive IIA supergravity. It reaches similar conclusions regarding sphere reductions of IIA

supergravity, and further investigates alternative Ansätze for the massive theory.
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