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1 Introduction

Supersymmetric Yang-Mills (SYM) theories are interesting classes of theories by them-

selves. They also serve as starting points for constructions of many phenomenologically

relevant models. These theories can come with nonperturbative sectors that are less

tractable analytically. Having a nonperturbative formulation of supersymmetric gauge

theories would certainly advance our goal toward understanding their rich structure. Su-

persymmetric gauge theories constructed on a Euclidean spacetime lattice would provide a

first principles approach to study the nonperturbative regimes of these theories. For certain

classes of SYM theories with extended supersymmetries there are two approaches readily

available to us for the constructions of their supersymmetric cousins. They are called the

methods of topological twisting and orbifolding [1–12]. They both give rise to identical

lattices.1

Supersymmetric lattices have been constructed for several classes of SYM theories [2–6]

including the well known N = 4 SYM theory.2 There have been a few extensions of these

formulations by incorporating matter fields in the adjoint and fundamental representations

of the color group [31–35]. Some of them have also been extended to incorporate product

gauge groups, resulting in supersymmetric quiver gauge theories on the lattice [34–36].

In this paper, we construct two-dimensional N = (2, 2) supersymmetric lattice gauge

theories with matter fields transforming in the higher representations of SU(Nc) color

group. These theories are constructed using the following procedure. We begin with a

two-dimensional Euclidean SYM theory possessing eight supercharges. Such a theory can

be obtained from dimensionally reducing the four-dimensional Euclidean N = 2 SYM. The

fields and supersymmetries of this theory are then topologically twisted to obtain a con-

tinuum theory, which is compatible with lattice discretization. The next step is to extend

this theory such that it becomes a supersymmetric quiver gauge theory with two nodes and

1There also exist other complementary approaches to the problem of lattice supersymmetry [13–22].
2Several aspects of this theory have been explored numerically in the recent past [23–30]
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with gauge group SU(Nc) × SU(Nf ). This can be achieved by replicating the continuum

twisted theory and then changing the group representation of an appropriate subset of

the field content of the theory from adjoint to the product representations (Nc, Nf ) and

(N c, Nf ), with Nc and Nf being the fundamental representations of SU(Nc) and SU(Nf )

respectively. We note that such a construction could be obtained from an appropriate

orbifold projection of an SU(Nc + Nf ) parent theory but we will not take that path of

construction in this paper. We are interested in constructing N = (2, 2) lattice theories

with two-index representations for the matter fields. From the point of view of the orbifold

constructions one has to find an appropriate projection method to get the quiver theories

with desired two-index matter representations. However, in this paper we will not seek such

a projection method but instead impose the projection by hand to construct the continuum

theories with two-index matter and then proceed to construct lattice versions of these the-

ories that preserve a subset of the supercharges exact on the lattice. Denoting the desired

two-index representation by R and the corresponding complex conjugate representation by

R̄, our starting point would be a quiver theory with matter in the representations (R, R̄)

and (R̄,R). The adjoint fields of the quiver theory live on the nodes while the fields in the

product representations live on the links connecting the nodes of the quiver. To construct

two-dimensional N = (2, 2) lattice gauge theories with two-index matter, we freeze the

theory on one of the nodes of the quiver and also an appropriate set of matter fields linking

the two nodes. After this restriction we have an SU(Nc) gauge theory containing matter

fields in the two-index representation and with SU(Nf ) flavor symmetry. Note that such

a restriction of the fields is not in conflict with supersymmetry. Such constructions have

been carried out by Matsuura [34] and also in ref. [35] to formulate lattice gauge theories

with matter fields in the fundamental representation. The continuum theories constructed

this way, with two-index matter, can then be placed on the lattice using the method of

geometric discretization. The resultant lattice theories contain adjoint fields living on the

p-cells of a two-dimensional square lattice and two-index matter fields living on the sites of

the same lattice. The lattice theories constructed this way enjoy gauge-invariance, freedom

from fermion doublers and exact supersymmetry at finite lattice spacing.

This paper is organized as follows. In section 2 we write down the topologically twisted

action and scalar supersymmetry transformations of the two-dimensional eight supercharge

SYM with gauge group SU(Nc). In section 3 we construct the two-dimensional N =

(2, 2) gauge theory with matter fields transforming in the two-index (symmetric and anti-

symmetric) representations of SU(Nc). Our construction gives rise to matter fields with

SU(Nf ) flavor symmetry. We construct the lattice theory with two-index matter in section 4

using the method of geometric discretization. In section 5 we briefly discuss the fine tuning

and simulation details of the lattice theories. We end with discussion, comments and

motivations to study such lattice models in section 6.

2 N = (2, 2) theories with adjoint matter

We begin with writing down the topologically twisted action of the two-dimensional Eu-

clidean SYM theory with eight supercharges. The twisted action of the theory is obtained
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by decomposing the fields and supercharges of the original theory under a new rotation

group called the twisted rotation group [37]. In our case, the twisted rotation group is

the diagonal subgroup of the product of the two-dimensional Euclidean Lorentz rotation

group SO(2)E and the SO(2) subgroup of the R-symmetry group of the original theory.

The action of the two-dimensional theory is

S = S
N=(2,2)
SYM + Sadj matter, (2.1)

where the first piece is the action of the two-dimensional N = (2, 2) SYM

S
N=(2,2)
SYM =

1

g2

∫
d2x Tr

(
−FmnFmn +

1

2
[Dm,Dm]2 − χmnDmψn − ηDmψm

)
, (2.2)

and the second piece contains the matter part in the adjoint representation

Sadj matter =
1

g2

∫
d2x Tr

(
− 2(Dmφ̄)(Dmφ) + [Dm,Dm][φ̄, φ] + η̄Dmψ̄m

+χ̄mnDmψ̄n − η[φ̄, η̄]− ψm[φ, ψ̄m]− 1

2
χmn[φ̄, χ̄mn] +

1

2
[φ̄, φ]2

)
. (2.3)

Here m,n = 1, 2 and g is the coupling parameter of the theory. All fields are trans-

forming in the adjoint representation of the SU(Nc) gauge group.3

After topological twisting, the fermions and supercharges transform as integer spin

representations of the twisted rotation group. The fermionic degrees of freedom of the

twisted theory are p-forms with p= 0, 1, 2. They are labeled as {η, ψm, χmn, η̄, ψ̄m,

χ̄mn}. Similarly, the twisted supercharges can also be packaged as a set of p-forms. The

untwisted theory contains four scalars. After twisting, two of the scalars combine to form

a two-dimensional vector Bm under the twisted rotation group. Since there are two vector

fields in the twisted theory, Am and Bm, and they both transform the same way under the

twisted rotation group, it is natural to combine them to form a complexified gauge field,

which we label as Am, and write down the twisted theory in a compact way. Thus the

twisted theory contains two complexified gauge fields

Am ≡ Am + iBm, Am ≡ Am − iBm. (2.4)

Such a construction leads to complexified covariant derivatives in the theory. They are

defined by

Dm = ∂m + [Am, ] = ∂m + [Am + iBm, ], (2.5)

Dm = ∂m + [Am, ] = ∂m + [Am − iBm, ]. (2.6)

The complexification of gauge fields also results in complexified field strengths

Fmn = [Dm,Dn] and Fmn = [Dm,Dn]. (2.7)

The twisted theory also contains two scalars φ and φ̄.

3For the adjoint representation we use the anti-hermitian basis formed by the SU(Nc) generators in the

defining representation; the Nc × Nc matrices T a with a = 1, 2, · · · , N2
c − 1. They have the normaliza-

tion Tr (T aT b) = − 1
2
δab. In this paper we express all group theoretical weights in terms of the defining

representation.
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Among the twisted supercharges, the scalar (0-form) supercharge Q is important for

us. This supercharge is nilpotent, Q2 = 0. It does not produce any infinitesimal trans-

lations and thus we can transport this subalgebra of the twisted supersymmetry algebra

to the lattice. In the twisted supersymmetry algebra one also finds that the momentum

is the Q-variation of something, which makes plausible the statement that one can write

the energy-momentum tensor, and the entire action in a Q-exact form. Thus a lattice

action constructed in a Q-exact form is trivially invariant under the scalar supercharge. In

summary, we can use the process of twisting to construct a lattice action that respects at

least one supersymmetry exact on the lattice. The lattice theories formulated using twisted

fermions are free from the fermion doubling problem, owing to the property that the twisted

fermions are geometric in nature (p-forms) and thus they can be mapped one-to-one on to

the lattice from continuum [38–41].

The scalar supercharge generates the following nilpotent supersymmetry transforma-

tions on the twisted fields

QAm = ψm, QAm = 0, (2.8)

Qφ = η̄, Qφ̄ = 0, (2.9)

Qη = d, Qη̄ = 0, (2.10)

Qψm = 0, Qψ̄m = Dmφ̄, (2.11)

Qχmn = −[Dm,Dn], Qχ̄mn = 0, (2.12)

Qd = 0, (2.13)

where d is an auxiliary field introduced for the off-shell completion of the algebra. It obeys

the constraint d =
∑

m[Dm,Dm] + [φ̄, φ]. Note that while writing down the Q-exact action

in eq. (2.1) the auxiliary field has been integrated out to express the action in the on-shell

form.

3 N = (2, 2) theories with two-index matter

We are interested in constructing two-dimensional N = (2, 2) lattice gauge theories coupled

to matter fields transforming in the two-index representations of SU(Nc) gauge group. To

construct such theories we follow the procedure similar to the one given in ref. [34]. We

begin with the action of the theory given in eq. (2.1). The next step is to make two copies of

the theory to construct a quiver gauge theory containing two nodes and with gauge group

SU(Nc) × SU(Nf ). The nodes are labeled by Nc and Nf . Each node contains a copy of the

two-dimensional N = (2, 2) SYM, with gauge group SU(Nc) for the Nc-node and SU(Nf )

for the Nf -node. This type of construction, through orbifold projection, usually leads to

matter in bi-fundamental representations (N c, Nf ) and (Nc, Nf ) of SU(Nc) × SU(Nf ).

However, in this paper we consider matter fields in the two-index representation of SU(N)

transforming as (R, R̄) and (R̄,R) under the product gauge group, with R being the desired

two-index (symmetric or anti-symmetric) representation and R̄ the corresponding complex

– 4 –



J
H
E
P
0
7
(
2
0
1
4
)
0
6
7

conjugate representation.4 One could, in principle, look for a suitable projection that leads

to matter in two-index representations but here we impose such a requirement by hand.

The matter fields of the quiver theory now live on the links connecting the two nodes of

the quiver. The next step is to freeze one of the nodes of the theory, say the Nf -node

and make one set of the link fields non-dynamical by hand. The resulting theory is a

two-dimensional N = (2, 2) gauge theory with matter in the two-index representation of

SU(Nc) gauge group and with SU(Nf ) flavor symmetry. The theory with two-index matter

still contains the scalar supercharge and it can be discretized on a lattice. In the lattice

theory, the fields of the SYM multiplet are placed on the p-cells of the lattice. The matter

fields of the lattice theory occupy the sites of the lattice. Such a prescription leads to a

gauge-invariant lattice theory preserving a subset of supercharges exact on the lattice.

The action of the continuum theory with two-index matter has the following form

S = S
N=(2,2)
SYM + S2I matter, (3.1)

where the first part is the same as the one given in eq. (2.2). It contains the set of fields

{Am, Am, η, ψm, χmn} transforming in the adjoint representation of SU(Nc). The matter

part of the action contains fields transforming in the adjoint, two-index and two-index

complex conjugate representations of SU(Nc) and is given by

S2I matter =
1

g2

∫
d2x Tr

(
2φ̄α(DmDm)φα − [Dm,Dm](φαφ̄α) + ψ̄αmDmη̄α

+χ̄αmnDmψ̄αn + ηη̄αφ̄α − ψmφαψ̄αm +
1

2
χmnχ̄

α
mnφ̄

α

+
1

2
(φαφ̄α)2 +

1

2
(φ̄αφα)2

)
, (3.2)

with α an index labeling the SU(Nf ) flavor symmetry.

The set of fields {φα, η̄α, χ̄α12} transform in the two-index representation R and the set

of fields {φ̄α, ψ̄α1 , ψ̄α2 } transform in the complex conjugate representation R̄.

For a generic field Ψ in the two-index representation, the action of the covariant deriva-

tive is given by

DmΨR = ∂mΨR +AR
mΨR, (3.3)

while for a field Ψ in the complex conjugate representation

DmΨ
R̄

= ∂mΨ
R̄

+ Ψ
R̄AR̄

m, (3.4)

with AR
m = Aam(ta)R, AR̄

m = Aam(ta)R̄ and a = 1, 2, · · · , N2
c − 1.

The generators of the two-index representation (ta)R and (ta)R̄ can be constructed

from the generators of the defining representation of SU(Nc) using appropriate projection

operators that pick out the anti-symmetric or symmetric part of the second-rank tensor

4We note that in string theory one can obtain the two-index representation of SU(N) by performing

the orientifold projection to adjoint of SO(2N) or Sp(2N). The theory we consider in this paper would be

obtained in the same manner. I thank the referee for pointing this out.
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representation of SU(N) [42]. Denoting (ta)2A and (ta)2S as the generators for the two-

index anti-symmetric (2A) and symmetric (2S) representations, respectively, we can write

down their expressions in terms of the generators of the fundamental representation of

SU(Nc).

Using the projection operators PA = 1
2(δikδjl − δjkδil), i < j, k < l, and PS =

1
2(δikδjl + δjkδil), i ≤ j, k ≤ l, where i, j, k, l = 1, 2, · · ·Nc, we pick out the two-index

anti-symmetric and symmetric parts of the SU(Nc) representation. The generator (ta)2A

is defined as

(ta)2A = (ta)2A
ij,kl =

1

2
[(T a)ikδjl − (T a)jkδil + δik(T

a)jl − δjk(T a)il], (3.5)

and the generator (ta)2S

(ta)2S = (ta)2S
ij,kl =

1

2
[(T a)ikδjl + (T a)jkδil + δik(T

a)jl + δjk(T
a)il]. (3.6)

Indeed they have the correct dimensions and indices of the respective representations:

d2A/2S = 1
2Nc(Nc ∓ 1) and T 2A/2S = 1

2(Nc ∓ 2). The generators of the complex conjugate

representations are obtained from (ta)R̄ =
(
(ta)R

)∗
.

4 Lattice theories

The N = (2, 2) gauge theories with matter constructed above can be discretized on a

Euclidean spacetime lattice using the geometric discretization scheme formulated in refs. [8,

43, 44]. The complexified gauge fields of the continuum theory, Am(x) are mapped to

appropriate complexified Wilson links Um(n) defined at a location on the two-dimensional

square lattice denoted by the integer vector n. These link fields are associated with unit

length vectors in the coordinate directions ν̂m from the site n. The components of the

fermion field ψm(n) live on the same oriented links as that of their bosonic superpartners

Um(n). The field η(n) is placed on the site n. The components of the field χmn(n) are

placed on a set of diagonal face links with orientation n + ν̂m + ν̂n → n.

We can write down the gauge transformation rules for the lattice fields in the adjoint

representation respecting the p-cell and orientation assignments on the lattice. For G(n) ∈
SU(Nc), we have the following gauge transformation prescriptions [41, 44]

Um(n) → G(n)Um(n)G†(n + ν̂m), (4.1)

Um(n) → G(n + ν̂m)Um(n)G†(n), (4.2)

η(n) → G(n)η(n)G†(n), (4.3)

ψm(n) → G(n)ψm(n)G†(n + ν̂m), (4.4)

χmn(n) → G(n + ν̂m + ν̂n)χmn(n)G†(n). (4.5)

The covariant derivatives in the continuum are mapped to covariant difference opera-

tors on the lattice. The covariant derivatives Dm (Dm) of the continuum theory become

– 6 –
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forward and backward covariant difference operators D(+)
m (D(+)

m ) and D(−)
m (D(−)

m ), respec-

tively of the lattice theory. The forward and backward covariant difference operators act

on the adjoint lattice fields in the following way

D(−)
m ψm(n) = Um(n)ψm(n)− ψm(n− ν̂m)Um(n− ν̂m), (4.6)

D(+)
m ψn(n) = Um(n)ψn(n + ν̂m)− ψn(n)Um(n + ν̂n), (4.7)

D(−)
m ψm(n) = ψm(n)Um(n)− Um(n− ν̂m)ψm(n− ν̂m), (4.8)

D(+)
m χnq(n) = χnq(n + ν̂m)Um(n)− Um(n + ν̂n + ν̂q)χnq(n). (4.9)

These expressions reduce to the corresponding continuum results for the adjoint covari-

ant derivative in the naive continuum limit. They also transform under gauge transforma-

tions like the corresponding lattice link field carrying the same indices. Such a discretization

prescription leads to a lattice action with terms corresponding to gauge-invariant closed

loops.

The field strength on the lattice is given by the expression Fmn(n) = D(+)
m Un(n). It

is automatically antisymmetric in its indices and also it transforms like a 2-form on the

lattice. It has an orientation opposite to that of the field χmn on the unit cell.

We also need to define the action of the covariant difference operators on the lattice

fields transforming in the two-index representations. The two-index matter fields of the

lattice theory live on the sites of the lattice. They transform in the two-index representa-

tions of SU(Nc). We write down the following set of rules for the action of the covariant

derivatives on fields in the two-index representations.

The covariant difference operator acts on the lattice variables in the two-index repre-

sentation R the following way:

D(+)
m ΦR(n) ≡ Um(n)ΦR(n + ν̂m)− ΦR(n), (4.10)

D(+)
m ΦR(n) ≡ ΦR(n + ν̂m)− Um(n)ΦR(n), (4.11)

D(−)
m ΦR(n) ≡ D(+)

m ΦR(n− ν̂m), D(−)
m ΦR(n) ≡ D(+)

m ΦR(n− ν̂m). (4.12)

For lattice variables in the complex conjugate representation R̄ we have the following

set of rules for the action of the covariant difference operator:

D(+)
m ΦR̄(n) ≡ ΦR̄(n + ν̂m)− ΦR̄(n)Um(n), (4.13)

D(+)
m ΦR̄(n) ≡ ΦR̄(n + ν̂m)Um(n)− ΦR̄(n), (4.14)

D(−)
m ΦR̄(n) ≡ D(+)

m ΦR̄(n− ν̂m), D(−)
m ΦR̄(n) ≡ D(+)

m ΦR̄(n− ν̂m). (4.15)

We see that the above expressions reduce to the corresponding continuum covariant

derivatives in the naive continuum limit by letting Um(n) = I+Am(n) + · · · and Um(n) =

I−Am(n) + · · · .
The fields in the two-index and its complex conjugate representations are mapped on

to lattice sites, with the gauge transformations

ΦR(n) → G(n)ΦR(n), (4.16)

ΦR̄(n) → ΦR̄(n)G†(n). (4.17)
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Figure 1. The unit cell of the two-dimensionalN = (2, 2) lattice SYM with orientation assignments

for the twisted fermions. The complexified bosons Um(n) follow the same orientations and link

assignments as that of their superpartners ψm(n). The lattice field strength Fmn(n) is placed on

the diagonal link with the orientation opposite to that of the field χmn(n).

We also note that the method of geometric discretization maps the continuum fields

on to the lattice one-to-one and thus the lattice theories constructed this way are free from

the fermion doubling problem [38–41]. The placement and orientations of the twisted fields

on the lattice respect the scalar supersymmetry and gauge symmetry of the lattice theory.

The unit cell of the two-dimensional lattice theory is given in figure 1.

The scalar supersymmetry acts on the lattice variables the following way

QUm(n) = ψm(n), QUm(n) = 0, (4.18)

Qφα(n) = η̄α(n), Qφ̄α(n) = 0, (4.19)

Qη(n) = d(n), Qη̄α(n) = 0, (4.20)

Qψm(n) = 0, Qψ̄αm(n) =
(
D(+)
m φ̄α

)
(n), (4.21)

Qχmn = −
(
D(+)
m Un

)
(n), Qχ̄αmn(n) = 0, (4.22)

Qd(n) = 0. (4.23)

Once we have the rules to map the continuum twisted theory to the lattice it is easy to

write down the lattice action. The two-dimensional N = (2, 2) gauge theory with two-index

matter has the following form on the lattice

S = S
N=(2,2)
SYM + S2I matter, (4.24)

with

S
N=(2,2)
SYM =

1

g2

∑

n

Tr
{(
Un(n + ν̂m)Um(n)− Um(n + ν̂n)Un(n)

)

×
(
Um(n)Un(n + ν̂m)− Un(n)Um(n + ν̂n)

)

+
1

2

(
Um(n)Um(n)− Um(n− ν̂m)Um(n− ν̂m)

)2

+
1

2
(δmqδnr − δmrδnq)χmn(n)

(
Uq(n)ψr(n + ν̂q)− ψr(n)Uq(n + ν̂r)

)

+η(n)
(
ψm(n)Um(n)− Um(n− ν̂m)ψm(n− ν̂m)

)}
, (4.25)
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and

S2I matter =
1

g2

∑

n

Tr
(

2φ̄α(n)D(−)
m D(+)

m φα(n)−
(
D(−)
m Um(n)

)(
φα(n)φ̄α(n)

)

+ψ̄αm(n)D(+)
m η̄α(n) + χ̄αmn(n)D(+)

m ψ̄αn(n) + η(n)η̄α(n)φ̄α(n)

−ψm(n)φα(n + ν̂m)ψ̄αm(n) +
1

2
χmn(n)χ̄αmn(n)φ̄α(n + ν̂m + ν̂n)

+
1

2
(φα(n)φ̄α(n))2 +

1

2
(φ̄α(n)φα(n))2

)
. (4.26)

We note that the lattice action written above is Q-supersymmetric, gauge-invariant,

local and free from the fermion doublers.

5 Fine tuning and simulation on the lattice

In this paper, we have constructed the lattice actions of two-dimensional N = (2, 2) gauge

theories with matter fields transforming in the higher representations of SU(Nc) gauge

group. On the lattice, radiative corrections could induce dangerous operators that could

violate the Euclidean rotation symmetry and supersymmetry invariance of the theory as

we approach the continuum limit. We would like to know whether the above constructed

supersymmetric lattice theories are free from fine tuning as the continuum limit is ap-

proached. We could check this at least perturbatively by using a power counting analysis.

We note that the allowed operators on the lattice have to respect theQ-supersymmetry,

R-symmetry, flavor symmetry, gauge symmetry and the point group symmetry S2. For a

given operator O(p) with mass dimension p, the counterterms in the lattice action can take

the following general form:

δS =
1

g2

∫
d2x CpO

(p), (5.1)

where g is the coupling parameter, which has mass dimension 1. The coefficient Cp denotes

the contributions from the loop expansion

Cp = ap−4
∑

l

cl(g
2a2)l, (5.2)

with l counting the number of loops in a perturbative expansion and a denoting the lattice

spacing. The dimensionless coefficient cl can depend at most logarithmically on the lattice

spacing. Assigning the following mass dimensions to the fields [Φ] = 1, [Ψ] = 3
2 and

[Q] = 1
2 , where Φ and Ψ denote the twisted bosons and fermions respectively, we have the

following generic form for the operator

O(p) = Q Tr
(
f(Φ)g(Ψ)

)
. (5.3)

We see that such operators are annihilated by the Q supersymmetry and thus they are

Q-invariant. Gauge-invariance on the lattice requires that all the fields in the operator

must be oriented such that the operator should correspond to the trace of a closed loop on

the lattice.
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The coefficient of any dangerous operator should vanish in the limit a → 0 to have a

nice continuum limit for the theory. Since radiative corrections start at one-loop, l = 1,

we need to check whether the lattice theories allow operators with mass dimension p ≤ 3

that respect all the lattice symmetries. Naively we can write down the following set of such

operators {
Φ,Φ2,Φ3, (Φ∂Φ), (ΨΨ),Q(ΦΨ)

}
. (5.4)

Among the set of possible operators, we see that naively there could be scalar mass

terms, Tr Φ2, induced through radiative corrections. For a dimension 2 operator, we have

δS(p=2) =

∫
d2x

(
c1 + c2g

2a2 + · · ·
)
O(p=2), (5.5)

telling us that scalar mass terms could be induced at one-loop, which can have at most a

logarithmic divergence, and higher loop vanishing contributions. However it appears that

scalar mass terms cannot respect all the symmetries of the lattice and we conclude that

they cannot be generated via radiative corrections.

We see that dimension 3 operators, including the fermionic mass terms Tr (ΨΨ), could

not be induced at any loop

δS(p=3) =

∫
d2x

(
c1a+ c2g

2a3 + · · ·
)
O(p=3). (5.6)

Thus fermion bilinear counterterms cannot be generated radiatively.

We note that the lattice theories constructed above exhibit flat directions (a general

property of extended supersymmetric theories) and they give rise to instabilities while

performing lattice simulations.5 A way to control them in lattice simulations is to introduce

suitable gauge invariant, but Q non-invariant, potential terms (similar to the approach

described in ref. [26]) by hand. Another point to note is that these theories might also

suffer from fermion sign problem. One has to explore the existence of sign problem in

these theories to boost confidence that these lattice constructions can be used successfully

to explore non-perturbative aspects of two-dimensional N = (2, 2) gauge theories with

matter formulated here.6

6 Discussion and comments

In this paper, we have detailed the lattice constructions of two-dimensional N = (2, 2)

supersymmetric gauge theories coupled with matter fields in higher representations of gauge

group SU(Nc). The process of topological twisting allows us to write down the theories

in the continuum in a way compatible with lattice discretization. We used the method

of geometric discretization to formulate these theories on a two-dimensional Euclidean

spacetime lattice. The lattice theories constructed this way are local, gauge-invariant,

doubler free and retain one supercharge exact on the lattice. The matter fields of these

5See [45] for the details of a numerical code to simulate the topologically twisted SYM theories.
6In ref. [26] it has been shown through lattice simulations that the SYM theories with four and sixteen

supercharges in two dimensions do not suffer from fermion sign problem.
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theories are in the two-index symmetric and antisymmetric representations of SU(Nc) gauge

group. The process of un-gauging one of the nodes of the quiver theory, while constructing

the desired theory with two-index matter, also results in matter fields to have SU(Nf )

flavor symmetry.

We also note that one could construct N = (2, 2) supersymmetric quiver lattice gauge

theories with matter fields transforming in the product representations (R, R̄) and (R̄,R)

with R the two-index representation (symmetric or anti-symmetric) and R̄ the correspond-

ing complex conjugate representation. One could also construct lattice theories with eight

supercharges coupled to matter fields in two-index representations using the approach

detailed in this paper. For such constructions the starting point would be the sixteen su-

percharge Yang-Mills theory in four-dimensions. We also note that it would be interesting

to construct the theories detailed here through a suitable orbifold projection method.

When the gauge group is SU(3), we see that the 2A representation is the same as the

anti-fundamental representation. So, for Nc = 3, this is also a construction for the SU(3)

theory with anti-fundamental fermions. It would be interesting to explore the lattice theo-

ries formulated in this paper in the context of the Corrigan-Ramond (CR) limit [46], which

is another unique way to take the large-Nc limit of a theory. In the QCD theory originally

proposed by Corrigan and Ramond, some quark flavors live in the two-index anti-symmetric

representation and others still in the fundamental representation of SU(Nc). When the the-

ory has three colors, the CR limit is identical to QCD (up to charge conjugation). We note

that for large-Nc the CR limit and the ’t Hooft limit are very different. Recently, this par-

ticular idea of the large-Nc limit was revived by Armoni, Shifman and Veneziano [47, 48].

They discovered a remarkable relationship between certain sectors of the two-index anti-

symmetric and symmetric theories at large-Nc and sectors of SYM theories. We also hope

that the lattice constructions detailed here would further motivate nonperturbative con-

structions and explorations in certain theories with technicolor [49]. The lattice theories

formulated here would be interesting in the context of string theory. There one can obtain

the two-index representation of SU(Nc) by performing the orientifold projection to adjoint

of SO(2Nc) or Sp(2Nc). The continuum (and thus lattice) theories we considered in this pa-

per would be obtained in the same manner. Symmetric and antisymmetric representations

of matter are interesting in the context of chiral supersymmetric gauge theories as these

representations serve as building blocks of such theories. In particular, many models with

dynamical supersymmetry breaking are based on anti-symmetric representations [50–52].
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