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Abstract

In this paper, we describe a novel local descriptor of image texture representation for visual recognition. The image
features based on micro-descriptors such as local binary patterns (LBP) and local ternary patterns (LTP) have been very
successful in a number of applications including face recognition, object detection, and texture analysis. Instead of
binary quantization in LBP, LTP thresholds the differential values between a focused pixel and its neighborhood pixels
into three gray levels, which can be explained as the active status (i.e., positively activated, negatively activated, and
not activated) of the neighborhood pixels compared to the focused pixel. However, regardless of the magnitude of
the focused pixel, the thresholding strategy remains fixed, which would violate the principle of human perception.
Therefore, in this study, we design LTP with a data-driven threshold according to Weber’s law, a human perception
principle; further, our approach incorporates the contexts of spatial and orientation co-occurrences (i.e., co-occurrence
context) among adjacent Weber-based local ternary patterns (WLTPs, i.e., data-driven quantized LTPs) for texture
representation. The explored WLTP is formulated by adaptively quantizing differential values between neighborhood
pixels and the focused pixel as negative or positive stimuli if the normalized differential values are large; otherwise, the
stimulus is set to 0. Our approach here is based on the fact that human perception of a distinguished pattern depends
not only on the absolute intensity of the stimulus but also on the relative variance of the stimulus. By integrating
co-occurrence context information, we further propose a rotation invariant co-occurrence WLTP (RICWLTP) approach
to be more discriminant for image representation. In order to validate the efficiency of our proposed strategy, we
apply this to three different visual recognition applications including two texture datasets and one food image
dataset and prove the promising performance that can be achieved compared with the state-of-the-art approaches.
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1 Introduction
Visual recognition has posed a significant challenge to the
research community of computer vision due to interclass
variability, e.g., illumination, pose, and inclusion. The rich
context of an image makes the semantic understand-
ing (object, pattern recognition) very difficult. Although
the community has spent a lot of effort on image-
categorization classification [1–4], which leads to very
powerful intermediate representation of images such as
the bag-of-feature (BoF) model [5, 6], it still has some
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space to improve the recognition performance in some
specific recognition applications such as texture, food
image, and biomedical data. The main idea of the popular
BoF model is to quantize local invariant descriptors, for
example, obtained by some interest point detector tech-
niques [7, 8] and a description with SIFT [9], into a set of
visual words [6]. The frequency vector of the visual words
then represents the image, and an inverted file system
is used for efficient comparison of such BOFs. Therein,
the local descriptors formicrostructure representation are
often untouched, using standard, expert-provided ones
such as the SIFT [9], PCA-Sift [10], and HOG [11], which
result in a similar performance for image recognition.
Further, since the learned codebook in BOF model has
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of high diversity and irregularity, it is difficult to inte-
grate the context information of co-occurrence for image
representation.
On the other hand, microstructure simply using pixel

neighborhoods as small as 3 × 3 pixels for local pat-
tern representation has been proven to be possibly pow-
erful for discriminating texture information, where the
most popular one is a local binary pattern (LBP). LBP
[12–14] characterizes each 3 × 3 local patch (microstruc-
ture) into a binary series by comparing the surrounding
pixel intensity with the center one, which sets the bit of
the surrounding pixel as 1 if its intensity is lager than
the center one, otherwise 0. LBP is robust against uni-
form changes, and also easy for extension owing to the
regularly decimated levels for all neighborhood pixels.
However, due to the lack of spatial relationships among
local textures, there have still serious disadvantages in the
original LBP representation. Therein, an extension of the
LBP called CoLBP [15, 16], has been proposed by consid-
ering the co-occurrence (spatial context) among adjacent
LBPs, which proved promising performances on several
classification applications [6]. In addition, by integrating
orientation context, Nosaka et al. [17, 18] explored a rota-
tion invariant co-occurrence among LBP, which is shown
to be more discriminant on image classification compared
to CoLBP. Qi et al. [19] proposed a pairwise rotation
invariant CoLBP for texture representation and achieved
the promising recognition performances in several visual
recognitions.
Although LBP-based descriptors showed promising

performances compared to other feature representations,
it is obvious that LBP only thresholds the differential val-
ues between neighborhood pixels and the focused one
to 0 or 1, which is very sensitive to noise existing in
the processed image. Tan et al. extended LBP to local
ternary pattern (LTP) [20], which considers the differen-
tial values between neighborhood pixels and the focused
one as no or negative/positive stimulus, and successfully
applied for face recognition under difficult lighting con-
ditions. Given a pre-set positive threshold η, LTP [20]
can obtain a series of ternary values for local pattern
representation. However, regardless of the magnitude of
the focused pixel, the pre-set threshold η remains fixed,
which would violate the principle of human perception.
Therefore, following the fact that human perception of
a pattern depends not only on the absolute intensity
of the stimulus but also on the relative variance of the
stimuli, we propose to quantize the ratio between the
neighborhood and the center pixels, which is equivalent
to adaptively (data-driven) decide the quantization point
according to the magnitude of the focus pixel. This pro-
posed quantization strategy is inspired by Weber’s law,
a psychological law [21], which states that the notice-
able change of a stimulus such as sound or lighting by

a human being is a constant ratio of the original stimu-
lus.When the stimulus has small magnitude, small change
can be noticeable. Thus, we propose a data-driven quan-
tized local ternary pattern (WLTP) based on Weber’s law,
which gives the activation status of the neighborhood
pixels by data-driven thresholding the noticeable change
according to the stimulus of the focus pixel: positively
activated (magnitude: 1) if the ratio between the stimu-
lus change and the focused one is larger than a constant
η, negatively activated (magnitude: −1) if the change ratio
is smaller than −η, not activated (magnitude: 0) other-
wise. By incorporating a co-occurrence (here, i.e., spatial
and orientation) context, we extend the proposed WLTP
to a rotation invariant co-occurrence WLTP (RICWLTP),
which is robust to image rotation and has the high descrip-
tive ability amongWLTP co-occurrences. Compared with
the-state-of-the-art methods, our proposed strategy can
achieve much better performance results for several visual
recognitions including two texture datasets and one food
image dataset.

2 Related work
In computer vision, local descriptors (i.e., features com-
puted over limited spatial support) have been proved well
adapted for matching and recognition tasks, as they are
robust to partial visibility and clutter. The current popular
one for local descriptors is SIFT feature, which is pro-
posed in [9]. With the local SIFT descriptor, usually there
are two types of algorithms for object recognition. One is
tomatch the local points with SIFT features in two images,
and the other one is to use the popular bag-of-feature
model (BOF), which forms a frequency histogram of a pre-
defined visual words for all sampled region features [6].
However, the extraction of SIFT descriptor itself is time-
consuming, and then matching a large amount of them
or quantizing them into a histogram in a large number of
visual words, which are generally needed in BOF model
for acceptable recognition of images, also exhausts a lot of
time. On the other hand, some research works [22, 23] also
have shown that it is possible to discriminate between tex-
ture patterns using pixel neighborhoods as small as 3 × 3
pixel region, which demonstrated that despite the global
structure of the images, very good discrimination could
be achieved by exploiting the distributions of such pixel
neighborhoods. Therefore, exploiting such microstruc-
tures for representing images in the distributions of local
descriptors has gained much attention and has led to
state-of-the-art performances [24–28] for different clas-
sification problems in computer vision. The basic one of
these approaches is local binary patterns (LBPs) intro-
duce by Ojala et al. [22] as a means of summarizing local
gray-level structures. As noted above, LBP is a simple yet
efficient texture operator that labels pixels of an image
by establishing thresholds for the neighborhood of each
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pixel based on the value of the central pixel; the result
is a binary number associated with each neighborhood
pixel. For image representation, LBP index histogram is
generally calculated as feature. Unfortunately, because of
the packed single histogram, spatial relations among the
LBPs are mostly discarded; thus, it results in the loss of
global image information.Motivated by the co-occurrence
concept such as in Co-HOG [29–31] and joint haar-like
features [30], Nosaka et al. [17, 18] proposed to integrate
context information (i.e., spatial and orientation) into the
conventional LBP for achieving high descriptive capacity
in image representation; the similar extension of LBP for
integrating context information also can be seen in the
recent work [19].
However, the LBP-based descriptors only set differen-

tial values between neighborhood pixels and the focused
pixel to zero or one, and then it has high sensitivity
to noise in the processed image that in turn degrades
discriminant of image representation. Thus, as noted
above, Tan et al. extended LBP to a local ternary pat-
tern (LTP) approach [20], which considers differential
values between neighborhood pixels and the focused
pixel as either a negative/positive stimulus or no stimulus
whatsoever. Next, the series of ternary values are com-
bined into an LTP index. Given intensities [ I(x), I(x +
�x1), · · · , I(x + �xl), · · · , I(x + �xL−1)] of focused pixel
x and its L neighbors x + �xl (displacement vector), LTP
thresholds differential values [ I(x+�x)0−I(x), · · · , I(x+
�xl) − I(x), · · · , I(x + �xL−1) − I(x)] as

G(I(x+�xl)−I(x)) =
⎧
⎨

⎩

1 I(x + �xl) − I(x) > η

−1 I(x + �xl) − I(x) < −η

0 otherwise
(1)

where η is the pre-set constant for thresholding the dif-
ferential values. Then, the LTP index at x is defined as

LTP(x) =
L−1∑

l=0
[G(I(x + �xl) − I(x)) + 1] 3l (2)

In the above equation, regardless of the magnitude of
the focused pixel, the pre-set threshold η in LTP remains
fixed, which violates the principle of human perception.

3 Data-driven quantized LTP and co-occurrence
context

3.1 Weber’s law
Ernst Heinrich Weber, an experimental psychologist in
the nineteenth century, approached the study of the
human response to a physical stimulus in a quantita-
tive fashion and observed that the ratio of the increment
threshold to the background intensity is a constant [32].
This observation shows that the just noticeable difference

(JND) between two stimuli is proportional to the magni-
tude of the stimuli, which is well known as Weber’s law
and can be formulated as:

�I
I

= a (3)

where �I denotes the increment threshold (just notice-
able difference for discrimination) and I denotes the ini-
tial stimulus intensity; a is known as the weber fraction,
which indicates that the proportion on the left hand of
the equation remains constant in spite of the variance in
I. Simply speaking, Weber’s Law states that the size of
the just noticeable difference is a constant proportion (a
times) of the original stimulus value, which is the min-
imum amount that stimulus intensity must be changed
in order to produce a noticeable variation in sensory
experience.

3.2 Weber-based LTP: WLTP
According to Weber’s law, the JND of a focused pixel
in relation to its neighboring pixels is proportional to
the intensity I(x) of the focused pixel. Thus, we quan-
tize different values [ I(x+ �x0) − I(x), · · · , I(x+ �xl) −
I(x), · · · , I(x + �xL−1) − I(x)] between a focused pixel x
and its L − 1 neighbors {x + �xl}(l = 0, 1, · · · , L − 1) to
form a ternary series as follows:

G
(
I(x + �xl) − I(x)

I(x) + α

)

=

⎧
⎪⎨

⎪⎩

1 I(x+�xl)−I(x)
I(x)+α

> η

−1 I(x+�xl)−I(x)
I(x)+α

< −η

0 otherwise
(4)

where η is a predefined constant and α is a constant that
avoids the case in which there is zero intensity (i.e., no
stimulus); we always set α to one in our experimenta-
tion. Equation (3) adaptively quantizes differential values
between the focus pixel and its neighboring pixels into a
series of ternary codes; the WLTP index at x is defined as

WLTP(x) =
L−1∑

l=0

[

G
(
I (x + �xl) − I(x)

I(x) + α

)

+ 1
]

3l (5)

In general LBP, neighborhood pixel number L is usually
set to 8. Due to the detailed quantization (i.e., the ternary
representation instead of binary), L is set to 4 to reduce
computational cost. The lth displacement vector �xl is
formulated as �xl = (r cos(θl), r sin(θl)), where θl = 360o

L l
and r is the scale parameter (i.e., the distance from the
neighboring pixels to the focused pixel) of WLTP. As a
result, as shown in Fig. 1, WLTPs have NP = 81 (=3L)
possible patterns.

3.3 Integration of spatial and orientation contexts
LTP andWLTP discard information regarding spatial rela-
tionships between adjacent patterns; such information
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Fig. 1 The procedure of the proposed WLTP extraction

would be crucial to describing texture information for
images. In this study, we first integrate the spatial context
between the adjacent LTPs and WLTPs via co-occurrence
information (called as CoLTP and CoWLTP, respectively).
Without losing generalization, we describe the strategy
of context integration for the proposed WLTP, while the
same procedure can also be feasible by replacing WLTP
with LTP. To obtain statistics of the co-occurrence (i.e.,
the spatial context) between two adjacent WLTPs, we
consider the NP × NP auto-correlation matrix defined as:

Hϕ
p,q = ∑

x⊂I
δp,q

(
WLTP(x),WLTP(x + �xϕ)

)
(6)

δp,q(z1, z2) =
{
1 if z1 = p and z2 = q
0 otherwise

where p, q(=[ 0, 1, · · · ,NP − 1] ) are possible pattern
indexes for the two adjacent WLTPs and ϕ is the angle
that determines the positional relations between the two
WLTPs, which formulates displacement vector �xϕ =
(d cosϕ, d sinϕ) with interval d. Then, co-occurrence
matrix dimension is 6561 (= NP × NP).
Further, because of the possible different imaging view-

points, rotation invariant (i.e., orientation context) is gen-
erally an indispensable characteristic for texture image
representation. Thus, we also integrate orientation con-
text among adjacent WLTPs and propose a rotation
invariant co-occurrence WLTPs that would contribute
much higher descriptive capability for image represen-
tation. We first denote two pairs of WLTP patterns,
PWLTP

ϕ=0 =[WLTP(x),WLTP(x + �xϕ=0)] and PWLTP
ϕ =

[WLTPϕ(x), WLTPϕ(x + �xϕ)], where WLTP(x) gives
the 4-b clockwise ternary digits with the first digit in

the right-horizontal direction (ϕ = 0), and WLTP(x +
�xϕ=0) is the co-occurrence WLTP in the ϕ = 0 direc-
tion;WLTPϕ(x) andWLTPϕ(x+�xϕ) indicate the rotated
entire WLTP pair with rotation angle ϕ. Thus, the rota-
tion invariant statistics can be formulated if we assign the
same index to PWLTP

ϕ regardless of the different rotations
designated by ϕ. Because we only used four neighbors
of the focused pixel, only four rotation angles (i.e., ϕ =
0◦, 90◦, 180◦, 270◦) are available for computing rotation
invariant statistics as shown in Fig. 2 (i.e., four equivalent
WLTP pairs). According to the assigned labels for rota-
tion invariantWLTP, the valid co-occurrence patterns can
be reduced from 6561 to 2222. To efficiently calculate the
rotation invariant co-occurrence of WLTP, we use map-
ping tableM according to the algorithm shown in Table 1;
the algorithm is to generate mapping table that converts
a WLTP pair to an equivalent rotation index. In Table 1,
shift((p)3, l) means circle-shift l bits of the transformed
ternary digits of p. With the calculated mapping table,
statistics of the rotation invariant co-occurrence WLTP
can be formulated as

HRI
M(Index)

=
∑

x⊂I

⋃

ϕ

δindex
[
M(WLTPϕ(x),WLTPϕ(x + �xϕ))

]
(7)

δindex(z) =
{
1 if z = index
0 otherwise

where M(WLTPϕ(x),WLTPϕ(x + �xϕ)) is the index of
the rotation invariant co-occurrence between two WLTP
pairs (RICWLTP). Finally, the statistics (i.e., histogram) of

Fig. 2 The four equivalent WLTP pairs
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Table 1 Calculation of mapping table between the WLTP pair
and the rotation equivalent index

Mapping table generation algorithm

Input: Number of neighbor pixel L

Output:Mapping tableM (NP × NP matrix)

Initialization: Index=1, NP = 3L ,M ⇐ {null}NP×NP

for: p = 0, · · · ,NP − 1 and q = 0, · · · ,NP − 1

ifM(p, q) = null, then

M(p, q) ⇐ Index, p′ ⇐ shift((p)3, 2),

q′ ⇐ shift((q)3, 2),M(q′ , p′) ⇐ Index

p′ ⇐ shift((p)3, 1),

q′ ⇐ shift((q)3, 1),M(p′ , q′) ⇐ Index

p′ ⇐ shift((p)3, 3),

q′ ⇐ shift((q)3, 3),M(q′ , p′) ⇐ Index

Index ⇐ Index + 1

end if

end for

the RICWLTP can be used for discriminated representa-
tions of images. Similarly, if we formulate the Eq. (6) based
on LTP instead of WLTP, the index of the rotation invari-
ant co-occurrence between two LTP pairs (RICLTP) can
be formed and then the statistics (i.e., histogram) of the
RICLTP can be used for image representations.

3.4 Dimension analysis of LBP/LTP-based statistics
In general LBP, the used neighborhood pixel number L
is usually set to 8, which results in 256 (28: 8 binary
series) LBP indexes and the possible pattern value for any
3 × 3 local patch is ranged in [ 0, 255]. Thus, the LBP his-
togram for image representation has the dimension 256.
The direct context integration considering the index com-
bination of the adjacent LBP pairs would intuitively lead
to a 256 × 256 co-occurrence matrix, where each ele-
ment denotes the number of the LBP pairs with the same
index combination in the image, and the reformed vector
of the co-occurrence matrix is used as image representa-
tion with 65,536 (2562) dimension. The high dimension
of image representation results in high computational
cost for the following classification procedure. Therefore,
Nasaka et al. [17, 18] only adopted 4 (L = 4) neighbor-
hood pixel number for producing 16 (24) LBP indexes, and
then explored the co-occurrence statistics of LBP pairs
(Co-LBP) and rotation invariant co-occurrence (RICLBP),
which generated very compact LBP-based descriptors 256
((24)2) and 136 dimensional features, respectively. On the
other hand, although Qi et al. [19] set the neighborhood
pixel number L as 8, not all 256 LBP indexes are used
for exploring co-occurrence of LBP pairs to avoid high-
dimensional feature. In [19], the authors integrated the

low-frequency appeared LBP indexes into one group for
retaining a small number of LBP indexes (uniform LBP:
ULBP, 59 patterns), and then further produced the rota-
tion invariant uniform LBP (RIU-LBP, only 10 patterns)
as the basic pair patterns. The co-occurrence matrix is
formed by counting the number of the adjacent ULBP and
RIU-LBP pairs with the combination indexes, which pro-
duces the matrix with a size of 59 × 10. The reformed
vector as image representation is 590 in dimension and
in [19], further integrating two different configurations
of pair combination that generated 1180-dimensional
features.
In (W)LTP-based descriptors, if the neighborhood pixel

number L is set as 8, the number of LTP indexes is
6561 (38: 8 ternary series). In addition, the context inte-
gration considering the index combination of the adja-
cent (W)LTP pairs would generate an extremely large
size of co-occurrence matrix (656 × 6561), which results
in a 43,046,721-dimensional feature and is infeasible for
post-processing. Thus, this study explores four neigh-
borhood pixels for (W)LTP-based descriptors. For the
simple histogram of the LTP and WLTP indexes (34:
4 ternary series), 81-dimensional image feature can be
obtained, and the co-occurrence statistics (called CoLTP
and CoWLTP) have the dimension 6561 (812). After con-
sidering the orientation-invariant property, our proposed
RICLTP and RICWLTP produce a 2222-dimensional
feature for image representation. Basically, the compu-
tational cost for extracting the LBP- and LTP/WLTP-
based descriptors mainly depends on the pattern and
pair-pattern index numbers, and thus, high-dimensional
(W)LTP-based descriptors would lead to high computa-
tional cost. This is also a reason that this study applies
only four neighborhood pixels, and it is also possible to
explore different neighborhood structures for integrating
more context information and multiscale patterns in our
proposed RICWLTP, which is left to the future work.

4 Experiments
4.1 Data sets andmethodology
We evaluated our proposed framework on two texture
datasets and one food image dataset.
(i) Two texture datasets: the first one is Brodatz32 [33]

that is a standard dataset for texture recognition, and the
second one is KTH-TIPS 2a [34], a dataset for material
categorization [35]. In Brodatz32 dataset, three additional
images are generated by (i) rotating, (ii) scaling, and (iii)
both rotating and scaling an original sample. We use the
standard protocol [36], of randomly splitting the dataset
into two halves for training and testing and report average
performance over 10 random splits. KTH-TIPS 2a dataset
contains 11 materials, e.g., cork, wool, linen, with images
of four physical, planar samples for each material. The
samples were photographed at nine scales, three poses,
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and four different illumination conditions. It consists of
4395 images, most of which have the size of 200 × 200.
All these variations on scale pose and illumination make
it an extremely challenging dataset. For KTH-TIPS 2a tex-
ture dataset, we use the same evaluation protocol [36, 37]
and report the average performance over four runs, where
every time all images of one sample are taken for a test
while the images of the remaining three samples are used
for training.
(ii) Food dataset: Pittsburgh fast-food image dataset

(PFID) [38], which is a collection of fast food images and
videos from 13 chain restaurants, are acquired under
lab and realistic settings. In our experiments, we focus
on the set of 61 categories of specific food items (e.g.,
McDonald’s Big Mac) with masked background. Each
food category contains three different instances of the
food (bought on different days from different branches of
the restaurant chain) and six-viewpoint images (60° apart)
of each food instance. We follow the experimental pro-
tocol in the published work [39] and perform threefold
cross-validation for our experiments, using the 12 images

from two instances for training and the 6 images from the
third for testing. This procedure is repeated three times
by using a different instance serving as the test set, and
average performance is calculated as the results. The pro-
tocol ensures that no image of any given food item ever
appears in both the training and test sets and guarantees
that food items were acquired from different restaurants
on different days. Two standard baseline algorithms, color
histogram + SVM and bag of features with SIFT as the
local descriptors + SVM, are shown for compared evalu-
ation. In the baseline algorithm, the standard RGB color
histogram with four quantization levels per color com-
ponent is extracted to generate a 43 = 64-dimensional
representation for a food image, and a multi-class SVM
is applied for classification. On the other hand, the BOF
strategy combining a SVM classifier uses the histogram
(low-order statistics) of visual words (representative
words) with SIFT local descriptors. Recently, Yang et al.
proposed Statistics of Pairwise Local Features (SPLF)
[39] for food image representation, and the evaluation on
PFID dataset showed the best performance on the state-

Fig. 3 Comparative results using our proposed framework and the conventional LBP-based descriptors by Nosaka et al. [17, 18] and Qi et al. [19];
Horizontal axes denotes the changed parameter with η introduced in Sections 2 and 3 for LTP, WLTP, RICLTP, and RICWLTP. Since there are no
parameters in LBP-based descriptors, the recognition accuracies for LBP, the works by Nosaka et al. and Qi et al. remain the same in these graphs.
a Bradatz dataset. b KTH-TIP 2a dataset
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of-art methods, which are also as the compared results
to our strategy.

4.2 Experimental results
We investigate the recognition performances using the
statistics of our proposed WLTP, co-occurrence (i.e., spa-
tial and orientation) context integration inWLTP, the cor-
responding versions without the using ofWeber’s law (not
data-driven quantization, denote as LTP and RICLTP)
and the conventional LBP and its extensions by Nosaka
et al. [17, 18] and Qi et al. [19], which also incorpo-
rate the co-occurrence context into LBP. After obtaining
the LBP/LTP-based features for image representation, we
simply use linear support vector machine (SVM) due to its
efficiency compared to the nonlinear one, for classifica-
tion. In addition, we also pre-process the LBP/LTP-based
histogram with the square root operation as the following:

P′(I) = [
p′
1(I), p′

2(I), · · · , p′
L(I)

]

=
[√

p1(I),
√
p2(I), · · · ,

√
pL(I)

] (8)

where
[
p1(I), p2(I), · · · , pL(I)

] = P(I) is the raw
LBP/LTP/WLTP, context-integrated co-occurrence of
LBP as the works by Nosaka et al. and Qi et al., and
our proposed features, and L is the dimension of the
focused features. P′(I) is the pre-processed or normalized
histogram, which is used as the input of SVM for classi-
fication. With the above normalization, we can enhance
some local patterns with low absolute frequency (values in
histogram) in an image but large relative difference when
comparing two images. Furthermore, a linear SVM with
the processed features can also be explained as a nonlinear
classification strategy using the raw LBP/LTP histogram,
which is equivalent to using Hellinger Kernel in the raw
feature space.
As introduced in Section 3, the (W)LTP and their con-

text integration versions, RIC(W)LTP in the proposed
framework is formulated by quantization procedure with
a predefined (data-driven) threshold η. Figure 3 shows
the comparative recognition performances using the fea-
tures in works by Nosaka et al. and Qi et al., LBP, and
the conventional LTP, the proposed WLTP, RICLTP, and

Fig. 4 Comparative results using our proposed framework and the state-of-the-art methods on both Brodatz32 [35, 36, 40–42] and KTH-TIP 2a
datasets [36, 37]. “WLD_Ver1[35]” and “WLD_Ver2[35]” denote our re-implementations of the WLD features in [36] under different parameters
(M = 6, T = 4, S = 3 andM = 8, T = 8, S = 4. “Chen(WLD)” denotes the recognition accuracy directly taken from [36]. a Bradatz dataset. b KTH-TIP
2a dataset
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RICWLTP with different η on Brodatz32 and KTH-TIP 2a
datasets; the LBP-based features (i.e., the works by Nosaka
et al. and Qi et al., LBP) have no parameters. The param-
eters η in the LTP and RICLTP in our experiments are
set as 1, 3, 5, and 7, and the ones (η) in the are set as
0.03, 0.05, 0.07, and 0.09. From Fig. 3, we observe that
our proposed data-driven quantized versions (i.e., WLTP
and RICWLTP) results in much better performance than
that (i.e., LTP and RICLTP) with an absolute threshold,
regardless of the magnitude of the focused pixel; the best
recognition result was achieved by the proposed frame-
work with data-driven quantization and co-occurrence
context. Figure 4 gives the comparative recognition accu-
racies with our proposed frameworks and other state-of-
the-art approaches [35–37, 40–42] on both Brodatz32 and
KTH-TIP 2a datasets; the best results were achieved using
our proposed approach with data-driven quantization and
co-occurrence context. We also implemented the texture
feature in [36] called the Weber local descriptor (WLD)
for image representation and used the linear SVM with
the normalized WLD histograms as Eq. (7) for classifica-
tion. On both Brodatz32 and KTH-TIP 2a datasets, we
extracted the histograms of WLD under different param-
eters (M = 6,T = 4, S = 3 and M = 8,T = 8, S = 4 as
in [36], respectively, without block division for Brodatz32
but with nine block division for KTH-TIP 2a dataset)
denoted as “WLD_Ver1” and “WLD_Ver2,” respectively.
Figure 4 shows that our proposed RIC(W)LTP meth-
ods can give much better performances on both texture
datasets than WLDs implemented by [36] and us. All
the above experiments were implemented using the linear
SVM with the pre-processed LBP/LTP-based histograms
by Eq. (8). As analyzed in [43], the linear SVM with the
pre-processed image feature using root operator (Eq. (8))
is equivalent to the nonlinear SVM with Helinger kernel
[43] on the raw image feature. This simple pre-processing
combined with the linear SVM can achieve compara-
ble classification performance with the nonlinear SVM
and the raw image feature especially for histogram-based
representation. For comparison, we also conducted the
experiments using the nonlinear SVMwith RBF kernel on
both texture datasets. The compared recognition accura-
cies with RICLTP/RICWLTP and linear/nonlinear SVM
are shown in Fig. 5a, b for Brodatz32 and KTH-TIP 2a
datasets, respectively, which manifests that the compara-
ble or a little better performances can be achieved by the
nonlinear SVM than the linear one with the pre-processed
RICLTP and RICWLTP descriptors. In the RBF kernel
nonlinear SVM, there is a parameter γ , which is related
to RBF kernel width and may greatly affect the classifica-
tion performance. According to our experience [44, 45],
we set 1

γ
as the mean value of the pairwise Euclidean

distances of all training samples’ features in the nonlinear
SVM experiments.

Fig. 5 Comparative results using linear SVM with pre-processed
RICLTP and RICWLTP descriptors and the nonlinear SVM with RBF
kernel on both texture datasets. a Bradatz dataset. b KTH-TIP 2a
dataset

Next, we give the comparative results using our propose
LTP-based descriptors and the conventional LBP-based
descriptors (the features in the work by Nosaka et al. and
Qi et al.) on PFID dataset in Fig. 6a that also shows the
promising recognition performances by our strategy. Sim-
ilar to the experiments for texture datasets, we also set the
used parameter η in the LTP and RICLTP for food recog-
nition experiments as 1, 3, 5, and 7 and η in the WLTP
and RICWLTP as 0.03, 0.05, 0.07, and 0.09. For PFID
database, the baseline evaluations by the color histogram
and the BOF model using SIFT descriptor give the recog-
nition rates 11.2 and 9.3%, respectively. In [39], the more
promising performances on PFID database are achieved,
which use statistics of pairwise local features. However,
the proposed features need to firstly segment the different
ingredients from the food image, which would cost more
computational time. In our work, we apply the statistics
of the simple data-driven quantization of the microstruc-
tures for food image representation and apply the very
efficient linear SVM as classifier. The comparative results
with the state-of-the-art methods are shown in Fig. 6b,
where the best performance can be obtained by our pro-
posed strategy. The more complex statistics of pairwise
local features (denoted as SPLF) [39] can greatly improve
the baseline evaluation (11.2, 9.3%) by conventional color
histogram (denoted as CH) and the BOF model (denoted
as BOF) to nearly three times (28.2%), which was the best
performance on PFID in 2010. Our implementations of
WLD histograms with different parameters [36] can also
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Fig. 6 Comparative results on PFID dataset a with the LBP based
descriptors by Nosaka et al. [17, 18] and Qi et al. [19] and b with the
state-of-the-art method [39]

give comparable performances with that by SPLF on PFID
dataset, and our proposed strategy with data-driven quan-
tization and co-occurrence context then can increase the
recognition rate 28.2% with SPLF [39] to more than 36%
about 8% improvement.

5 Conclusions
In this paper, we explored a robust representation strategy
of texture images for visual recognition. The widely used
local descriptor for texture analysis is local binary pattern,
which characterizes each 3 × 3 local patch (microstruc-
ture) into a binary series by comparing the surrounding
pixel intensity with the center one, and further has been
extended to local ternary patterns via quantizing the dif-
ference values between the surrounding pixels and the
center one into −1, 0, and 1, which can be explained
as the active status (i.e., positively activated, negatively
activated, and not activated). However, regardless of the
magnitude of the focused pixel, the pre-set threshold η

for quantization in the conventional LTP remains fixed,
which would violate the principle of human perception.
Motivated by the fact that human perception of a pat-
tern depends not only on the absolute intensity of the
stimulus but also on the relative variance of the stim-
uli, we proposed a novel local ternary pattern (LTP) with
data-driven quantization according to Weber’s law (called
WLTP), which is equivalent to adaptively (data-driven)

decide the quantization point according to the magnitude
of the focus pixel. This proposed quantization strategy is
inspired by Weber’s law, a psychological law, which states
that the noticeable change of a stimulus such as sound or
lighting by a human being is a constant ratio of the original
stimulus. Further, we incorporated the spatial and orienta-
tion context into WLTP and explored the rotation invari-
ant co-occurrence among WLTP that has much higher
descriptive capability than that of conventional LBP-based
descriptors for image representation. Our experiments on
two texture datasets and one food dataset confirmed that
our proposed strategy greatly improved recognition per-
formance as compared to the LBP-based descriptors and
other state-of-the-art approaches.
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