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We compute the pressure of the random energy model (REM) and generalized random
energy model (GREM) by establishing variational upper and lower bounds. For the
upper bound, we generalize Guerra’s “broken replica symmetry bounds,” and identify
the random probability cascade as the appropriate random overlap structure for the
model. For the REM the lower bound is obtained, in the high temperature regime using
Talagrand’s concentration of measure inequality, and in the low temperature regime
using convexity and the high temperature formula. The lower bound for the GREM
follows from the lower bound for the REM by induction. While the argument for the
lower bound is fairly standard, our proof of the upper bound is new.
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1. INTRODUCTION

While the analysis and properties of finite range spin glass systems (like the
Edwards-Anderson model) is still a very debated issue, even in the physics com-
munity, in recent years there has been a large progress in the mathematical under-
standing of mean-field models. (22) This advance was triggered by the introduction
of a “quadratic interpolation” technique, pioneered in Ref. 19 to establish the
existence of thermodynamic limit for the Sherrington-Kirkpatrick (SK) model (27)

and further developed by Guerra (18) to prove an upper bound for the pressure
which coincides with the Parisi replica symmetry breaking solution of the model.
Motivated by the cavity picture, this bound was generalized to a variational bound
by the introduction of Random Overlap Structures (ROSt) and associated random
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weights in Ref. 1. Guerra’s bound is recovered when the weights are chosen from
the inhomogeneous Poisson point process studied by Ruelle (26) and the ROSt is
a hierarchical one. Recently Talagrand(30) was able to prove that Guerra’s bound
is optimal, by showing that the correction term in the bound goes to zero in the
thermodynamic limit, thus establishing the rigorous validity of the Parisi solution.

In this paper we solve the Generalized Random Energy Model (GREM)(13,14)

by a simple analysis that partially follows the one developed for the SK model.
We first obtain a variational upper bound for the pressure by the definiton of the
appropriate auxiliary system (i.e., ROSt) for the model. As a guideline in this step
we use the basic covariance inequality that was identified in Ref. 9. To show that
the upper bound is optimal when the ROSt random weights are chosen according
to the Poisson-Dirichlet point process we use a different strategy than the one
developed for the SK model. Indeed the corresponding lower bound is easily
obtained from a complete control of the high temperature region and convexity
of the pressure. To study the high temperature region we propose a new induction
argument, which starting from infinite temperature covers all the temperature
values up to the critical one.

Despite the recent progress, there is not yet a direct proof of the most promi-
nent property of the Parisi solution, namely ultrametricity. A distance d in a metric
space is said to be ultrametric if the standard triangular inequality is replaced by
the much stronger inequality d(x, z) ≤ max{d(x, y), d(y, z)}. Equivalently, in an
ultrametric space all triangles are equilateral or isosceles with longer equal sides.
The Generalized Random Energy Model (GREM), introduced by Derrida(13) as
a model that possesses replica symmetry breaking, is ultrametric by construc-
tion, since its Hamiltonian is defined as the sum of independent Gaussian random
variables positioned on the branches of a hierarchical tree. As a first step in the
direction of achieving a proof of ultrametricity for mean-field models, generalized
non-hierarchical models have been considered in Ref. 3, where it has been shown
that they exhibit GREM-like behaviour. The analysis of the present paper, which
sets the GREM model into the general variational scheme developed for the SK
model, could be helpful in further studying non-hierarchical models.

The paper is organized as follow. In Sec. 2 we treat the basic case of the
Random Energy Model (REM), where the energy levels are independent Gaussian
random variables. This is a necessary warm-up since the GREM model will be
treated as a nested succession of REM-like systems. The full analysis is pre-
sented in Sec. 3. In the Appendix we recall some useful concentration of measure
estimates.

2. REM

The random energy model (REM) is a statistical mechanical model, where
the energy levels are independent and identically distributed Gaussian random
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variables. More precisely, for a system of size N , the Hamiltonian is a Gaussian
centered family with covariance matrix

CH (σ, σ ′) := E[HN (σ )HN (σ ′)] = N

2
δ(σ, σ ′) (1)

where σ, σ ′ ∈ {+1,−1}N are vectors, whose components are Ising spin variables.
The dependence on N in (1) is such that thermodynamic observables (energy,
free energy, etc.) are extensive in the volume, while the factor 1/2 is included
as a matter of convention. In this paper we denote by X a standard Gaussian,
E [X ] = 0, E

[
X2
] = 1. Thus an explicit representation of the Hamiltonian is

HN (σ ) =
√

N

2
X (σ ) (2)

where {X (σ )}σ∈�N are 2N i.i.d. copies of the random variable X . An equivalent
representation, more in the spirit of statistical mechanics, is to consider a “lattice”
� with N = |�| sites and a random Hamiltonian

H�(σ ) =
√

N

2N+1

∑

X⊆ �

JXσX (3)

defined on the spin configurations σ : � → {+1,−1}. In (3) the JX ’s are a family
of i.i.d. Gaussian random variables, with E[J 2

X ] = 1, and σX := ∏
i∈X σi for each

X ⊆ �. Henceforth, all Gaussian random variables will be understood to have
expectation equal to 0.

The main quantity we are going to study is the quenched pressure. We denote
by �N = {−1,+1}N the space of all possible spin configurations. For a finite
system we define the random partition function

Z N (β) =
∑

σ∈�N

e−β HN (σ ) , (4)

and the quenched pressure

PN (β) = E

[
1

N
ln Z N (β)

]
. (5)

We will be interested in the thermodynamic limit

P(β) = lim
N→∞

PN (β) (6)

In the following we will sometimes drop the N−dependence in the Hamiltonian
H (σ ) in order to alleviate notation. We will also introduce additional randomness
by considering an auxiliary system which is coupled to the Hamiltonian. We will
denote by E [·] the expectation with respect to all random variables involved.
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2.1. Upper Bound

We start by recalling the quadratic interpolation technique.

Lemma 2.1. Let H (σ ) be a Gaussian family, indexed by σ ∈ �N , with covari-
ance CH (σ ; σ ′). Let α ∈ A be an index ranging over the set A, and let K (α) and
V (σ, α) be Gaussian random variables, independent of H (σ ) and of each other,
with covariances CK (α; α′) and CV (σ, α; σ ′, α′), respectively. Suppose that

CH (σ ; σ ′) + CK (α; α′) ≥ CV (σ, α; σ ′, α′) (7)

for all σ, σ ′ ∈ �N and α, α′ ∈ A, and suppose that

CH (σ ; σ ) + CK (α; α) = CV (σ, α; σ, α) (8)

for every σ ∈ �N and α ∈ A. Moreover, suppose that there is a random weight
w : A → [0,∞) such that, almost surely,

∑
α∈A w(α) is strictly positive and finite.

Then,

PN (β) ≤ E

[
1

N
ln

∑
σ,α w(α)e−βV (σ,α)

∑
α w(α)e−βK (α)

]

= E

[
1

N
ln
∑

σ,α

w(α)e−βV (σ,α)

]
− E

[
1

N
ln
∑

α

w(α)e−βK (α)

]
, (9)

as long as the right-hand-side is well-defined (i.e., not ∞ − ∞).

Proof: We refer to Refs. 1,19 for full details. Here we only recall the basic idea.
For t ∈ [0, 1] define an interpolating Hamiltonian

H̃ (σ, α; t) = √
1 − t [H (σ ) + K (α)] + √

t V (σ, α). (10)

and an associated random partition function

Z N , t (β) =
∑

σ,α

w(α)e−β H̃ (σ,α ;t). (11)

Let �N ,β,t denote expectation with respect to the multiple-replica product measure,
where the weight for a configuration (σ, α) of a generic copy is given by Gibbs
measure associated to H̃ (σ, α) times a generic weights w(α). In particular, for a
function f (σ, α, σ ′, α′) of two replicas, one has

�N ,β,t { f (σ, α; σ ′, α′)}

=
∑

σ,α

∑

σ ′,α′
w(α)w(α′)

e−β[H̃ (σ,α;t)+H̃ (σ ′,α′;t)]

Z2
N , t

f (σ, α; σ ′, α′).
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Then one actually has (because of the equality along the diagonal Eq. (8))

1

N
E

[
ln
∑

σ,α

w(α)e−βV (σ,α)
]

− 1

N
E

[
ln
∑

α

w(α)e−βK (α)
]

− PN (β)

= β2

2

∫ 1

0
E[�N ,β,t {CH (σ ; σ ′) + CK (α; α′) − CV (σ, α; σ ′, α′)}] dt. (12)

This is proved by differentiating the quantity

E

[
N−1 ln

∑

α,σ

w(α)e−β H̃N (σ,α;t)
]
,

with respect to t and using the generalized Wick’s rule. Because of (7), the right
hand side of (12) is obviously positive and Eq. (9) follows. �

Remark 1. The same basic argument works to bound E[F(Z N (β))] for other
functions such as F(z) = za .

Remark 2. An identity such as (12) is usually called a sum-rule. The process
K (α) has to be thought of as a large reservoir which acts on the original system
H (σ ) through the interaction V (σ, α).

We are going to use the previous lemma to establish an optimal upper bound for
the REM model. A key element is to choose the correct formula for the random
weight w(α). The correct formula for mean field spin glasses seems to generally
be given by Ruelle’s random probability cascade. For the REM, it is given by a
single level of that, which is sometimes called the Poisson-Dirichlet process.3 Let
us give a brief description of this (the unnormalized version) in order to facilitate
the following proposition.

Given 0 < m < 1 consider the Poisson point process on (0,∞) with in-
tensity measure equal to mw−m−1 dw. Almost surely, the points can be labelled
{w1, w2, . . .} with w1 > w2 > · · · > 0. Moreover,

∑∞
α=1 wα is strictly positive and

finite, almost surely. The distribution of {wα}α has a remarkable invariance prop-
erty: If ( f1, f2, . . .) are i.i.d. copies of the random variable, f , which are assumed to
be independent of {wα}α , then (modulo permutations) the distribution of {e fαwα}α
is the same as {cwα}α where c is the nonrandom number c = (E[em f ])1/m . This
is easily proved using the generalized Laplace transform. (For a proof see, for
example, Ref. 29, page 481.)

One may note that instead of considering the Poisson point process {wα}α
with intensity equal to mw−m−1 dw, one could instead consider wα = eyα/m for
some {yα}α . Then −∞ < · · · < y2 < y1 < ∞ is a Poisson point process on R

with intensity measure e−y dy (independent of m). One thinks of −yα’s as the free

3 See Ref. 25 but also see Ref. 26. For a rather more abstract version, see Ref. 4.
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energies. In this notation m is explicit. Henceforth {yα}α will refer to the point
process just described.

A consequence of the invariance property mentioned above is
∞∑

α=1

eyα/m exp( fα)
D= E

[
exp(m f )

]1/m
∞∑

α=1

eyα/m , (13)

which will be useful.

Proposition 2.2. Let CH (σ, σ ′) be given by Eq. (1). Choose w(α) =
exp[y(α)/m] for 0 < m < 1. For each b ≥ 1 let

CK (α, α′) = (b − 1)
N

2
δ(α, α′) (14)

CV (σ, α; σ ′, α′) = b
N

2
δ(σ, σ ′)δ(α, α′). (15)

Then one obtains the optimal upper bound for the REM,

PN (β) ≤ inf
0<m<1

[
1

4
mβ2 + 1

m
ln 2

]
(16)

Proof: We note that Lemma 2.1 is applicable because

b δ(σ, σ ′)δ(α, α′) ≤ δ(σ, σ ′) + (b − 1)δ(α, α′) (17)

We compute separately the two terms in Eq. (9). For the first one, due to Eq. (15),
we have

1

N
E

[

ln
∑

σ, α

w(α) exp[−βV (σ, α)]

]

= 1

N
E

[

ln
∑

α

exp

[
y(α)

m

]∑

σ

exp

[

−β

√
bN

2
X (σ, α)

]]

= 1

N
E

[

ln
∑

α

exp

[
y(α)

m

]
Z N (β

√
b ; α)

]

(18)

where Z N (β
√

b ; α) are independent copies (labeled by the α’s) of the random vari-

able Z N (β
√

b) = ∑
σ exp[−β

√
bN
2 X (σ )]. By applying the invariance property of

Eqs. (13) to (18) with exp[ fα] = Z N (β
√

b; α) we obtain

1

N
E

[

ln
∑

σ, α

w(α) exp[−βV (σ, α)]

]

=
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= 1

N
E

[

ln
∑

α

exp

[
y(α)

m

]]

+ 1

m N
ln E

[
Zm

N (β
√

b)
]
. (19)

Then we consider the second term in Eq. (9). Taking into account the choice (14)
we have

1

N
E

[

ln
∑

α

exp

[
y(α)

m

]
exp[−βK (α)]

]

= 1

N
E

[

ln
∑

α

exp

[
y(α)

m

]
exp

[

−β

√
(b − 1)N

2
Xα

]]

. (20)

Using again the invariance property Eq. (13) with exp[ fα] = exp[−β

√
(b−1)N

2 Xα]
and computing the average we obtain

1

N
E

[

ln
∑

α

exp

[
y(α)

m

]
exp[−βK (α)]

]

= 1

N
E

[

ln
∑

α

exp

[
y(α)

m

]]

+ β2 (b − 1)m

4
. (21)

Putting together Eqs. (19) and (21) we obtain:

PN (β) ≤ 1

m N
ln E

[
Zm

N (β
√

b)
]− β2 (b − 1)m

4
. (22)

Now we use the simple fact that

Zm
N (β

√
b) ≤ Z N (mβ

√
b). (23)

This is a general fact in statistical mechanics: since the entropy is posi-
tive by definition, the free energy is increasing in β. Indeed, considering
fN (β) = − 1

Nβ
ln(Z N (β)), the random free energy, one immediately checks that

f ′
N (β) = 1

β
(uN (β) − fN (β)) = 1

β2 sN (β) ≥ 0, where uN (β) is the random inter-
nal energy, and sN (β) is the random entropy. Therefore, for any 0 < m ≤ 1, we
have:

− 1

Nmβ
ln(Z N (mβ)) ≤ − 1

Nβ
ln(Z N (β)), (24)

which is equivalent to (23) when we replace β by β
√

b. By inserting Eqs. (23)
into (22) it is now easy to compute the expectation E[Z N (mβ

√
b)] and we arrive

at the upper bound

PN (β) ≤ 1

4
mβ2 + 1

m
ln 2. (25)
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Note that there is not anymore dependence on b in the bound. Finally the optimal
bound is obtained by minimization in m which yields the (16) and completes the
proof. �

Remark 3. It is interesting to note that for the REM (and for the REM only)
the main result of quadratic interpolation can be viewed as an implementation of
Jensen’s inequality:

E[ln(Z N (β))] = 1

m
E
[

ln Zm
N (β)

] ≤ 1

m
ln E

[
Zm

N (β)
]
. (26)

This holds for general m > 0, but one needs m ≤ 1 to apply (23). If one uses the
“sum-rule” then one can get an explicit form for the error coming from Jensen’s
inequality in this case.

Remark 4. The inequality of (16) takes two different forms depending on
whether β is greater than or less than βc := 2

√
ln(2). For β > βc, the right-hand-

side of (16) is optimized at m = βc/β. For β < βc the infimum over 0 < m < 1
is attained by a limit m → 1. Therefore, one has

PN (β) ≤ Q(β) , (27)

where

Q(β) =
⎧
⎨

⎩

1

4
β2 + ln(2) for β < βc

β
√

ln(2) for β ≥ βc

⎫
⎬

⎭
=

⎧
⎪⎨

⎪⎩

1

4
(β2 + β2

c ) for β < βc

1

2
ββc for β ≥ βc

⎫
⎪⎬

⎪⎭

(28)

Note that the two pieces match at β = βc.

2.2. Lower Bound

The main new result in this paper is the adaptation of the quadratic inter-
polation method to obtain an asymptotically sharp upper bound on PN (β), as we
just considered above. One should view the result of the previous section as an
analogue, for the REM, of Guerra’s bounds for the SK model in Ref. 18. On
the other hand, for the REM, unlike for the SK model, there are easy proofs
of the same lower bound in the N → ∞ limit. The exact formula for the pres-
sure of the random energy model is well-known. Derrida calculated it when he
introduced the model in Ref. 13 while a mathematically rigorous version of his
argument is included in Refs. 5, 23. There are also proofs which rely more on
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large-deviation theory, such as Refs. 15, 16.4 We also encourage the reader to see
the more recent, deep analysis of Refs. 6, 7. (There is much interest in the REM
as far as the statistics of energy levels is concerned because in the bulk there is a
kind of universality. See, for instance, Ref. 8.)

We will also present a proof of the lower bound. This is included primarily
for completeness, for nonexperts. However, let us digress briefly to justify this for
the experts: there is a great desire to obtain a purely variational proof of the lower
bound for the the SK model. In light of that, it seemed worthwhile to explore how
‘variational’ the proof of the lower bound really is, for the REM. (Of course, it is
not as variational as one would like).

Since PN (β) ≤ Q(β) for all N , it follows that P(β) ≤ Q(β) in the limit
N → ∞. We want to show the opposite is also true, to establish that P(β) = Q(β)
for all β ≥ 0. The key to obtaining the lower bound is to understand the high
temperature region, β < βc.

Proposition 2.3.

P(β) = Q(β) for β ≤ βc . (29)

The proof of this result is provided in the next subsection, while here we
stress its consequences. Stated otherwise, the upper bound of Proposition 2.2
saturates in the N → ∞ limit, at least when β ≤ βc. It is a remarkable fact that
this high-temperature result gives the sharpness of the upper bound also in the
low-temperature region as follows.

Corollary 2.4. For β ∈ [0,+∞)

P(β) = Q(β). (30)

Proof: It is a basic fact, easily seen from the definition (5), that PN (β) is convex
in β for each N . Therefore, the limiting function P(β) is also convex. Hence, for
any β0 and any β ≥ β0, we have

P(β) ≥ P(β0) + (β − β0)D P(β0) , (31)

where D is any convex combination of the left-handed and right-handed
derivatives, which we denote D− and D+, respectively. We now take β0 ↑ βc.
Since we know from Proposition 2 that P(β) = Q(β) for β < βc, we easily
calculate limβ0↑βc P

(
β0) = 2 ln(2) while limβ0↑βc D− P(β0) = limβ0↑βc Q′(β0) =√

ln(2). Putting this together completes the proof. �

4 In Ref. 16, there is also a conjecture for the more general quantity N−1 ln E[Z N (β)a] for a ∈ R. This
is substantiated in the preliminary section of Ref. 31.
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2.3. High Temperature Region

The proof of Proposition 2.3 will be obtained through a sequence of lemmata.
The crux of the argument is standard. For example, see Ref. 29, Proposition 1.1.5.
(there is another approach in Ref. 5, Theorem 9.1.2, called the “truncated second
moment method”). We start with the following result, which is another variational
calculation.

Lemma 2.5. Let �β,N refer to the (expectation associated to the) random prob-
ability measure on �N × �N specified by

�β,N

{
f (σ, σ ′)

}
:= Z−2

N (β)
∑

σ,σ ′∈�N

e−β H (σ )e−β H (σ ′) f (σ, σ ′) .

For 0 ≤ β ≤ βc we have

1

N
ln E

[
Z N (β)�β,N

{
δ(σ, σ ′)

}] ≤ ββc

2
. (32)

Proof: Note that

�β,N

{
δ(σ, σ ′)

} =
∑

σ,σ ′∈�N
e−β H (σ )e−β H (σ ′)δ(σ, σ ′)

Z2
N (β)

= Z N (2β)

Z2
N (β)

. (33)

By (23), we know that for 0 < m < 1

Z N (2β) ≤ Z1/m
N (2mβ) . (34)

Using Hölder’s inequality with p = 1/m, q = 1/(1 − m) and 1
p + 1

q = 1

Z N (2mβ) ≤ Zm
N (β) Z1−m

N

( m

1 − m
β
)

. (35)

Therefore,

Z N (β)�β,N

{
δ(σ, σ ′)

} = Z N (2β)

Z N (β)
≤ Z1/m

N (2mβ)

Z N (β)
≤ Z (1−m)/m

N

( m

1 − m
β
)

.

Since m/(1 − m) can take any positive value as m ranges over (0, 1) this means

Z N (β)�β,N

{
δ(σ, σ ′)

} ≤ Z1/r
N (rβ) (36)

for every r ∈ [0,+∞). Moreover, for r ≥ 1 we can use Jensen’s inequality to
obtain

E
[
Z1/r

N (rβ)
] ≤ (

E[Z N (rβ)]
)1/r = exp

(
N

[
β2

c

4r
+ rβ2

4

])
. (37)

It is easy to see that the optimal value is r = βc/β, which does satisfy the constraint
r ≥ 1 because of the hypothesis β ≤ βc. Choosing this r and putting (36) and (37)
together yields (32). �
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A second useful estimate is the following concentration of measure property.

Lemma 2.6. For any β, and any t > 0,

P
{|N−1 ln Z N (β) − PN (β)| ≥ βt

} ≤ 2e−Nt2/2 .

The analogous result for the SK model is Corollary 2.2.5 of Ref. 29. For complete-
ness we will give a proof of Lemma 2.6 in Appendix A and, particularly, show
that a straightforward generalization of Talagrand’s proof applies equally well to
all models that satisfy thermodynamic stability. (10,12)

The proof of Proposition 2.3 will essentially follow from the next result,
which we prove first.

Lemma 2.7. For any 0 ≤ β < βc,

lim sup
N→∞

sup
0≤β ′≤β

1

N
ln E

[
�β ′,N

{
δ(σ, σ ′)

}]
< 0 . (38)

Proof: The proof will obtained by induction. Let us define the succession of
temperatures given by β0 = 0, βn+1 = g(βn) for n ∈ N, where g is a definite
function. As we will see, we can choose

g(β) = β + aβc[1 − (β/βc)]2 for any 0 < a < 1/2. (39)

and it will follow that βn ↑ βc as n → ∞.
We first note that (38) is true for β = β0 = 0, because one has

E
[
�0,N

{
δ(σ, σ ′)

}] = 2−N . For the induction step, we will prove that if (38)
is true for β ∈ [0, βn], then it is also true for every β ∈ [0, βn+1]. Then, since
βn ↑ βc the statement of Lemma 2.7 follows.

To prove the induction step, we first observe that

d

dβ
PN (β) = β

2

(
1 − E

[
�N ,β

{
δ(σ, σ ′)

}]) ≥ 0 . (40)

Indeed, this is a simple calculation using the generalized Wick’s rule. Since
Z N (0) = 2N (deterministically) we have PN (0) = ln(2). Then the sum rule

PN (β) = ln(2) + β2

4
−
∫ β

0

β ′

2
E
[
�N ,β ′

{
δ(σ, σ ′)

}]
dβ ′ (41)

follows.
Suppose now that (38) is true for β ∈ [0, βn]. Consider a generic β > βn ,

not necessarily smaller than βn+1, and for t > 0 let AN (β, t) be the event in
Lemma 2.6:

AN (β, t) = {|N−1 ln Z N (β) − PN (β)| ≥ βt
}
.
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On AN (β, t)c we have Z N (β) ≥ eN [PN (β)−βt]. Let us employ the following short-
hand: given a set A, let IA denote the indicator of A and let us denote E[IA X ] by
E[X, A] for every random variable X . Then we conclude that

E
[
�β,N

{
δ(σ, σ ′)

}
, AN (β, t)c

] ≤ E

[
Z N (β)

eN [PN (β)−βt]
�β,N

{
δ(σ, σ ′)

}
, AN (β, t)c

]

≤ e−N [PN (β)−βt]
E
[
Z N (β)�N ,β

{
δ(σ, σ ′)

}]
.

Therefore

1

N
ln E

[
�N ,β

{
δ(σ, σ ′)

}
, AN (β, t)c

] ≤ −PN (β) + 1

2
ββc + βt

follows from Lemma 2.5.
Since we assumed β > βn , a lower bound for PN (β) is given by PN (βn)

and a lower bound for PN (βn) is given by 1
4 [β2

c + β2
n ] − o(1), using Eq. (41) and

the induction hypothesis, where o(1) represents a quantity whose limit is 0 when
N → ∞. One thing which is important is that while o(1) does depend on βn , it is
independent of β > βn . Therefore,

1

N
ln E

[
�β,N

{
δ(σ, σ ′)

}
, AN (β, t)c

] ≤ −1

4
(βc − βn)2

+ 1

2
βc[β − βn] + βt + o(1). (42)

On the other hand, one always has 0 ≤ �β,N

{
δ(σ, σ ′)

} ≤ 1. Hence,

E
[
�β,N

{
δ(σ, σ ′)

}
, AN (β, t)

] ≤ E
[
1, AN (β, t)

] = P(AN (β, t)) .

So, by Lemma 2.6,

1

N
ln E

[
�β,N

{
δ(σ, σ ′)

}
, AN (β, t)

] ≤ −1

2
t2 + N−1 ln(2) . (43)

Putting Eqs. (42) and (43) together we obtain

1

N
ln E

[
�β,N

{
δ(σ, σ ′)

}] ≤ N−1 ln(2) + max

{
−1

2
t2 + N−1 ln(2),

− 1

4
(βc − βn)2 + 1

2
βc[β − βn] + βt − o(1)

}

. (44)

If we now take

β < βn + 1

2
βc[1 − (βn/βc)]2

then it is clear that by choosing t positive, but small enough, we will have a
strictly negative limsup of the left hand side of (44) as N → ∞. Choosing any
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0 < a < 1/2, let us take g(β) = β + aβc[1 − (β/βc)]2. Then for βn+1 = g(βn),
we have proved the induction step: for β in the range [0, βn+1], inequality (38)
also holds. �

We complete this section with the proof of Proposition 2.3.

Proof: By Lemma 2.7, the integrand of the third term in the right hand side of
Eq. (41) approaches 0 uniformly as N → ∞, as long as 0 ≤ β < βc. This gives
the desired result. �

3. THE GENERALIZED RANDOM ENERGY MODEL

In this section we extend the method developed in the previous section to
treat the GREM. This is essentially a “correlated random energy model” on a
hierarchical graph—that is, a tree.

3.1. Set-Up and Basics

The GREM is a family of models, taking various parameters for the definition.
Let n ∈ N+ be an integer, equal to the number of levels in the hierarchical tree.
Let K1, . . . , Kn be positive integers such that K1 + K2 + · · · + Kn = N , where
N is the system size. Also, let a1, . . . , an be real numbers such that 0 < ai for
i = 1, . . . , n and a1 + a2 + · · · + an = 1.

Definition 3.1. Given N ∈ N and σ ∈ �N , for i = 1, . . . , n, let πi (σ ) be the
canonical projection over the subset �Ki generated by the lexicographical partition
P of the coordinates (σ1, . . . , σN ) into the first K1 coordinates, the successive K2

coordinates and so on up to the last Kn coordinates. Namely, �N = �K1 × · · · ×
�Kn , ⊗n

i=1πi = 1�N and πi (σ ) = (σK1+ ...+Ki−1+1, . . . , σK1+ ...+Ki ).
Then the GREM Hamiltonian is a family of Gaussian random variables having

the covariance

E
[
HN (σ )HN (σ ′)

] = N

2

n∑

i=1

ai

i∏

j=1

δ(π j (σ ), π j (σ
′)) (45)

An explicit form of GREM Hamiltonian is

HN (σ ) =
√

N

2

n∑

i=1

√
ai X (π1(σ ), . . . , πi (σ )) . (46)

where, for each i = 1, . . . , n, the family of random variables {X (π1(σ ), . . . ,
πi (σ ))}σ∈�N are 2K1+K2+...+Ki i.i.d. Gaussians, and each family is independent
of the others.
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Remark 5. The Hamiltonian (46) corresponds to a tree with branching number
that at each level is a power of two. We will stick to this case to simplify the
notation, while the more general case of arbitrary branching number (with the
constraint of having approximately 2N leaves in the last layer) is completely
equivalent in the thermodynamic limit. In order to make statements that apply in
the limit, we will consider sequences of N ’s and K1, . . . , Kn such that there are
rational numbers κ1, . . . , κn , all nonnegative, and summing to 1, with Ki = Nκi

for each i = 1, . . . , n.

We now prove the variational expression for the pressure of the GREM. The
strategy is to apply the results obtained for the REM model in the previous section
at each level in the hierarchy. In order to denote the dependence on the parameters
a = (a1, . . . , an) and κ = (κ1, . . . , κn), let us write the GREM pressure as

P (n)
N (β; a, κ) = 1

N
E [ln Z N (β; a, κ)] . (47)

and its thermodynamic limit as P (n)(β; a, κ) := limN→∞ P (n)
N (β; a, κ).

3.2. Upper Bound

Proposition 3.2. Consider the GREM model, for which CH (σ, σ ′) is given by
(45). For an index α = (α1, α2, . . . , αn) ∈ An let the random weights w(α) be
given by

w(α1, . . . , αn) = exp

[
y(α1)

m1

]
exp

[
y(α1, α2)

m2

]
· · · exp

[
y(α1, . . . , αn)

mn

]
(48)

where the Poisson point processes is now a cascade with intensity measure e−ydy.
Namely, y(α1) is the usual PPP, then for each given α1, y(α1, α2) is an independent
copy (labelled by α1) of the PPP, ... and so on up to y(α1, . . . , αn) which, for each
given α1, . . . , αn−1, is an independent copy of the PPP (labelled by α1, . . . , αn−1).
We also choose a sequence 0 < m1 ≤ m2 ≤ · · · ≤ mn < 1 and

CK (α, α′) = (b − 1)
N

2

n∑

i=1

ai

i∏

j=1

δ(α j , α
′
j ) (49)

CV (σ, α, σ ′, α′) = b
N

2

n∑

i=1

ai

i∏

j=1

δ(π j (σ ), π j (σ
′)) δ(α j , α

′
j ), (50)
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where b is a real number such that b > 1. Then we obtain the optimal upper
bound:

P (n)
N (β; a, κ) ≤ inf

0<m1≤···≤mn<1

n∑

i=1

[ κi

mi
ln(2) + β2

4
mi ai

]
. (51)

Proof: It will be along the lines of the proof of Proposition 2.2. Lemma 2.1 is
applicable because for each i = 1, . . . , n one has

b
i∏

j=1

δ(π j (σ ), π j (σ
′))δ(α j , α

′
j ) ≤

i∏

j=1

δ(π j (σ ), π j (σ
′)) + (b − 1)

i∏

j=1

δ(α j , α
′
j )

(52)
For the first term of Eq. (9), using Eq. (50), we have

1

N
E

[

ln
∑

σ, α

w(α) exp[−βV (σ, α)]

]

= 1

N
E

(

ln
∑

σ, α

exp

[
y(α1)

m1

]
exp

[
y(α1, α2)

m2

]
· · · exp

[
y(α1, · · · , αn)

mn

]

× exp

[

−β

√
bN

2

n∑

i=1

√
ai X (π1(σ ), π2(σ ), . . . , πi (σ ), α1, α2, . . . , αi )

])

(53)

Since the sum over configurations σ ∈ �N , α ∈ An can be decomposed into n
sums over each subset πi (σ ) ∈ �Ki , αi ∈ A for i = 1, . . . , n, the invariance prop-
erty (13) can now be applied telescopically, starting at the nth level and tracing
back up to the first level. After this simplification we obtain

1

N
E

[

ln
∑

σ, α

w(α) exp[−βV (σ, α)]

]

= 1

N
E

[

ln
∑

α

w(α)

]

+
n∑

i=1

1

mi N
ln E

[
Zmi

Ki
(β
√

bai )
]

≤ 1

N
E

[

ln
∑

α

w(α)

]

+
n∑

i=1

1

mi N
ln E

[
Z Ki (miβ

√
bai )

]

= 1

N
E

[

ln
∑

α

w(α)

]

+
n∑

i=1

[
κi

mi
ln(2)

]
+ β2

4
b

n∑

i=1

ai mi (54)
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where in the third line we have made use again of Eq. (23). For the second term
of Eq. (9), using Eq. (49) and the invariance property (13) we have

1

N
E

[

ln
∑

α

w(α) exp[−βK (α)]

]

= 1

N
E

[

ln
∑

α

w(α)

]

+ β2 (b − 1)

4

n∑

i=1

ai mi (55)

Putting together Eqs. (54) and (55) we arrive at the upper bound stated in the
Proposition. �

Remark 6. In the following we make the assumption
κ1

a1
<

κ2

a2
< · · · <

κn

an
(56)

in order to have a totally nondegenerate sequence of transition temperatures. To
express the inequality of (51) in a more transparent form it is convenient to

introduce a succession of critical temperatures: for i = 1, . . . , n let β∗
i = βc

√
κi

ai

(where βc = 2
√

ln(2) as in the REM). Under the condition (56), this implies
β∗

1 < · · · < β∗
n . Because of the constraint 0 < m1 ≤ · · · ≤ mn < 1 the optimal mi

is

mi = min{1, β∗
i /β} (57)

for i = 1, . . . , n, the value 1 being attained by taking mi ↑ 1 in the infimum of
Eq. (51). Therefore, one has

P (n)
N (β; a, κ) ≤ Q(n)(β; a, κ) , (58)

where

Q(n)(β; a, κ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

k=1

1

4
ak(β2 + (β∗

k )2) for β < β∗
1

i∑

k=1

1

2
akββ∗

k +
n∑

k=i+1

1

4
ak(β2 + (β∗

k )2) for β∗
i ≤ β ≤ β∗

i+1

n∑

k=1

1

2
akββ∗

k for β ≥ β∗
n

(59)

3.3. Lower Bound

Let us denote the REM pressure (Eq. (5)) as P (1)
N (β), and its thermodynamic

limit (Eq. (6)) as P (1)(β). This is not really an abuse of notation because if
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n = 1 then the GREM is the REM, and a1 = κ1 = 1. In the same way, we write
Q(1)(β) = Q(β), where Q(β) is defined in Eq. (28).

Then the lower bound is the following:

Proposition 3.3. For all β ≥ 0,

P (n)(β; a, κ) ≥ Q(n)(β; a, κ) . (60)

Proof: The proof will follow if we show that

P (n)
N (β; a, κ) ≥

n∑

i=1

κi P (1)
Ki

(√
ai/κi β

)
. (61)

Indeed, taking the thermodynamic limit N → ∞ on both sides and using

Q(n)(β; a, κ) =
n∑

i=1

κiQ(1)(
√

ai/κi β) for for all β ≥ 0. (62)

we obtain the Lemma statement. To prove (61) we introduce the interpolating
pressure

1

N
E ln

∑

σ∈�N

e−β H̃ (σ,t) (63)

with

H̃ (σ, t) = √
t

[√
N

2

n∑

i=1

√
ai X (π1(σ ), . . . , πi (σ ))

]

+√
1 − t

[√
N

2

n∑

i=1

√
ai Y (πi (σ ))

]

(64)

where the X ’s and Y ’s are families of i.i.d. Gaussian random variables, each
independent from the other. A straightforward differentiation of Eq. (63) combined
with integration by parts yields Eq. (61). �

APPENDIX: PROOF OF LEMMA 2.6: CONCENTRATION

OF MEASURE

In this Appendix we prove the “concentration of measure” inequality
(Lemma 2.6). The proof is a generalization5 of the proof for the SK model
(Corollary 2.2.5 of Ref. 29).

5 In Ref. 29 the generalization of Corollary 2.2.5 to p-spin models is implicit: for example in the proof
of Theorem 6.1.2. But our generalization to all models satisfying “thermodynamic stability” is new.
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We show that the standard deviation inequality apply to a large class of
Gaussian spin-glass models, which includes both mean-field (SK, p-spin, REM,
GREM) and finite dimensional models (Edwards-Anderson, Random Field). We
recall the basic result for a function of Gaussian variables:

Theorem A.1. (Talagrand) Consider a Lipschitz function F on R
M , of Lipschitz

constant A. If J1, . . . , JM are independent, standard normal random variables,
then for each t > 0,

P{|F( J) − E[F( J)]| ≥ At} ≤ 2e−t2/4. (65)

This is Theorem 2.2.4 of Ref. 29. Talagrand proves this using the “smart
path” method, which is his adaptation of the quadratic interpolation argument.
Thus, his proof in Ref. 29 differs from his earlier proofs (28) and from the proofs of
others. (24) This is good for those studying spin glasses. Particularly, one technique
is unifying and simplifying various tools. Another application of quadratic inter-
polation is continuity of the pressure with respect to the covariance of a spin glass
Hamiltonian: Corollary 3.3 of Ref. 2. Also, a result which uses the same idea, and
surprisingly predates the applications in spin glasses, is Slepian’s lemma. (21)

Let us consider the general Hamiltonian given by

H�(σ ; J) = − 1√
2

∑

X∈�


X JXσX , (66)

where � ⊂ Z
d , σX = ∏

i∈X σi , {
X }X∈� ≥ 0 and the {JX }X∈� are a family of
i.i.d. standard Gaussian random variables, E [JX ] = 0, E [JX JY ] = δX,Y . In order
to have a bounded quenched pressure we assume the following thermodynamic
stability condition holds: there exists a constant c < ∞ such that

sup
�⊂Zd

1

|�|
∑

X⊂�


2
X ≤ c (67)

We remark that this condition immediately entails the existence of thermodynamic
limit for short-range models (12) and it also implies the validity of the Ghirlanda-
Guerra identities both for short-range and mean-field models. (10,11,17) To prove
Lemma 2.6, we need to show that the random pressure function

P�( J) = 1

|�| ln
∑

σ∈�N

e−β H�(σ ; J) (68)

is Lipschitz. For this, we note that

P�( J) − P�( J ′) =
∫ 1

0

d P�(t J + (1 − t) J ′)
dt

dt . (69)
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On the other hand

d P�(t J + (1 − t) J ′)
dt

= β√
2 |�|

∑

X⊂�

ωt (σX )
X (JX − J ′
X ) (70)

with

ωt (σX ) =
∑

σ σX e−β H�(σ ;t J+(1−t) J ′)
∑

σ e−β H�(σ ;t J+(1−t) J ′)
(71)

From Eq. (69), by using |σX | ≤ 1, Cauchy–Schwarz inequality and the thermody-
namic stability condition (67), it then follows

|P�( J) − P�( J ′)| ≤ β

√
c

2|�| ‖J − J ′‖ . (72)

where ‖ · ‖ denotes the L2-norm. Therefore, P�( J) is Lipschitz, with Lipschitz

constant A = β
√

c
2|�| . Applying Theorem A.1 it gives

P{|P�( J) − E[P�( J)]| ≥ t} ≤ 2 exp

(
− t2|�|

2cβ2

)
. (73)

This result apply equally well to all general Hamiltonian of the form (66). The
REM model is obtained from Eq. (66) with the choice |�| = N , 
X =

√
N2−N

(this is indeed Hamiltonian (3)). In this case the condition (67) gives c = 1 and
the statement of Lemma 2.6 is proved.
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7. A. Bovier and I. Kurkova, Derrida’s generalised random energy models. II. Models with continuous
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