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1 Motivation and outlook

Exceptional field theory (EFT) provides a unified framework where to describe massless
type II and eleven-dimensional supergravity [1-7]. It is therefore natural to ask whether
the unifying abilities of EFT could also allow for an implementation of the massive ITA
theory [8]. In EFT, E,(n) covariance is made manifest by adding extra internal coordi-
nates to the ten- or eleven-dimensional spacetime in order to gain new insights into the
structure of string/M-theory. Consistency of the theory eventually requires to impose a
section constraint which restricts all fields to depend at most on ten or eleven physical
coordinates. After solving the section constraint, EFT reduces (locally) to an exceptional
generalised geometry (EGG) formulation of massless type II or eleven-dimensional super-
gravities [9, 10]. Applications range from the study of consistent truncations [11-13] to
loop computations of higher derivative corrections to the M-theory effective action [14].



While the embedding of the eleven-dimensional and massless type Il supergravities
into EFT is well understood, the one of massive ITA supergravity remains so far an open
question. In fact, a puzzle arises when facing this issue. On the one hand, being a fully
consistent ten-dimensional maximal supergravity in its own right, massive ITA should posses
an associated EGG capturing its degrees of freedom and local symmetries in the same
fashion as for the massless type II theories. It is therefore natural to expect that such
a generalised geometry would descend from EFT after choosing some specific solution of
the section constraint. On the other hand, solutions of the section constraint in EFT
have been classified and are known to exclusively correspond to the massless type II and
eleven-dimensional supergravities [14-18]. It thus seems that some violation of the section
constraint is needed in order to reproduce the Romans mass. In the context of double field
theory (DFT), the Romans mass was implemented by allowing a Ramond-Ramond (RR)
potential to depend on a non-geometric (winding) coordinate [19], thus again suggesting
that a similar scenario should take place in EFT. In this case, however, there would be
no direct relation with an EGG for massive IIA in ten dimensions. This paper provides a
solution to this puzzle and, in doing so, unveils an extension of the EFT framework.

The Romans mass mp has always manifested itself as a deformation parameter in any
construction related to type ITA. This is the case, for instance, for the supersymmetric AdS
vacua of [20-22]. When considering dual holographic models, the Romans mass translates
into a deformation of the field theory in the form of a Chern-Simons term with level k&
given by k/(2wls) = mgr [23, 24] (see also [25, 26]). A more recent example involves the
consistent reduction of the massive IIA theory on the six-sphere [24, 27]. In this case it was
shown [24, 28] that, after truncation to four dimensions, the Romans mass appears as an
electric-magnetic deformation parameter of the types constructed in [29, 30] and classified
in [31, 32]. These results suggest that, in order to embed the massive ITA theory in EFT,
one should investigate the possible deformations of the latter.

In this paper, we will show that EFT does admit consistent deformations which still
allow for ten- and/or eleven-dimensional solutions of the section constraint. For one of
these deformations, there exists a purely geometric ten-dimensional solution which precisely
corresponds to massive IIA supergravity, and thus define as a byproduct the associated
EGG. This new deformed EFT framework endows massive ITA supergravity with the same
geometrical and group-theoretical tools so far exclusive to the massless theories.

We now present a brief summary of the structure of the deformed EFT framework.
EFT is based on an ‘external’ spacetime and an ‘internal’ extended space with coordinates
z* and yM | where u =0,...,D—1, M =1,...,dim R, and R, denotes the En(n)
representation of the vector fields in the theory (see table 1). Internal generalised diffeo-
morphisms act on fields by means of a generalised Lie derivative Ly . While all fields and
M

)

parameters formally depend on the full set of coordinates (z*, y™'), the dependence on the

internal coordinates is ultimately restricted to a physical subset by the section constraint
YPQynop ® 09 =0, (1.1)
0

= g,
a maximal solution of this constraint, EFT effectively reduces to eleven-dimensional or

where O0j and YP9,y isa specific E, () xR* invariant tensor [16]. After choosing



D 9 8 7 6 5 4
En(m | SL(2) x R* | SL(2) x SL(3) | SL(5) |SO(5,5) | E) | Evr)
Re | 23+1_4 (2,3) 10/ 16. | 27 | 56
Rx | 2.3+34 | (2,3)+(2,6) |15+40' | 144, | 351 | 912

Table 1. Relevant E,,) representations for the vector fields 4, and the X deformation [40].

type IIB supergravity in a D +n or D + (n — 1) dimensional split, respectively. Such
a split of the physical coordinates into the D-dimensional external spacetime and the
n- or (n — 1)-dimensional internal space explicitly breaks the Lorentz covariance of the
eleven- or ten-dimensional theory but does not truncate any of its degrees of freedom. The
generalised Lie derivative then encodes the ordinary internal diffeomorphisms and p-form
gauge transformations of the physical theory in the corresponding dimensional split.

The central result of this work is the construction of ‘X deformed’ exceptional field
theories (XFT’s) based on the following modification of the generalised Lie derivative by
non-derivative terms

Ly =1L+ AMX)yy, (1.2)

where Xj; turns out to be E,., Lie algebra valued. In particular, it takes the form
(Xnr) NP = Xuyn? when acting on a field in the R, representation. Closure of the
deformed generalised Lie derivative (1.2) and consistency of the tensor hierarchy require
X to be restricted to a specific E,,(,,) representation (see table 1) and to satisfy a quadratic
constraint

Xppt Xnp® — Xnp Xpp®? + Xy Xgp? =0, (1.3)

in analogy with the constraints appearing in gauged maximal supergravity [33-39]. Fur-
thermore, an additional constraint involving both X and dj; must be imposed

XMNP op=0. (1.4)

This ‘X-constraint’ can be interpreted as a compatibility condition between the X defor-
mation and the y™ dependence of the fields and parameters. Together with the section
constraint (1.1) these conditions guarantee the consistency of the algebra of internal gen-
eralised diffeomorphisms and, ultimately, of the whole XFT.

For specific choices of X, (1.4) is still compatible with solutions of the section con-
straint (1.1) that preserve n or (n — 1) internal coordinates. The resulting XFT’s ulti-
mately describe three types of eleven- and ten-dimensional maximal supergravities:

o 11-dimensional and massless type IIA supergravities with background fluxes.
o Type IIB supergravity with background fluxes.

o Massive type ITA supergravity with background fluxes.



The latter case is a genuine result of XFT. Indeed, the massive IIA supergravity, which
cannot be described in EFT without violating the section constraint, now admits a geomet-
ric description using the XFT framework. The background fluxes can be reabsorbed in the
dynamical fields of the theory without violating the section constraint. This is however not
possible for the Romans mass. As a result, the EGG of type ITA supergravity admits two
inequivalent generalised Lie derivatives corresponding to the massless and massive theories,
respectively.! It will also be shown how the XFT describing massive ITA can be related to
a non-geometric extension of EFT, thus making contact with the DFT construction in [19].

The outline of the paper is as follows. In section 2 we review the main features of EFT
and its generalised Lie derivative. From this formalism we reproduce the gauge transfor-
mations of the massless ITA theory and argue that a deformation of the generalised Lie
derivative is needed in order to account for the gauge transformations in the massive case.
In section 3 we present the general structure of the X deformation, show that it contains
the Romans mass parameter and classify deformations of the SL(5) EFT compatible with
ten- or eleven-dimensional solutions of the section- and X-constraints. In section 4 we
present the bosonic action, tensor hierarchy and transformation rules for the E7«7) XFT.
In section 5 we discuss the relation between XFT and a certain, possibly non-geometric,
extension of EFT. We also comment on the construction of internal covariant derivatives.
We finally discuss some applications of our results in section 6.

2 Exceptional field theory and type IIA supergravity

Exceptional field theories (EFT’s) embed the eleven-dimensional and massless type II su-
pergravities in a unified framework, which renders the structure of their hidden excep-
tional symmetries manifest and captures the generalised geometries underlying them. More
concretely, the spacetime of eleven-dimensional supergravity is decomposed into a D di-
mensional ‘external’ spacetime and an n = 11 — D dimensional ‘internal’ space, without
performing any truncation of degrees of freedom. The internal diffeomorphisms are then
extended to generalised diffeomorphisms accounting also for internal gauge transformations
of the three- and six-form potentials (and of the dual graviton in D = 4,3). A similar situa-
tion occurs for the D+ (n— 1) dimensional split of the massless type II supergravities. The
set of internal coordinates is then extended to y™, M =1,...,dim R, to complete the
representation of E,,), which can be regarded as conjugate to the internal momenta and
half-BPS charges of the theory [14, 41]. A section constraint is imposed for consistency,
restricting the coordinate dependence of fields and gauge parameters to a subset of the in-
ternal coordinates. As long as one does not commit to a specific solution of this constraint,
EFT can be regarded as being (formally) invariant under global E,,(,,) xR" transformations.
The embedding of the original ten- and eleven-dimensional supergravities is recovered by
choosing the appropriate solution of the section constraint. The generalised Lie derivative
and other structures in EFT then reproduce (locally in a coordinate patch) the exceptional
generalised geometry associated with the corresponding supergravity theory.

"When it is non-vanishing, mg can be rescaled by field redefinitions.



In their latest formulations, EFT’s have been constructed in any D > 3 [1-7] following
a prescription that mimics the structure of the maximal supergravities in the correspond-
ing dimension [33-39]. In both the EFT’s and the maximal supergravities, internal and
spacetime symmetries completely specify the field content as well as its interactions in an
elegant and unambiguous manner. In this section we introduce the basics of the EFT’s
which we will be extensively using. We will focus on D > 4 throughout this paper.

2.1 Generalised diffeomorphisms

EFT fields depend on spacetime coordinates z#, u = 0,...,D — 1, and extended internal
coordinates y™. The fields and gauge parameters of the theory are arranged in objects
that transform consistently under a set of exceptional generalised diffeomorphisms. On
covariant objects generalised diffeomorphisms act with a generalised Lie derivative Lp .
For instance, the action of Ly on a vector UM of weight A\(U) = Ay reads?

LaUM = ANoNUM — UNONAM 4 YMN g AT U + Ay —w)0pATUM,  (21)

where AM(z,y) is the gauge parameter, Y MV PQ s a specific, constant E,,) X R* invari-
ant tensor (so that 5AYMNPQ = ]LAYMNPQ =0),and w=1/(D —2). All parameters of
generalised diffeomorphisms carry weight w.

Consistency of the generalised diffeomorphisms requires the algebra of the generalised
Lie derivative to close, namely

L, L)W = Ly sy, WY (2.2)
where the so-called E-bracket for parameters A and ¥ is defined as

(A 2]y = - (LaSM — LeAM) = APopsM + %YMNPQ ONATS? — (A& X)), (2.3)

1
2
The requirement (2.2) translates into a set of conditions [16] which severely restricts the
dependence of the fields and parameters in the EFT on the generalised coordinates:

YPQyn 0p ® g =0,
(YMPro YT g — YMP Lo 55)) (9poN) =0,
(YN Y 1om + 2Y MY (mg YT 510 = YV (R 65 — 2Y MV (510 0)) O © 9p) =0,

(Y YT sy + 2V MY (YT 510 = Y () 6 = 2V M (511 ) O @ Oy =0

(2.4)

The first condition in (2.4) is usually referred to as the section constraint. We will always

impose that it holds on any combination of fields and/or parameters, including derivatives

and products. As a result, the section constraint restricts all objects in the EFT to depend

only on a subset of the internal coordinates. The other equations in (2.4) then follow from
the section constraint for all the E, ) EFT’s [16].

2The transformation rule for a covariant tensor Vis is deduced by requiring that the contraction S =
UMVyy transforms as a scalar density of weight Ay 4+ Ay . The transformation rule for tensors follows
immediately.



The E-bracket in (2.3) fails to satisfy the Jacobi identity:
1
[[A, 2], T, + cycl. = 3 {[A, 2]g, T} + cyel... (2.5)

This fact plays a central role in the construction of EFT’s, as it requires the introduction
of a hierarchy of p-form fields and gauge transformations [1-4, 42| similar to the one of
gauged supergravities [43, 44], in order to guarantee invariance of the equations of motion
under generalised diffeomorphisms. For vectors of weight w, one finds that the symmetric
bracket {A, X}, reads

Az} = %(]LAEM—HLEAM) = %YMNPQ (@AY + AQONST],  (2:6)

so that LaX™ = [A, E]]{‘ZJ +{A, =} . Consistency of the EFT tensor hierarchy then follows
from the fact that, upon using the section constraint, {A, X} is a trivial gauge parameter,
namely, L¢j vy, vanishes identically.

Covariance under internal generalised diffeomorphisms with parameters dependent on
spacetime coordinates x* requires the introduction of appropriate covariant derivatives
and associated connections [42]

Bu — DM = 8# — L (2.7)

wo

where A, (z,y) are the vector fields of EFT. The requirement that D,, is covariant fixes
the transformation properties of AMM up to the addition of trivial gauge parameters. It
is customary to choose

oaAM =D A = 9 AM — Ly, AM . (2.8)

Making use of the fact that {A, A“M }g is a trivial parameter, we can also give a different
expression for 5AA#M which will be convenient in the following section:

oAAM =0, AM +LpAM. (2.9)

The difference between any two choices of 5AAMM is absorbed into the gauge transforma-
tions associated with the two-forms of the EFT tensor hierarchy. The specifics of these
tensor hierarchies depend on the dimension D, although a systematic treatment has been
recently developed in [45]. We will discuss the D =4 case thoroughly in section 4.

2.2 Massless ITA gauge transformations from EFT

In order to make contact with the eleven-dimensional and massless type Il supergravities,
it is necessary to pick a specific solution of the section constraint in (2.4). As preparation
for the implementation of the Romans mass as a deformation parameter, here we will
briefly exemplify how to recover the gauge transformations of ten-dimensional massless
IIA supergravity from those of EFT.

Let us start by introducing the massless gauge transformations of the IIA ten-
dimensional p-form potentials A, A, g and Ay gp. These are specified by gauge



parameters A\, 2, and Ogp = —0pg, where M, N, ... are ten-dimensional spacetime

indices, and take the form (we follow the conventions of ref. [46])

(2.10)
For the sake of concreteness, we will consider a 7 + 3 dimensional split of the fields and
parameters of the ten-dimensional type IIA supergravity. The p-forms of type ITA super-
gravity are decomposed in scalars, vectors and so on after appropriate Kaluza-Klein (KK)
like redefinitions which are needed to achieve covariance under the seven-dimensional ex-
ternal diffeomorphisms explicit. All fields and gauge parameters still depend on the ten-
dimensional coordinates z#, y® with u = 0,...,6 and o = 1,2,3. For instance the
D = 7 vectors arising from the ten-dimensional p-form potentials can be written as

AR = A, - B, A, ARK = A,5— B, Ass, ARE = Aupy— By Asgy, (2.11)

where B,,* are the KK vector fields coming from the metric. It is convenient to perform

a second set of non-linear redefinitions®

Cu = ARK, Cup = Aj5 and  Cug, = AL + ARS Ag, . (2.12)

After some algebra manipulations it can be shown that, under (2.10), these vectors trans-
form as follows under internal diffeomorphisms with parameter £% and internal gauge
transformations with parameters A\, S, , 0.3

5B,Lta = (a,u - B,u5 86) £ + 56 86Bua )
60, = € 95Cy + (0, — B, 95) X,

5Ciup = € 0505 + Cus 056" + (9 — B, 95) Zp + B, 95 %5, (2.13)
0Cuy = € 05Cusy + 2 Crspy I + (9 — By’ 95) 03 + 2 B, 915 051
+20, 0135y — 20,5 0y A

The 7+ 3 dimensional split we have adopted to describe the massless IIA supergravity
can be compared with the D = 7 EFT, based on E,4) = SL(5) [6, 15, 17]. Analogous
comparisons can be performed for other D+ (n—1) dimensional splits. The SL(5) EFT is
characterised by generalised vectors AM in the 10’ representation, i.e. A = —A"™"  with
m =1,...,5 being a fundamental SL(5) index. The structure tensor of the SL(5) EFT is
given by*

mn mnpqz
Y pqrs tu = € Pa €rstuz » (2'14)

and the section constraint reduces to

€M G @ g = 0. (2.15)

3Similar redefinitions were discussed in refs [27, 47, 48].
4The entries in Y™ P9, are 0,41. Therefore, whenever an index pair mn is contracted, a factor of

% must be explicitly included.



There are two inequivalent solutions of (2.15) (up to SL(5) transformations [17]) corre-
sponding to M-theory (more precisely, eleven-dimensional supergravity) and type IIB:

M-theory: Ona 0, 045 #0 and Ous5 = 0up =0,

(2.16)
type I1B: 805 #0 and Oupq = 05 =045 =0.

The massless ITA case is obtained by further restricting to only three coordinates in the
M-theory solution. We will set 945 = 0.

The SL(5) EFT contains 10" vector fields A4, = A,™" that transform under a gener-
alised diffeomorphism as in (2.9). Using the massless ITA solution of the section constraint
(Oas # 0), we can identify the field content and gauge parameters of the supergravity
theory with those of the EFT:

1
A = (Aua5> Aua4a Auaﬁa Au45) = <2 e Cupy, By, e Chry C#) ’

1
AT — (Aa5’ AOA, Aa,B, A45) — (2611,87 9577 fa ’ eaﬂ'y E,\/, )\> , (2.17)

amn:(aa&aa%aaﬁa845):(0,8a,0,0,0).

After imposing the massless ITA solution of the section constraint, an explicit computation
of the vector field transformations directly from (2.9) reproduces (2.13). A similar analysis
can be repeated for the other types of fields like the scalars or the two- and three-form
potentials. However, the vector gauge transformations are enough for our purposes in the
next section.

2.3 Massive ITA gauge transformations from a deformed Lie derivative

Let us now look at the gauge transformations of the ten-dimensional massive ITA super-
gravity also in the 7 4+ 3 dimensional split. After performing the field redefinitions (2.11)
and (2.12), the internal gauge transformations are modified by the Romans mass mg,
yielding

0B, = (0 — B’ 95) " + € 95B,
00, = 56 95Cyu + (0 — Bu6 05) A — mg Bu6 Zs s
6C,5 = € 05C,5 + Cli5 05° + (8, — B’ 9s5) Zp + B’ 95 =5, (2.18)
0C,py = 3 95Cupy +2 Cpsly ‘9@55 + (0 — BM6 95) O3y + 2 BM6 91 G511
+2C, 0=

7] = 2Cu(p Oy A —2mr Cpis =y -

Note that the extra terms in (2.18) compared to (2.13) do not contain internal
derivatives. This poses an obstruction to recovering such variations from a standard
EFT /generalised geometry Lie derivative like (2.1), whose terms always contain deriva-
tives of either the gauge parameter or the field it acts on. However, the fact that massive
IIA supergravity is a geometrically well-defined theory means that an exceptional gener-
alised geometry describing it should still exist. This suggests that the solution to the above
obstruction is to implement mp as a deformation of L, thus modifying the notion of



covariance in the exceptional generalised geometry associated with type IIA supergravity.
The procedure we follow to deduce this deformation is the converse of what we discussed
in the previous section: we still use the dictionary (2.17) for the SL(5) EFT, but we now
repackage (2.18) into an expression

SAA™ = 8, A + Ly A,™ (2.19)

where ]i,A accounts for mgr and reduces to the standard EFT Lie derivative in the limit
mp — 0. We stress that vector fields transform faithfully under internal generalised dif-
feomorphisms, so that by covariance this procedure uniquely identifies the deformation
induced by mg for every other field, too. The resulting deformed Lie derivative reads

LA™ =TLpAA™ — Xpgrs™ APT A, (2.20)

where the second term in the r.h.s. of (2.20) is specified by an X deformation of the form

Xonnpg"™ =2 X" 0] (2.21)
with non-vanishing entries given by
Xog~" = —2MR €apy (2.22)

and where €., is the Levi-Civita symbol in three dimensions with €123 = +1. Note
at this point that equations (2.21) and (2.22) correspond to the embedding tensor of the
gauged maximal supergravity induced by a three-torus compactification of massive ITA
supergravity.’

Consistency requirements like closure of L will follow from consistency of the original
massive IIA theory, at least as long as we restrict to the solution of the section constraint
that corresponds to the type IIA theory. As we shall see, however, the structures unveiled
in this section can be immediately generalised to other dimensions as well as to generic
X deformations. Therefore we will discuss consistency of the deformed EFT’s in a more
general setting in the next section, to later come back to the case of the Romans mass.

3 Deformations of exceptional field theory

Motivated by the Romans mass deformation of the SL(5) EFT found in the previous
section, we move to investigate general deformations of EFT. In this section we will focus
on the structure of generalised diffeomorphisms and discuss their closure and consistency
conditions.

3.1 Some notions of gauged maximal supergravity

It will be useful for our purposes to first review a few basic aspects of the embedding tensor
formalism of gauged maximal supergravities. An incomplete list of references dealing with
gauged maximal supergravities in d =4,7,9 dimensions includes refs [34, 37, 39].

5The reduced theory is a seven-dimensional gauged maximal supergravity with three vectors AMO‘B
spanning an abelian R® gauging specified by the three commuting generators t”s .



The gauge group of a gauged maximal supergravity in D dimensions must be a sub-
group of E,,,), where n = 11—D . This is the global exceptional symmetry of the ungauged
theory. We will exclude in our discussion the gauging of the R™ trombone symmetry of
maximal supergravities [49, 50]. The supergravity Lagrangian and symmetry variations
are entirely specified by an embedding tensor ©p®, where « is an E,(,) adjoint index
and M is in the Ry representation. Equivalently, introducing E, ) generators [talart,

we can construct an object with R, indices only

Xun® =0y [ta]nT, (3.1)

which captures the same information as ©,;%.%

Despite its name, the embedding tensor should be taken as a fixed object, which
therefore explicitly breaks the global E,,) symmetry in order to gauge a subgroup. Its
variations under diffeomorphisms, gauge transformations and supersymmetry all vanish by
definition. However, it is often convenient to regard X un’ as a spurious object, which
is allowed to transform under E,,) together with the fields of the theory, thus obtaining
a formally E,,) covariant treatment of gauged maximal supergravity. A set of quadratic
and linear constraints must be imposed on the embedding tensor for consistency of the

gauged theory. The quadratic one
Xarp" X g — Xnp " Xar® + X v Xpp® = 0, (3.2)

ensures closure of the gauge algebra and requires that the embedding tensor, when regarded
as a spurious object, is invariant under the gauge transformations it defines. The linear
constraint is required both by supersymmetry and, at the bosonic level, by imposing that
the hierarchy of p-form fields induced by the gauging is consistent with the representation
content and counting of degrees of freedom of the ungauged theory. In practice, the linear
constraint restricts the embedding tensor to specific irreps (denoted by Rx in table 1)
contained in the tensor product of R, and the adjoint representation

©cRy C Ry®adj. (3.3)

3.2 Deformed generalised Lie derivative

Motivated by our discussion of the internal gauge variations of massive IIA supergravity,
we will now consider generic deformations of the exceptional generalised Lie derivative L
of the D-dimensional EFT by non-derivative terms specified by a constant object Xprn? .
As we will see, this object satisfies the same requirements as the embedding tensor of the
D-dimensional gauged maximal supergravity: the quadratic constraint (3.2) arises from
the closure and Jacobi identity for the generalised diffeomorphisms, while the linear or
representation constraint (see table 1) is required for consistency of the resulting hierarchy
of tensor fields. We exclude deformations of the trombone type from our discussion.
We thus start by introducing a deformed generalised Lie derivative which acts on
vectors as
LAUM = LyUM — XypM AN UP (3.4)

This is not necessarily true for non-maximal theories.

,10,



where the standard (undeformed) generalised Lie derivative L is defined in (2.1). A first

consistency requirement is that ILp is compatible with the global E, ) structure of the
theory: thus Xp;n' must decompose just as in (3.1). We can thus say that in general

Ly =La +AY Xy, (3.5)

where X is E, ) Lie algebra valued and acts in the appropriate representation.
Closure of generalised diffeomorphisms translates in the deformed version of (2.2):

[HNJAvHNJE] = E[A,Z]X ) (3.6)

where the X-bracket [-,:]x takes the form
S VY M M AP
(A 3]y = 5 [EASY = LA™) = [A,S]5 = Xipg ™ A %9, (3.7)

Requiring (3.6) induces a new set of consistency constraints. Since A and ¥ are arbi-
trary parameters, these constraints can be separated based on the number of derivatives.
The two-derivative ones do not contain Xj; and therefore reduce to the original section

constraint (2.4). An explicit computation yields
[La, LolW™ = Lip s WY = ANps ANSFWS 4 Xy p@ AVSP oW (3.8)
+ BMNO (AN opZ WS — 9o AREN W) '

where, without loss of generality, we have already assumed (2.4) to hold. The r.h.s. of (3.8)
therefore defines X-dependent conditions. The A and B terms read

ANps = 2X w10V Xps® — XosM Xvp 9,
M
Byiis = X(nw™o§ — XnsOo} (3.9)
1
+YMCppXns" — Y9 Rs Xnp™M + YMOps X yr)" — §YPQRNXPSM :

Note that the first line is the antisymmetric part of the quadratic constraint (3.2). Alto-
gether, we have the requirements

AM Lo =0, Xiyp?0p=0 and Byps0=0. (3.10)

The conditions above are not yet final. Just as for the E-bracket, the X-bracket fails
to define a Lie algebra as the Jacobi identity does not hold. Instead, it yields a Jacobiator

1
[[A,2]x,T] i +cyel. = 3 {[A,2]x, T} +cyel. (3.11)
where the X-modified symmetric bracket turns out to be
1 ~ ~
{A T}y = J@asY + Lod™) = {A, £} - X(pg)'ATEC. (3.12)

Consistency of the XFT requires that the Jacobiator again corresponds to a trivial gauge
parameter, namely, Lsj sy, vanishes. A direct computation shows that

Liasy UM = CM (AR0gSPUS + 0pAPERUS) — X(po)t APEQ05UM  (3.13)
+ X(po)t Xps™ APSCUS,
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with
1
Cio = Xpg)M0§ —YMFErg X (poy" — 5 VTR pg Xps™, (3.14)

and where we have used the conditions (3.10) derived from (3.8). Therefore we must impose
Xpg)" Xps™ =0, Xppg)"Or=0 and C§py g =0. (3.15)

The first equation in (3.15) combines with the first equation in (3.10) to produce the full
set of quadratic constraints in (3.2). The middle equations in (3.10) and (3.15) combine
into the X-constraint Xy n" 0p = 0. A careful analysis of the representation content
of the remaining conditions (namely, the ‘B’ and ‘C” terms) shows that they are entirely
equivalent to the X-constraint. We thus arrive at the final set of consistency conditions
for the deformed generalised Lie derivative (3.5):

YMNPQ O ®0On =0 ( section constraint ), (3.16)
Xynt op=0 ( X-constraint ), (3.17)

and Xj; must additionally satisfy the quadratic constraint in (3.2). The above conditions
should be intended as acting on any field, parameter and combinations thereof. As a result,
the new X-constraint (3.17) restricts the coordinate dependence to those coordinates left
invariant by the E, ) elements generated by X, . Together with the linear and quadratic
constraints on X, this is the only new condition required for consistency of the deformed
EFT.

We should also emphasise that our notion of covariance under internal generalised
diffeomorphisms is now given in terms of ]]:, so that 6oT = L,T for any tensor T'.
The deformation Xp;n? by definition does not vary under any (internal or external)
diffeomorphism and gauge transformations. Its generalised Lie derivative, instead, does
not necessarily vanish. Using the constraints above one can compute

]TAAXMNP:28[MARX|R|N]P-i-YPQRNaQASXSMR, (3.18)

where we assign the weight \(X) = —w, as can be deduced by requiring that generalised
Lie derivatives of tensors maintain a definite weight.

We close the section by stressing again that Xy/n? is restricted to the En(n) repre-
sentations displayed in table 1 for consistency of the tensor hierarchy.

3.3 Section constraint and massive ITA supergravity

Equipped with the new generalised Lie derivative L and consistency conditions derived
in the previous section, we now look at specific X deformations to discuss their interpre-
tation. We will come back to the construction of the full XFT action in section 4 where
we discuss the Eg7) case in detail. Starting from the M-theory solution of the section
constraint (3.16), we now show how turning on the X deformation corresponding to the
Romans parameter mg, to which we refer as X%, proves no longer compatible with a
dependence of the fields and parameters on the M-theory coordinate as a consequence of
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the X-constraint (3.17). The resulting XFT will then describe the massive IIA theory. The
deformation X® always corresponds to the embedding tensor obtained from reduction of
massive ITA supergravity on a torus. We will also show that other solutions of the sec-
tion and X-constraints compatible with X exist and correspond to type II theories with
background RR p-form fluxes T-dual to mg. For the D = 4 case, we will also find an
eleven-dimensional supergravity solution. Several of these solutions would be equivalent
to each other in standard EFT, as they belong to the same E,,) orbit. However, the
presence of X breaks E,,) to a subgroup which always contains at least an SL(n — 1)
factor, and solutions to the constraints must be classified in orbits of this subgroup only.

SL(2) x Rt XFT. The EFT with (D,n) = (9,2) features an SL(2) x RT structure
and has recently been constructed in ref. [7]. The extended space has coordinates y™ =
(y*, y®) with a = 1,2 being a fundamental SL(2) index. The SL(2) x RT invariant
Y -tensor is given by

Vg3 = Y35 = Y353 = Y% = 65, (3.19)

and the section constraint in (3.16) reduces to J, ® J3 = 0. There are two inequivalent
solutions corresponding to M-theory and type IIB supergravity

i) 0a#0, 03=0 (M-theory) and ii) 03#0, 0o =0 (typellB). (3.20)

In the context of maximal D = 9 supergravity [39, 51, 52], the Romans mass parameter
induces an embedding tensor” with only non-vanishing entry [X%|32! = mp . Taking it to
be the X deformation in XFT and substituting it into the X-constraint (3.17) yields

mR 81 =0. (3.21)
As a result, any dependence on the M-theory coordinate y' is removed by the X-
constraint (3.21) reflecting the fact that massive IIA cannot be embedded into M-theory.
Using (3.21) to simplify the section constraint in (3.16) one finds 02 ® d3 = 0, which gives
rise to the type IIA and IIB solutions

i) Oa#0, 03=0 (typeIIA) and ii) 03#0, 02=0 (typellB). (3.22)

In the ITA solution, the X® deformation is identified with the Romans mass. In the
IIB solution, the same X® deformation corresponds to turning on a RR background flux
F(1) along the y3 coordinate. The two solutions are related by a T-duality transformation

i) massive ITA BN ii) 1IB with F{yy, (3.23)

exchanging y? < 3.

"The corresponding gauging is simply a shift symmetry R generated by t?; € SL(2) and spanned by
the vector field A4,° [51, 53].
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SL(5) XFT. The EFT with (D,n) = (7,4) possesses an SL(5) structure and has already
been discussed in section 2.2. The SL(5) invariant Y-tensor and the section constraint, as
well as its solutions, can be found in (2.14), (2.15) and (2.16). The consistent X defor-
mation induced by the Romans mass was presented in section 2.3, resulting in egs. (2.21)
and (2.22). The X-constraint (3.17) reads in this case

MR Oas = MR O45 = 0. (3.24)

Note again that any dependence on the M-theory coordinate y*® as well as on the ‘brane
coordinates’ y®° is killed by the X-constraint (3.24). Substituting (3.24) in the section
constraint (3.16) produces €*#70,4 ® 0gy = 0, which gives rise to the ‘natural’ type ITA
and IIB solutions

1) Oua 0, 0o =0 (typeIIA) and iv) Oap #0, Oaa =0 (typellB), (3.25)
together with two more solutions (with a # 3 # )

ZZ) Oud 854, 8a5 75 0, 874 = 8ﬁfy = 8W =0 (type HB) s (3 26)
1) Oads O, Oya #0, Ops = 0ys =033, =0 (type ITA). '

In the ITA solution i), the X® deformation is identified with the Romans mass. In
the IIB solution i), it corresponds to a RR background flux F{;) along the single coordi-
nate y®?. In the ITA solution #4i), it maps to a RR background flux F(9) along the two
coordinates (y*?,47*). Finally, in the IIB solution iv), the X deformation corresponds
to a RR background flux F(3). The four solutions are connected via a chain of T-duality
transformations

T,
i) massive A —% i) TIB with F;) —> iii) TTA with Flpy —% iv) IIB with Fis,,
(3.27)
where T’, exchanges Yy o Y8 with o # 8 # .

E7(7y XFT. The EFT with (D,n) = (4,7) features an E;(7) structure and the coor-
dinates y™ of the extended space transform in the 56 fundamental representation. The
E7(7y invariant Y-tensor reads [16]

1
YMN by = <12 [ta]" N[t po — 5 QMY Qpg, (3.28)

where [to]arV are the E7(7) generators. Fundamental indices are raised and lowered using
the Sp(56)-invariant (and thus E(7)-invariant) antisymmetric tensor Qasn % It will prove
convenient to move to an SL(8)-covariant description of the theory where one has the
E7(7) D SL(8) branching 56 — 28 + 28. For instance, the coordinates y* = (y48 , yaB)

8We use the NW-SE conventions of ref. [2] such that [to]™Y = QMP[t.]pY, [talMn = [ta]u’ Qpn
and QMPQnp = 6% .
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are expressed in terms of an antisymmetric pair AB of SL(8) fundamental indices A, B =
1,...,8. The section constraint (3.16) reads

1
Oap @ Oop) — 7 €ABCDEFGH P oM =0,

1
Oac ® 0P +0C © dac = £ 0F (900 © 0P + 9P @ dcp) =0, (329)
8CD®60D —8CD®60D =0.

Branching now the SL(8) index with respect to SL(7) C SL(8), namely A = (I,8) with
I'=1,...,7, two solutions of (3.29) were identified in [2] (see also the discussion in sec-
tion 3.2 of ref. [54]) which are the ordinary M-theory and type IIB solutions.” These are
the only maximal solutions up to Ey(;) transformations [14, 18] and involve a non-trivial
dependence on the extended space of the form

i) 018 #0 (M-theory) and i) Oag 0, 0T #0 (type IIB), (3.30)

where we have further split I = (m,7) and m = (a,&) with m =1,...,6, o =1,2,3
and & =4,5,6.
In the context of maximal D = 4 supergravity [34], the Romans mass induces a

consistent embedding tensor of the form!'®

[XR]ABCDEF _ _[XR]AB EF [AfB] (B 5F]

with ¢48 = mpg 55;4 68 . Taking now (3.31) to be the X deformation in XFT produces an
X-constraint (3.17) of the form

mg 618 = MR 8” = 0, (3.32)

which removes any dependence on the M-theory coordinate y™® as well as on the ‘brane
coordinates’ y™® and yr;. Substituting (3.32) in the section constraint (3.16) reduces it to
two conditions 977 @0k =0 and 91y ® 078 + 9’8 ®0;; = 0. Various type ITA/IIB solu-
tions are recovered with a non-trivial dependence on the internal extended space of the form

i) Om7 # 0 (type ITA),

ii)  O17,...,057 #0, 9% £ 0 (type IIB),

iii)  Oi7,..., 0 #£0, 9%, 0% #£0 (type IIA),

iv)  Oi7,..., 00 £0, 9%, ...0%#£0 (type IIB), (3.33)
v)  Oupy...,007 #0, 9%,...0% £0 (typeIIA),

i) O #0, 0%,...0%#£0 (typeIIB),

vi7) O™ £0 (type ITA)

9 As a representative of the IIB solutions, we pick the one that is obtained by acting with three T-dualities
upon the ‘natural’ ITA solution (which follows from the M-theory one after imposing d7s = 0).

The induced gauging in four dimensions is an abelian R? symmetry associated to the generators
t's € SL(8) and it is spanned by the vector fields A, s [28].
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Note that viz) is actually a type ITA solution embeddable into a dual M-theory solution with
viii) 9™ #0  (dual M-theory) . (3.34)

The different cases in (3.33) are related by a chain of T-duality transformations, in
complete analogy with what we found in other XFT’s. Starting from i), where the X*®
deformation is identified with the Romans mass, one finds

i) massive TA % i) TIB with Fyy ~2% i) 11A with Flpy —%
iv) TIB with Fzy % ) 1A with Flgy —2 vi) IIB with F5, % (3.35)

vii) IIA with Fig) e~ wviii) dual M-theory with F(7) =% Fu,

11D

where the chain of T-duality transformations T,,7, with m = 1,...,6, exchanges the
internal coordinates y™" < yms. The original Romans mass parameter gets consis-
tently mapped into different RR p-form fluxes upon T-dualities. In the dual M-theory
case, obtained by oxidation of ITA with Fig), the X™ deformation corresponds to the
Freund-Rubin (FR) parameter [55].!!

3.4 Extension to other background fluxes

In the previous section we have seen how, starting from a type ITA solution of the sec-
tion constraint with a non-vanishing Romans mass mg # 0, other type II (or M-theory)
background fluxes are obtained upon choosing T-dual solutions (with an extra oxidation).
In these dual descriptions, the mass parameter mpg gets consistently mapped into other
types of flux parameters which are still compatible with the quadratic constraints (3.2),
the section constraint (3.16) and the X-constraint (3.17) in XFT. It is therefore natural
to wonder whether different types of fluxes can coexist in X for one choice of solution of
the section constraint. This is what we investigate in this section where, for the sake of
concreteness, we use again the SL(5) XFT. We will select representative M-theory, type ITA
and type IIB solutions of the section constraint and find all the X deformations that solve
the X-constraint without imposing further restrictions on the coordinate dependence.

The structure of X deformations in SL(5) XFT parallels that of maximal D = 7
supergravity [37]. In the latter, deformations are described in terms of an embedding
tensor that falls into the 15 + 40" irreps of SL(5), thus yielding two pieces Y, = Yimn)
and ZmP = zmnlp with m = 1,...,5 and ZI™P) = 0. Using these two pieces, one
builds an X deformation in XFT of the form

Xonpg™ =2 X700 with  Xounp” = 07, Yoy — 2mmpst 2. (3.36)

]

" Note the difference with the SL(5) XFT discussed before for which a dual M-theory interpretation of
the Romans mass was not possible. The reason is that, in the D = 7 case, the FR parameter in M-theory

[p

maps into a Neveu-Schwarz-Neveu-Schwarz (NSNS) background flux H(s) in type IIA. The latter is not
related to the Romans mass via duality transformations.
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SL(5) R} x SL(4) R} x RY x SL(3)
10 (Om)  |4_3 (8) + 61 Loga 33 1) (9a) +3a,1) +30,)
’ /
24 4, (Ajr) +45 +(1+15)0 |15 _3)+ 351, (Bsy) +15.3)+35. 1,
+100,0) (¢) + 8(0,0) + 3(0,—2) (As) + 3{0,2) + 10,0
15 (Yarw)  [1oa (Odjen) +4-5 +100 | 1a0) (OaBp) + 133 +3 3 1) (9a0)
+ 1,3 +3@,1) +61,-1
+61 4107 + 4 8 3,3)+6s_1)+3( s s (Ouds)+33 1) (0ad)
+3(1,1) + 3’(1,_1) + 1(1,73) + 3/(1,_1) + 6/(1,1)

mR

3
5
5

40/ (Z]\/IN,P) 20/

_3
2

!
tlg-p+3

1
7.3)

Table 2. Group theory decompositions relevant for the embeddings of M-theory and type IIA into
SL(5) XFT. The internal derivatives ( C 10), gauge potentials and dilaton ( C 24 ) and gauge fluxes
(C 15+ 40') are highlighted both in the M-theory (blue) and the natural type ITA (red) solutions
of the section constraint. The Romans mass parameter mg is singled out. Note that only a linear
combination of the two 3(_%7_%) C 15, 40’ is sourced by the dilaton flux d,¢ so that there are
1 and 8 free real deformation parameters in M-theory and type ITA, respectively.

Type IIA fluxes in SL(5) XFT. We start by selecting the type ITA solution of the
section constraint in (3.25) according to which the three internal coordinates are identified
with y* (o =1,2,3), equivalently 0,4 # 0. An explicit computation shows that the
most general X deformation compatible with this solution of the section constraint, as well
as with the X-constraint, has (independent) non-vanishing components of the form

1 1 1 1 1
1 Yo1 = 3easy 7P =H, | Y= geaﬁv Heopy , Z°%° = 5&“1% , Z%5 = _mg,

4
(3.37)
thus accounting for 3+ 14 3 + 1 = 8 free real parameters. Using the dictionary between
the type ITA fluxes and deformations in table 2, the components in (3.37) are identified
with the dilaton ( H, ), NSNS three-form ( H,s,) and RR two-form ( Fi,3) fluxes, as well
as with the Romans mass parameter'? mg .

The X deformation induced by (3.37) accounts for all the background gauge fluzes
that can thread the three-dimensional internal space. However, this by no means implies
that all the parameters can be turned on simultaneously as they still have to obey the
quadratic constraints in (3.2). These take the form of

1 11
mr Hy =0  and 5 PV Hy, Fay + a3 PV mg Hop, =0, (3.38)

12The Romans mass can be dynamically generated in a non-geometric manner (not even locally geometric

in the language of ref. [56]) by allowing the RR one-form to have a non-trivial dependence on the type IIB co-
ordinates o = % €apy y?7 associated with 9% = 3’(1771) (see table 3). Using representation theory one finds
mr = 10,5 = 3{1,-1) ® (0,2 |, = 9" Aa.

As discussed in ref. [19] in the context of DFT, the dependence on §, would violate the section constraint
and, in order to recover massive ITA, one would have to explore the non-geometric side of the EFT’s where
the fields pick up a dependence on physical and dual coordinates at the same time. We elaborate on this
non-geometric approach in section 5.
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SL(5) R x Ry x SL(3)

10 (8M) 1(_%7% + 3(_%7_%) + 3(1’1) + 3/(17_1) (504 = %GQB'Y 8,3’}/)

+1(0,0) (¢) + 80,0 + 302 (C7) +3{52 + 100

15 (Yun) a0t 1s sy +3cs 1) +1as +301) +60-
MN,P Ja

40’ (Z ) | 8zt 6’(7%77%) + 3’(7%7%) (0°Co) +3_s _1,

+3a + 3/(1,71) (8%5) +1,-3) (8[acﬂﬂ) + 3/(1771) (aa‘b) + 6,(1,1)

24 1(

_5_3
2072

Tl
2°2

Table 3. Group theory decompositions relevant for the embedding of type IIB into SL(5) XFT.
The purely internal derivatives (C 10), gauge potentials and scalars (C 24) and gauge fluxes
(C 40") are highlighted (red). Note that only a linear combination of the two 3{; _;) C 40’ is

sourced by the dilaton flux 5a¢ so that there are 11 free real deformation parameters in type I1B.
The R € SL(2) charge of the type IIB theory (S-duality) is given by g¢s = Gpt + dpy -

and correspond to the flux-induced tadpole cancellation conditions in absence of O8/D8 and
06/D6 sources, respectively. Solving the quadratic constraints (3.38) yields two families
of X deformations, equivalently, consistent XFT’s. The first one is a six-parameter family
of XFT’s specified by the two conditions

a)  PH,Fz, =0, mr=0, (3.39)
whereas the second one is a four-parameter family of XFT’s specified by the four conditions
b) Hup, =0, H,=0. (3.40)

As a result, the dilaton flux H, and the H sy flux on the one hand, and the Romans mass
parameter mg on the other cannot be turned on simultaneously.

M-theory fluxes in SL(5) XFT. The same analysis can be performed for the M-theory
extension of the type ITA solution in (3.25). In this case, the four internal coordinates 3’ of
the eleven-dimensional supergravity are identified with y** and 3%, the latter being the
M-theory coordinate. The most general X deformation compatible with the X-constraint
has a unique non-vanishing component given by

Yia = frr, (3.41)

and is identified (see table 2) with the Freund-Rubin parameter [55]. This parameter corre-
sponds to a purely internal background for the field strength of the three-form potential of
eleven-dimensional supergravity and is compatible with the quadratic constraint in (3.2).
Therefore, there is a one-parameter family of XFT’s that describes such eleven-dimensional
backgrounds with an frg flux.
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Type IIB fluxes in SL(5) XFT. Lastly there is the type IIB case in (3.25) where
the three internal coordinates are identified with 3, = %eam Y57, equivalently, 9 #£ 0.
The most general X deformation satisfying the X-constraint is compatible with the SL(2)
symmetry (S-duality) of the IIB theory and has (independent) non-vanishing components
of the form

1 1
SL(2)-doublet: Z%° = — FoBy g4 = — HBY |
( ) ouble 3! €afy 3! €apBy (342)

SL(2)-triplet: Z%%% = o 7054 = godb = g godd = pa

accounting for 2 x 1 + 3 x 3 = 11 free real parameters. Using the dictionary between
type IIB fluxes and deformations in table 3, one identifies an SL(2)-doublet of RR, ( F'**7)
and NSNS ( H*%7) three-form fluxes.!® In addition, there is also an SL(2)-triplet of one-
form deformations' (F®, H® F®). The latter account for an internal dependence of the
type IIB axion-dilaton and can be dualised into nine-form fluxes for the SL(2)-triplet of
RR eight-form potentials of the IIB theory [58, 59].

The computation of the quadratic constraints in (3.2) for the type IIB fluxes in (3.42)
produces the set of relations

€apy FP HY =0, capy FPFY =0 and  e4p, FPHY =0, (3.43)

which corresponds to flux-induced tadpole cancellation conditions for an SL(2)-triplet of
7-branes (and related orientifold planes). Again such objects must be absent in order to
preserve maximal supersymmetry. Note that (3.43) is SL(2)-covariant and can be rewritten
as HaAHp =0 with A =1,2,3 and Ha = (F, H, 13') Solving (3.43) yields a seven-
parameter family of XFT’s that describes such ten-dimensional type IIB backgrounds.
Let us close the section commenting on the number of deformation parameters per-
mitted in other XFT’s. For a given D > 4, the most general X deformation compatible
with the section constraint (3.16) and X-constraint (3.17) includes: 4) the Freund-Rubin
parameter in M-theory (only for D =7,4) ii) the Romans mass mgp (any D) as well as
dilaton (any D) and standard p-form gauge fluxes (whenever permitted by D) in type IIA
i1i) the SL(2)-triplet of one-form deformations (any D) as well as standard p-form gauge
fluxes (whenever permitted by D) in type IIB. In order to specify a consistent XFT, the re-
sulting X deformation must still be supplemented with the quadratic constraint (3.2). This
can be translated into tadpole cancellation conditions requiring the absence of sources of

13See also ref. [57] for a discussion on generalised fluxes in SL(5) EFT.

Tn the ‘gauge-unfixed’ approach of ref. [56], one may consider an additional scalar vo = 1 (5,3 Using

5 3
. . 22
again representation theory, one finds

e = 32%7%> = 3;17_1)@)1(%’%) ® 3(171)®3(%77;>

2

g = 0% @ 95B°,

which includes two different types of contributions. In the language of ref. [56], the first term in the r.h.s.
corresponds to a locally geometric way of generating Jas by turning on a flux for the spurious scalar o .
The second term is generated when the NSNS two-form potential depends on the dual coordinates ¢,
namely 55 B £ 0, with Do = 3(1,1) - Note that these are not the type ITA coordinates (see table 2). This
case is analogous to what happens in type ITA for the Romans mass and produces an F* flux which is not
even locally geometric, thus violating the section constraint in EFT.
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supersymmetry breaking. A last remark concerns the incompatibility of the X-constraint
with the presence of a metric flux w of the Scherk-Schwarz (SS) type [60]. Suppose
that it was possible to introduce w in XFT while allowing fields to depend arbitrarily
on ten or eleven physical coordinates after solution of the X-constraint. The resulting
X-deformation would modify the action of ordinary internal diffeomorphisms rather than
that of p-form gauge transformations, which is not possible. Consistently, we find that the
X-constraint actually excludes metric fluxes.

4 Dynamics of E77y XFT

In this section we illustrate the generic features of the deformations introduced in section 3.2
by constructing explicitly the gauge invariant E;7) XFT. While the field content of the
theory remains identical to the one of E;7) EFT, changes occur at the level of the tensor
hierarchy and in the action due to the presence of the X deformation. We refer to section 3.3
for a detailed discussion of the section constraint of the E77) XFT. We present below
some specifics of the deformed E7(7) generalised diffeomorphisms, followed by the tensor
hierarchy and the full bosonic action. The latter consistently reduces to the action of D =4
gauged maximal supergravity when all fields are taken independent of the 56 exceptional
coordinates y™ | and to the one of the E7(7y EFT when the X deformation is turned off.
Finally, when fixing X to (3.31) and choosing an appropriate solution of the section and
X-constraints (see (3.33)), one recovers the bosonic sector of massive type ITA supergravity
in a 4 + 6 dimensional split. The results of this section are in parallel with those of ref. [2]
to which we refer for an in-depth discussion of the E;7) EFT dynamics.

4.1 Modified Lie derivative and trivial parameters

The expression of the Er(7) invariant Y-tensor is given in (3.28). Both the E;(7) generators
[ta] v and the symplectic form Qs are invariant under the deformed generalised Lie
1

derivative (3.5). For Eq(7) the distinguished weight to be introduced in (2.1) is w = 5.

The section constraint decomposes into two irreducible pieces in the 1 4 133 irreps:
QMNaM ®9Iny =0, [ta}MNaM ®0ny =0. (4.1)

We will use the shorthand notation (Py4133)"N0y ® On = 0 to reflect these two con-
straints.

As explained previously, the X deformation satisfies the same linear and quadratic
constraints as the embedding tensor in gauged maximal supergravity [34]. The linear
constraints in D = 4 read

Xnvu™ = Xun™ =0, Xmnp)y =0, (4.2)

and restrict X to belong to the 912 representation. Consequently, the quadratic con-
straint (3.2) can be rephrased as

OMN Xy @ Xy =0. (4.3)
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The deformed EFT requires to impose the section- and the X-constraint (3.16). In D =4
the latter can be decomposed into the 133 41539 irreps, corresponding to X (s N)P Op and
Xim N}P Op respectively. Using representation theory it is possible to find other equivalent
ways to express these constraints. Two such expressions are particularly useful

QMNE Oy =0, Oy P MNoy =0, (4.4)

and correspond to the 133 and 1539, respectively.

The construction of the E(7y XFT tensor hierarchy relies on the form of certain trivial
parameters appearing in the symmetric X-bracket (3.12). Specifically, for two arbitrary
generalised vectors of weight w we have

(U VY = = 6[ta] V[t po dn [UTVO] — UNVE Xy py M s
1 .
= M Qpo[VeoNUT + U VT

Both lines of (4.5) are trivial parameters provided all fields satisfy the section constraint
and the symmetric part of the X-constraint (3.17). This ensures that the Jacobi identity for
L is satisfied. More generally, the following generic parameters do not generate generalised
diffeomorphisms:

1
AM = [ta]MNaNXa + 6 ZM’a Xa s (4.6)
A= QMNy (4.7)

ZM,a

for arbitrary x, . The intertwining tensor is constructed from Xy;n? making use of

the linear constraint:
1
ZM,a )(PQM [ta]PQ §QMN@N04 ) (48)

Similarly to the EFT case, xas is covariantly constrained in the sense that it must itself
satisfy the section constraints

(IP’1+133)MNXM5N =0= (P1+133)MNXMXN, (4.9)

where P14133 denotes the projector onto the 1 & 133 representation of the 56 ® 56. In
XFT, the field x ;s is further covariantly constrained by

Xouny xp =0, (4.10)
or equivalently by QMN©,,%xyny = 0. The importance of the covariantly constrained
parameters (4.7) will become apparent when constructing the tensor hierarchy.

4.2 Yang-Mills sector and tensor hierarchy

Analogously to EFT, we introduce an external derivative which is covariant under modified
internal generalised diffeomorphisms

D, =0, —La (4.11)

e
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Covariance determines the variation of ANM to be
oA AM =D AM ~ 9 AM 1 TpAM, (4.12)

where the equivalence holds up to the addition of a trivial gauge parameter, to be reab-
sorbed in other gauge transformations higher up in the tensor hierarchy. This is completely
in line with the situation for the undeformed EFT.

Following the construction of the tensor hierarchy in the original EFT’s, we first define
the field strength for the vector fields AMM as

Fu M =20,4,M - [4,, A . (4.13)

Since the Jacobiator of the X-bracket does not vanish, the above expression does not
transform covariantly under generalised diffeomorphisms. The procedure to restore gauge
covariance is analogous to those of gauged supergravity and EFT. In fact, it turns out to
be a superposition of the two cases. We define a modified field strength by introducing the
two-form fields By, and B,y in the form of the two trivial parameters (4.6) and (4.7)

1
.FMVM - F,uyM —12 [ta]MNaNBMVOL -2 ZM’O[BMVOC - 5 QMNB;U'VN ’ (414)

where B, g is a covariantly constrained field as in (4.9) and (4.10). Note that this

ZM,a

construction only deviates from EFT by the term proportional to , which is precisely

the one needed to make contact with gauged supergravities when all the fields are taken
to be yM-independent. It is easy to verify that, since FWM only differs from .FWM by a
trivial parameter, we have

[Du, D] = —2Lg, a, +2La,La, = —Lg,, =Lz, . (4.15)

Using the explicit expression for the symmetric X-bracket (4.5), the general variation of
the modified field strength (4.14) now reads

1
0Fu™ =2D,6A,M — 12t IMNONAB 0 — 2 ZMABy o — 3 QMY AB,, N, (4.16)

where, as in EFT, we have defined

ABpuoz = 5B,uuoc —+ [ta]NPA[,uN(sAz/]Pa

(4.17)
ABuyn = 6By N + Qpo A S0nSA, " + On A T6A,%)
We define the vector gauge variations of the two-forms as follows:!?
AABuy o = [talnpANF LT,
ABpvec = Helph " 7, (4.18)

ANBu v = Qpg[AQONFu " + FuQonAT] .
Substituting the above variations back in (4.16) and making use of (4.5) and (4.15) yields

AT = [Dp D AM + 2{A, Fpu } s = LaFu ™, (4.19)

157t will be convenient for compatibility with [2] to take 5o A,™ = D,AM as the variation for the vector
fields under generalised diffeomorphisms (cfr. the discussion below (4.12)).
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which shows that F,,, transforms covariantly.

On top of the generalised diffeomorphisms (i.e. vector gauge transformations), the
field strength (4.14) is invariant under tensor gauge transformations associated with the
two-forms

1
o=AM = 12[tMNONE, 0 +22M0F, , + 3 QMNE, N,

AEB;u/a = 2D[NEV]OH (420)
AEBMVM =2 D[MEV]M + 48 [ta]LK(aKaMA[ML)EV}a + 4 @pa 8MA[MP Eu}a R

where the tensor gauge parameters Z,, and =, carry weight 1 and %, respectively. For
an arbitrary generalised vector Wy, in the adjoint of E77) with weight X, the deformed
generalised Lie derivative acts as follows:

LAWa = ARORW, — 12 £, 015 Ok AW + NORAEW, — ANONT P W5, (4.21)

where we have used the definition (3.5) and the relation between the generators in the
adjoint and the structure constants [t,]o” = —f,o”. In order to verify the invariance of
the field strength under tensor gauge transformations, it is necessary to study the following
expression in terms of a covariant object W, :

1
™ = [tMN oW, + G zMaw, . (4.22)

Under generalised diffeomorphisms, it transforms as

~ 1
SATM = LyTM + QMY <[ta]LKWa8NaKAK T @PaWaaNAP>
12 (4.23)

+ (N = DMV W 0N AK

where TM carries weight A(T™) = (X — 3). As in ref. [2], in order to cancel the non-
covariant terms in the first line, a compensating field W}, subject to the covariant con-
straints (4.9), (4.10) is introduced such that the combination

. 1
™ =1M 4 o QMY Wy, (4.24)

transforms covariantly with )\(TM ) = % provided that A’ = 1. This is ensured only if the

compensating field transforms under generalised diffeomorphisms as
SAWar = LaWas — 24 [t L5 Wa0n 0k A* — 20 p® Wy AT, (4.25)

where A(Wys) = 1. Note that (4.25) preserves the covariant constraints (4.9) and (4.10) by
virtue of the section constraint (3.16) and the X-constraint (3.17). With the observation
that structures of the form (4.24) transform covariantly, it becomes straightforward to
verify the invariance of the field strength under both tensor gauge transformations.

The field strengths H,,,,o and H,,,\ associated to the two-forms are defined through
the Bianchi identity

1
3D, Fy ™ = 12t M NONHywpa — 2 2 Hyppo — 5 oMN [N, (4.26)

— 23 —



up to terms that get projected out under 6 [t*]MNoy + ZM> | The field strength H,,pnr
is again covariantly constrained as in (4.9) and (4.10) and transforms according to (4.25)
under generalised diffeomorphisms.

4.3 Bosonic action

In analogy with ref. [2], the full dynamics of the theory can be encoded into an Er
covariant (pseudo-)action supplemented by a first-order duality equation for the 56 gauge
fields AMM

1
FuM = 3 €Eurpo OMN My FPoE (4.27)

where e denotes the determinant of the vierbein and Mj;ny is the scalar matrix pa-
rameterising the coset space E7(7)/SU(8). This ensures that only half of the vectors are
independent.

The field equations can be conveniently derived by varying the following gauge invariant
pseudo-action, and subsequently imposing (4.27):

. 1
Sypr = / drz d>%ye [R(X) + 5 g D MMN D, Myn
(4.28)

1 _
- gMMNF'uVMFMVN'i_e 1£t0p(X)_VXFT(MagaX)

For the purpose of this paper we shall always assume that integration over the internal
space is actually performed only on the physical coordinates after choosing a solution of
the section constraint, so that global integration over the internal manifold is well defined.
While the general form of the action matches the one of EFT, the differences with the
latter lie in the expressions of the field strengths, the covariant derivatives and the ‘scalar
potential’ which explicitly depend on the X deformation. As in EFT, the XFT action is
uniquely determined by requiring gauge invariance under the bosonic symmetries. More
specifically, each term in (4.28) is invariant under internal generalised diffeomorphisms
while the relative coefficients are fixed by external diffeomorphisms.

In what follows we discuss the invariance of the different terms under vector (i.e.
generalised diffeomorphisms) and tensor gauge transformations. In the forthcoming com-
putations we will consistently drop all the vector gauge transformations of scalar density
of weight 1. Indeed, these take the form of boundary terms in the extended space.

The kinetic terms. The first term in the action is the Einstein-Hilbert term. As in
EFT, it is built from a modified Riemann tensor

Ruw™(X) = R [w] + Fu™ ¥ Orre,”, (4.29)
where the curvature of the four dimensional spin connection wuab reads
R, "w] = 2D[Mwy]ab — 2wy, wy}cb. (4.30)

The second term in (4.29) has been added in order for the modified Riemann tensor to
transform covariantly under the four dimensional local Lorentz transformations acting on
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the spin connection as 5,\wuab = —Du)\ab. The spin connection can in turn be expressed

via Cartan’s (covariantised) first structure equation in terms of the vierbein e,* which is
an Eg7) scalar of weight % Consequently, the spin connection and the Riemann tensor
both carry weight 0. Furthermore, using the section constraint and the X-constraint, it is
straightforward to show that the internal derivative of an E;(7) scalar S of weight A(S)

transforms under vector gauge transformations as
~ 1
Sa (0 S) = L (O S) + A(S) S Oy ONAY ,  with weight A(9yS) = A(S) — 5 (431)

Hence, the modified Riemann tensor does not transform covariantly due to the second term
in (4.29). The non-covariant part of the variation vanishes when contracted with vierbeine
and therefore, the modified Ricci scalar R(X ) is a scalar of weight 0. This proves the
invariance of the XFT Einstein-Hilbert term under gauge transformations.

The second and third term in (4.28) are respectively the kinetic terms for the scalars
and the vector fields. They only differ from the ones in EFT by the implicit presence of
the X deformation. The scalar matrix Mjysn is a tensor of weight 0 while J’:WN carries
weight % Using (4.19) and 53]-1“,M = 0, it is clear that both terms are invariant under

vector and tensor gauge transformations.

The topological term. Following ref. [2], we present the topological term as a surface
term in five spacetime dimensions

1
Stop(X) = ~31 - dx / d*Sy E“”p‘”}"WM DyFor M

= /8 - d°z / A%y Liop(X),

where once again the difference with EFT lies in the definition of the field strength and the

(4.32)

covariant derivative. Although this term is manifestly gauge invariant, its general variation
is needed to derive the field equations for the vectors and two-forms

1
§Liop = - cHvpT [5,4“1‘4 DyFpo m
. (4.33)
+ Fow M (6 [t VMNONAB o + ZMAB o + 1 QMNABWNH .

This requires to use the Bianchi identity (4.26) and the fact that for any three vectors of
weight % the following identity holds

Quey UMV, WY + eyelic = 12[ta] (@[t v p) SoUMVIWT) . (4.34)
The X-dependent part of the Lh.s. vanishes using (4.2), and hence the identity takes the

same form as in EFT. Using these results one can explicitly verify that (4.33) vanishes for
vector and tensor gauge transformations.
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The potential. The scalar potential of XFT takes the following form:
VXFT(M7 ga X) - VEFT(M) g) + ‘/SUGRA(Ma X) + ‘/cross(Mu X) 9 (435)

where the scalar potential of EFT is independent of the X deformation

1 1
Verr = BT MMN GMMKL ONMEkr, + 5 MMN 8MMKL OLMnNK

L My _ 1 uN 1 -1 L MN v (4.36)
— 39 Opgon M *ZM g9~ 0mgg 3NQ*ZM oM g" ONGuw »
while the parts exclusive to XFT are
Vsuera = % [ Xunt XorS MMOMNEM ps + TXyn" XopY MMQ], (4.37)
and
Viross = % MMNMELX 1 P O Mepr . (4.38)

The full potential boils down to the one of EFT when the X deformation is set to zero.
Additionally, it precisely reduces to the potential of gauged maximal supergravity (4.37)
when the fields are taken to be y*-independent.'® The term in (4.38) is a purely novel
feature as it is absent in both EFT and gauged maximal supergravity.

We finally give a few guidelines on the construction of the XFT potential. The various
terms and coefficients in (4.35) are uniquely determined by requiring invariance under
vector gauge transformations up to boundary terms, while each term is manifestly invariant
under tensor gauge transformations. Throughout the computation, one has to repeatedly
make use of the section constraint, the linear (or representation) constraint and the X-
constraint. The starting point is the variation of the EFT potential under vector gauge
transformations which can easily be computed using (4.31) and

SA (ML) = La(OMpr) +2 My OpyOuAY + Micr, dndn AN

(4.39)
—2Y Ry My OmOr AN + 2 Xy O Mg O AN,

where A(8y M) = 3. After the cancellations described in ref. [2], the only non-covariant
variations remaining are the ones depending (linearly) on the X deformation. In order to
cancel them, one needs to add counterterms to the potential which are of first order in
the derivatives and the X. The only term'” of this type which does not vanish by virtue
of the various constraints is (4.38). At this stage of the computation, it is important to
realise that both the X and the combination M~!X M take value in the E7(7) Lie algebra.
Consequently, the adjoint projector satisfies

(P1as) M N5 Xp™ = Xpn,

(4.40)
(P133)™ N L MEP XopEiMpre = MMEXop Mpn .

6The different normalisation of Vsugra with respect to ref. [34] is due to the different normalisation of
the Einstein-Hilbert term.
"Up to equivalent rewriting using the linear constraint for the X deformation.
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The vector gauge transformation of (4.38) also yields additional non-covariant variations
which are quadratic in X. These must be cancelled by extending further the potential
with counterterms quadratic in X and that do not contain derivatives. It again turns out
that (4.37) are the only non-vanishing terms of this type.

5 Relation to EFT and (non-)geometry

The main focus of this article is to describe deformations of EFT which are able to cap-
ture the exceptional generalised geometry of massive IIA supergravity. It is interesting to
note that the Romans mass was implemented in DFT non-geometrically by introducing a
dependence of a RR potential on a dual (winding) coordinate [19]. This was made possible
by the observation that RR fields in DFT only need to satisfy a weaker form of the section
constraint in order to guarantee consistency of the theory. It is therefore natural to try to
relate this construction to the XFT framework. A first obstacle is that in EFT all fields are
packaged in E;,(,,) representations, and as a consequence it is not so straightforward to relax
the section constraint on what would be the RR fields. The very distinction between NSNS
and RR sectors relies on at least a partial solution of the EFT section constraint. We will
find a solution to this problem in terms of a factorisation Ansatz for the fields and parame-
ters of the EFT theory that resembles a generalised Scherk-Schwarz (SS) Ansatz [11, 61-63],
but allows to perform a controlled, potentially non-geometric extension of the coordinate
dependence of fields and parameters rather than a truncation. On the one hand, a disadvan-
tage of this approach when compared to the XFT formalism is that it requires to break the
section constraint of standard EFT in order to describe massive IIA supergravity, despite
the fact that the latter is well-defined and entirely geometric in its own right. For the same
reason, it also becomes unclear whether the objects that are introduced in this context are
globally well-defined. On the other hand, the mapping that we now discuss allows us to elu-
cidate how EFT admits (locally) consistent extensions to section-violating configurations,
in such a way that no ten-dimensional background has been fixed yet and no truncation
of degrees of freedom occurs. This is in striking contrast to non-geometric Scherk-Schwarz
like compactifications that aim at reproducing lower dimensional gauged supergravities.

We will also discuss the transformation properties of generalised affine connections in
both the XFT context and the non-geometric EFT setting we are about to introduce, as
further evidence for the consistency of these frameworks.

5.1 The factorisation Ansatz

In this section we denote fields and parameters in the standard EFT theory with bold
letters and the associated internal indices by A, B, and so on. We begin by introducing a
factorisation Ansatz for the vectors and gauge parameters of EFT

VA, y) = VY (2, y) Ev?(y), (5.1)

for some invertible matrix Ey4(y) € Epn) X R .'® With an abuse of language we will refer
to EMA(y) as a frame, but we will not investigate global definiteness of the construction

8The indices M, N, . .. should not be regarded as ‘flat’ in any sense. We propose the terminology ‘flurved’.
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here. A similar factorisation Ansatz can be straightforwardly introduced for any other
covariant object in EFT.!? Equation (5.1) resembles a Scherk-Schwarz Ansatz, however
note that we do not yet commit to a specific y-dependence of VM (z,y) and Ep4(y). In
particular the coefficients VM (z, y) are still allowed to depend on the internal coordinates.
In any case, given the consistency conditions that we will introduce shortly, one still obtains
that the frame Ejr4(y) factorises out of any relevant EFT expression, leaving us with a
theory based on the coefficient fields. If we impose the section constraint on VA4 (z,y)
and other tensors, then VM (z,y) and Epr4(y) are restricted to depend on the same set of
internal coordinates, and (5.1) reduces to local field and parameter redefinitions. Instead,
we will relax the constraint and impose an alternative set of conditions that guarantee
(local) consistency.

A Weitzenbock connection and the corresponding torsion are associated to the frame
En™ as follows [62, 64]:

WapC = 0aBgMENC ., TW)45C = 2W 50 + YL oWy, P (5.2)

where EyAEAN = 5]]\\74 and EAME)P = 55 . For the purpose of this paper we require
that the induced torsion with XFT indices is constant and entirely contained in the Ry
representation, so that

TV yunt = Xun®t € Rx. (5.3)

Hence we have the identity
Ley Ex* = —Xyn"Ep?, (5.4)

where the XFT indices are treated as spectators by the Lie derivative. This indicates that
the vectors Ep* give rise to a Leibnitz algebra under the EFT Lie derivative.

In order to make contact with the construction of the previous sections we need to
impose a constraint on the coefficient VM (x,y) in the factorisation Ansatz. In fact, XFT
contains partial derivatives da; which have not appeared in EFT yet. We thus require

Ey AoVl = s0avN = oy vV, (5.5)

and regard this constraint analogously to the section constraint. Namely, as an algebraic
equation on the set of coordinates on which V¥ (z,y) is allowed to depend, rather than as
a differential equation. We will refer to this requirement as the E-constraint.?’ Note that
in a generalised (non-)geometric SS reduction this constraint is trivially satisfied as the
coefficients in the SS expansion only depend on the external coordinates (see for instance
the discussion in ref. [65] in the context of DFT). If VA(z, y) satisfies the section constraint,
then the E-constraint implies the X-constraint on VM (z,y), with Xp;n" defined in (5.3).
We stress that this is no longer guaranteed if Ej;“(y) introduces a violation of the EFT

7o extend the Ansatz to fields of RT weight different from w, one must decompose Ev? = UMApé,
where U € E, (), p > 0 and the power £ is related to the weight of the field. See for instance [11].

20There could be more general backgrounds that do not satisfy this constraint. In such a situation the
connection to an XFT framework seems unclear.
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section condition. From now on we assume that the E-constraint has been imposed unless
otherwise specified. Now consider a gauge parameter A“(z,y) = AM (z,y)Ea*(y). Then
direct computation shows that

LaVA = (LaVY) By (5.6)

which already reveals the structure of the underlying XFT. Closure of the EFT generalised
Lie derivative is then granted if the XFT generalised Lie derivative closes, which reduces
to the section- and X-constraints being imposed on AM and VM, but not on Ej4. The
factorisation property also follows for the Jacobiator, E-bracket and symmetric E-bracket,
which are mapped to the corresponding expressions of the deformed theory.

Let us now make the connection between EFT and XFT more precise. The factorisa-
tion Ansatz (5.1) introduces a local redundancy, because we can write

VM, y) = VM (z,y) = VN (2,9) QM ()™,

5.7
E)y" = By =y E)n™ Q)" € Eyn) % R*, 57

provided that V'™ still solves the section-, X- and E-constraints, and that E'y* sat-
isfies (5.4) for the same Xpn'. Denoting the associated infinitesimal transformation
q(y) ™Y, the latter requirement translates into the equation

qADXDBC + QADXADC — XABD(]DC — 28[AqB]C + YCDEBaDqAE = 0, (58)

where we made use of the E-constraint. We must gauge-fix these g-transformations in
order to lift the redundancy introduced in the factorisation. To this end we note that
under a generalised diffeomorphism generated by A4 (z,y) = AM(2,y)Ea(y) the frame
transforms as

5AEMA = ILfAEMA = *Q[A]MNENA,

(5.9)
a[AyN = O AN — YN ) 0p A9 + AT X p N

and q[A]p/" satisfies (5.8) together with all the coordinate constraints. For any parameter
A4 we can therefore define an improved variation

8A =0A + 5q[A] , AM = AAEAM, (5.10)

such that if A4 satisfies the factorisation Ansatz and the associated coordinate constraints,
then dp Epy = 0.2 Now, under a generalised diffeomorphism in EFT, VM transforms as a
scalar: 5AVM = A9,V M. This implies that under the improved variation it transforms as

SAVM = A4,V M — VNGIA] M = LoV M, (5.11)

which reproduces the generalised Lie derivative of the deformed theory. We can thus
reconstruct the geometry of XFT from the factorisation (5.1) and the improved varia-
tions (5.10). In particular, we can define the XFT general diffeomorphism transformations

21This procedure is analogous to the construction of general coordinate transformations compensated by
local Lorentz ones, such that under an isometry &", dce,® =0.
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from the EFT ones and from the ¢-transformations associated with the ambiguity in the
factorisation Ansatz:
1) A= 1) A - (5.12)

As a final remark, note that this construction can be used as a cross-check for the
completeness of the action (4.28). All terms in the EFT action except for the scalar poten-
tial are built from covariant objects, so that the mapping to XF'T using the factorisation
Ansatz is immediate. Moreover, the decomposition of the EFT scalar potential can only
yield terms with two internal derivatives and no X-deformation (matching the form of the
original EFT potential), terms with one derivative and one X, and terms with no deriva-
tives and two X. All such possible terms have already been implemented in (4.35) and their
coefficients are fixed by requiring invariance under internal generalised diffeomorphisms.

5.2 Romans mass and T-dual backgrounds

Let us now specialise to the case of the Romans mass deformation X = X®. As discussed
in section 3.3, every type II internal flux T-dual to the Romans mass can be implemented
in XFT in terms of the same X" deformation, by choosing different solutions of the section
and X-constraints. Moreover, we saw that in D = 4 there is a further ‘dual M-theory’
solution of these constraints where the same X® deformation can be interpreted as a
constant Freund-Rubin parameter. We will now show how (5.1) can be used to map the
deformed generalised Lie derivative with X = X® to a certain background in EFT.

Since X;INP vanishes after any contraction with another copy of itself, a possible
choice of frame F(y)y” that generates it under (5.3) is

E(y)a™ = o3y — %yp Xt (5.13)
where we have temporarily suspended the distinction between EFT and XFT indices. The
constant ¢ is introduced to match the normalisation of (5.3).

In the D =9 case, there is only one coordinate entering (5.13) which is the winding
coordinate y* from the point of view of the ‘natural’ (massive) ITA frame (with physical
coordinate y?). In the D =7 case, the coordinates entering (5.13) are the three winding
coordinates ¢, from the massive ITA viewpoint (with physical coordinates y**). In the
D = 4 case, (5.13) activates not only the six winding coordinates y,,s from the point of
view of the massive ITA theory (with physical coordinates y™7), but further includes the
seventh ‘dual M-theory’ coordinate yrs. In all these cases (and in any other dimensions,
too) the coordinates activated by (5.13) constitute themselves a solution of the section
and X®-constraint. In other words, the frame FE(y)a” specified by (5.13) satisfies these
constraints itself, and the FE-constraint reduces to the X-constraint. Importantly, there
is no overlap between the coordinates entering (5.13) and the physical coordinates in the
‘natural’ (massive) type ITA solution.

The Ansatz (5.13) is not unique. Denoting y. one of the y-coordinates entering
E(y)p™ in (5.13), one can also construct a frame that depends only on that specific

Yx
1
E(y) ™ = 64 — = U Xy (5.14)
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This observation is important for the following reason. Recalling the discussion in sec-
tion 3.4, the X™ deformation can be interpreted as a RR background flux (also a FR
parameter in the D = 4 case) after applying T-duality transformations. In the resulting
T-dual frames, the coordinate y, entering (5.14) can always be chosen so that it becomes
part of the physical coordinates permitted by the section and X-constraint. As a result,
the factorisation Ansatz (5.1) that maps EFT and XFT becomes purely geometric. In
other words, eq. (5.1) induces nothing more than local field and parameter redefinitions in
the standard EFT. Analysing its action on the EFT scalar fields, one can see that (5.1)
combined with (5.14) and a solution of the constraints compatible with y, , induces a redef-
inition of some Ramond-Ramond p-form potential of the associated supergravity theory by
a term linear in y, . The latter then induces the constant flux encoded in X®. When X* is
identified with the FR parameter of eleven-dimensional supergravity (which is only possible
in D =4), the p-form potential acquiring a linear dependence on vy, is the internal Ae)-

The one exception to this situation is the ‘natural’ massive IIA frame where X% is
identified with the Romans mass: there is no potential that can be redefined to introduce
the constant F(g) = mpg . This translates into the fact that, when one chooses the solution
of the XFT constraints corresponding to massive IIA supergravity, the physical coordinates
are incompatible with any of the y-coordinates entering (5.13). Therefore, (5.1) and (5.14)
necessarily introduce a mnon-geometric dependence of some internal RR potentials on a
winding coordinate.?? This is consistent with the picture in DFT, where a similar winding
dependence is introduced for a RR potential in order to generate the Romans mass [19].
Our findings in this section, after fixing the ¢-transformations, can be interpreted as a
generalisation of the non-geometric construction in DF'T, appropriately covariantised under
E,.(n) and under the complete set of exceptional generalised diffeomorphisms.

5.3 Affine connections in EFT and XFT

It is natural to ask whether the modified notion of covariance introduced in XFT and/or
the (possibly non-geometric) factorisation Ansatz (5.1) in EFT allow for the definition of
consistent affine connections and thus, a notion of internal covariant derivative. We will
provide here a positive answer both directly for XFT, and for EFT backgrounds of the
form specified by (5.1). Since in both cases some modifications appear with respect to
the standard transformation properties of an affine connection in exceptional generalised
geometry, it is convenient to discuss the two frameworks at the same time and see, as a
consistency check, that the objects in XFT also descend from the EFT embedding (5.1).
We will first show that for EFT backgrounds satisfying the factorisation Ansatz (5.1)
and the necessary coordinate constraints discussed in section 5.1, it is possible to define an
affine connection. First we introduce a covariant derivative acting on a vector in EFT

DyVE =9, VB 41, 5VvC, (5.15)
and deduce the transformation property of T'4c” from the required covariance

SADAVE =LADAVE = AT 4o PVE = LADAVE — DALAVE . (5.16)

22In D = 4, alternatively, one can introduce dependence on yrs, which can be regarded as a ‘dual
M-theory’ coordinate.
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This is just the standard procedure to deduce the transformation of the affine connection.
The crucial requirement for (5.16) to be consistent is that the right hand side must not
contain derivatives of V4. This is usually guaranteed by the section constraint, but also
holds for the backgrounds under investigation. Indeed, assuming that both A4 and V4
satisfy (5.1), and making use of the X- and E-constraints on V¥ we deduce

5AFABC = 8AFABO = LAFABC + 0405A° — YCEFBaEaAAF

(5.17)

The last term is new and specific to the frame Ep/4(y) in (5.1). If A4 and V4 satisfy the
section constraint, then this extra term vanishes identically and the standard transforma-
tion rule for the generalised affine connection holds. Note that the standard and improved
A-variations are equal for I' ABC.

The covariance of D4 V? is not enough to guarantee its consistency when the section
constraint is violated by VB . Closure of the EFT generalised Lie derivative is guaranteed
in this setting only if D4 V?® can be factorised similarly to (5.1):

EADAVBERN =Dy vV, (5.18)
and Dy VY satisfies the section, X- and E-constraints. In this case we can further define
Dy VN =0 VN + T3, VP, Tunt =Tunt = Wun', (5.19)

where in the last expression EFT and XFT indices are exchanged by contraction with
E AM and its inverse.

The right hand side of eq. (5.18) corresponds to a covariant derivative in XFT. Let us
then discuss the introduction of affine connections directly in the deformed theory. The pro-
cedure is analogous to what we have discussed so far, but now fields and parameters directly
satisfy the section and X-constraint. The transformation property of T45C is found to be

AT pn" =LAl yyn” + 0uOn AT — YPC Ly 000 AT + 0y A9 X o\ (5.20)

Note that this expression contains extra X-dependent terms with respect to the trans-
formation of an affine connection in EFT in a geometric setting. This fact reflects the
different notion of covariance of XFT, defined in terms of L rather than L. Eq. (5.20)
can also be deduced from (5.17) by making use of the E-constraint, showing that these
definitions are mutually consistent and that the EFT factorisation Ansatz reproduces the
correct structures naturally defined in XFT.

We now make another observation: the torsion associated with T M NP decomposes as

T(O)pn" = 20pn” + Y CrnTon™ = =Xun" + Ex*ExPT(T) 45 E” . (5.21)

This means that, given a torsionless I'jy;n? , we can write the XFT generalised Lie
derivative also as a covariant Lie derivative: IEA = LE. Finally, using the transforma-
tion (5.20), it is possible to deduce that dyXp;nT = 0. This is compatible with the
general construction of XFT and with (3.18). In the EFT embedding, the same fact

descends directly from dpF A =AEyA =0.
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6 Applications and future directions

We close the paper with a discussion on some potential applications of the E, ) XFT
framework. An immediate one is the investigation of consistent reductions of massive
ITA on non-trivial geometries. Amongst these, the study of S"~! sphere reductions to
gauged maximal supergravities in D = 11 — n dimensions is of special interest. The
n = 7 case has recently been shown to determine a consistent truncation in refs [27, 28]
where a central role was played by the duality hierarchy in the gauged maximal D = 4
supergravity [34, 44, 66, 67]. In contrast, the n = 4,5 cases were presented in ref. [68] only
for the massless ITA theory. Therefore, it would be very interesting to perform a systematic
analysis of massive ITA reductions on S"~! in the context of generalised Scherk-Schwarz
reductions of E,,) XFT along the lines of refs [11-13].

A first step in this direction is to ask under what circumstances a consistent generalised
SS Ansatz for massless ITA is automatically (i.e. without making any modification to the
Ansatz itself) a consistent Ansatz for massive IIA. This has been shown to be true for
instance for the S® case [27, 28]. Generalised SS reductions of massless ITA are based
on a truncation Ansatz of the form VM (z,y) = v¥(x) S(y)y™ for any covariant object,
with S(y) MM € Eym) X R* and the y-dependence being restricted to ITA coordinates.??
The frame S(y)ny™ must satisfy the analogue of (5.4) for some embedding tensor X {77 .
Generic sphere Ansétze of this type have been constructed in [11], so it would be useful
to know when they can be implemented directly also in XFT. In the XFT framework

describing massive ITA, S(y)y™

must satisfy analogous conditions, now containing extra
terms related to the X®-deformation of the generalised Lie derivative, which encodes the
Romans mass. It is straightforward to see that, if we want to keep the same S(y) MM
as in the massless Ansatz, then consistency is only obtained if S(y) MM stabilises X]F\{/[ NP
(up to a global E,, x R™ transformation that can be always reabsorbed). The resulting
D-dimensional gauged supergravity will then be based on an embedding tensor X = X© +
X® . Truncations on S™ ' down to D = 11 — n dimensions are based on twist matrices
valued in an SL(n) x RT subgroup of Enn) X RT. One can check that the stabiliser of
X" in E, @) contains only an SL(n — 1) group for n < 7, which means that the massless
ITA truncation Ansétze on spheres of dimension lower than six are not consistent for the
massive theory.?* Only in D =4 does X" break E(7) to SL(7) (plus a solvable piece),
which shows that the massless ITA Ansatz for S® can be directly utilised on the massive
theory, as was indeed done in [27, 28].

Z3Tensors of weight A # w are described as in footnote 19.
24 An alternative road is to investigate whether the deformation X = X )4 x R , where X R represents
a generic element in the E,(,, orbit of the X™ deformation, satisfies the quadratic constraint in (3.2).

For instance, let us focus once more on the SL(5) XFT and its counterpart, the gauged maximal D =7
~ SO(4)
— S0(3)
maximal supergravity given (in our conventions of section 3.4) by a deformation of the form Yun =
R *diag(1,1,1,0, 1), where R relates to the S® radius. Such a Yan determines X . Adding now a
generic element X® in the SL(5) orbit of the X® deformation and computing the resulting quadratic

constraints (3.2) for X = X® + X% one finds that a consistent truncation on S® 2883 (finite R) to a

maximal D = 7 supergravity is possible only in the massless case (mgr = 0). Let us emphasise again that

supergravity. In ref. [37], the reduction of massless ITA on S* was connected to an ISO(4)-gauged

we are assuming the same reduction Ansatz both in the massive and massless cases.
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Also in the context of massive IIA, it would of course be interesting to implement in
our formalism a way to reproduce the equations of motion and Bianchi identities associated
with general type IIA backgrounds, where the value of the Romans mass mgy is allowed to
change by discrete values when crossing a D8-brane. In order to achieve this, we proceed
by allowing for a non-constant rescaling of the Romans X" deformation

R R
XMNP — M(z,y) XMva (6.1)

where M (z,y) plays the role of a spacetime-dependent Romans mass.?’ Constancy of
the latter can be imposed by adding p-form Lagrange multipliers to the XFT action
that enforce 0,M = 0y M =0. This approach would be equivalent to the original
construction of ref. [53], if the extended coordinates y are restricted to the massive
ITIA coordinates. Such a construction can be made more general by making the full X
deformation x and y dependent and introducing Lagrange multipliers to enforce its
constancy as well as its (linear and quadratic) constraints. This is the standard approach
to derive the complete tensor hierarchy of gauged supergravities [33, 66], and it would be
interesting to investigate the consistency of such an approach in XFT where the section
constraint and the tensor hierarchy must be taken into account appropriately. The study
of D8-branes in XFT, especially the interpretation of the X-constraint in (3.17) as a
projector into specific U-duality brane charges, might help in understanding mutually
1/2-BPS configurations [14] in the massive IIA theory.

Moving now to the context of the type IIB theory, we saw in section 3.4 that, together
with ordinary p-form fluxes, all the E,) XFT’s are compatible with an SL(2)-triplet
of one-form deformations H4 = (F, H,F). These are connected to the triplet of eight-
form potentials in type IIB [59], thus becoming relevant in the study of S-duality orbits of
7-branes [58] and potentially of F-theory. An SL(2) invariant constraint guarantees that
the three eight-form potentials are dual to the two scalar degrees of freedom of the IIB
axion-dilaton. The XFT consistency constraints do not impose this extra requirement.
Therefore it would be interesting to investigate if XFT allows to describe more general
type 1IB backgrounds, and clarify whether H 4 in XFT is entirely geometric or contains a
bit of ‘global non-geometry’ (see discussion on 7y-deformations in [56]).

Finally there are other interesting directions which are more tangential to the content
of the present paper. The first one is the construction of a supersymmetric version of the
XFT’s similar to the ones for the undeformed EFT’s [69, 70]. The analysis of section 5.3
suggests that there should be no obstruction in defining the K(E,(,)) connections that are
required for introducing fermions. The second one is the formal truncation of the E, )
XFT to a deformed O(n —1,n—1) DFT. Such a deformed DFT should connect with the
formalism introduced in [71] to account for non-Abelian gauge couplings in the DFT formu-
lation of the heterotic string, except that a non-trivial O(n — 1,n — 1)-valued deformation
funt should appear together with extra constraints (partially) reproducing the embedding
tensor constraints in half-maximal supergravity. The structure of such DFT deformations
must also be similar to the formalism introduced in [65] to describe dimensional reductions

Z>We can set to unit value the constant mg parameter contained in XF.
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of DFT. The crucial difference with respect to the construction in [65] is that no truncation
of the coordinate dependence is required, thus resulting in a deformation of the generalised
Lie derivative of the full theory. The last question concerns the existence of an Egg)y XFT
and its relation to gauged maximal D = 3 supergravity [33]. A difference in the Egg) case
is the presence of an extra covariantly constrainted vector gauge parameter required for
closure of generalised diffeomorphisms [3] (for an alternative approach see also [72]). Inves-
tigating the potential implications of this new term on the X deformation goes beyond the
scope of this paper. We hope to come back to these and related questions in the near future.

Note added. Shortly after this manuscript appeared on the arXiv, the preprint [73]
appeared with a detailed construction of the exceptional generalised geometry for mas-
sive ITA supergravity. It reaches similar conclusions regarding sphere reductions of ITA
supergravity, and further investigates alternative Ansétze for the massive theory.
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