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Abstract Wepropose a quantum communication protocol that can be used to transmit
any quantum state, one party to another via several intermediate nodes, securely on
quantum communication network. The scheme makes use of the sequentially chained
and approximate version of private quantum channels satisfying certain commutation
relation of n-qubit Pauli operations. In this paper, we study the sequential structure,
security analysis, and efficiency of the quantum sequential transmission protocol in
depth.

Keywords Private quantum channel · Sequential transmission · Quantum secret
sharing · β-biasedness

1 Introduction

One of the most popular quantum cryptographic primitives, except quantum key dis-
tribution, is the quantum secret sharing (QSS) protocols [1,2]. The primitive known
as QSS is a process of splitting a piece of quantum information into several parts and
then securely reconstructing the information, but certain subparts are not enough to
restore the original quantum information. (In a strict sense, the secret sharing is dif-
ferent from the state sharing on its goal [3], but we treat the protocols as in the same
category.) There are huge number of theoretical studies on QSS protocols, and also
exist experimental demonstrations on QSS schemes in continuous-variable regime,
e.g., Refs. [4,5].
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Transmission or distribution of quantum information over several authorized nodes
is essential for future applications in quantum communications. We here review the
original QSS scheme from the point of view of (approximate) private quantum chan-
nels (PQC) and then propose an information transmission method, namely ε-secure
quantum sequential transmission (QST) protocol. This protocol uses a concept of pri-
vate quantum channel and aims to secure sequential transmission, where arbitrary
quantum states pass through several authorized intermediate nodes (or participants).
In the transmission process, all nodes must collaborate to reveal the original quantum
information. In the sequentially chained scheme, we exploit the Pauli commutation
relations on n-qubit quantum states, and derive the mathematical structure of multi-
node ε-randomizing maps.

Using the idea of the general three-party QSS scheme, we construct our main
protocol known as QST protocol under the security parameter ε. The parameter ε

implies that security and efficiency of the protocols are dealt with an asymptotic
consideration. Shortly speaking, the QST protocol can transmit any quantum states
from one party to another under the consent of all authorized participants with classical
secret bits. Note that any input quantum states into a quantum channel are arbitrary
quantum information with a given dimension, and we exclude classical information.
Thus, we expect that the protocol, QST, can be applied to certain applications such as
quantum repeater [6], quantum key repeater [7], quantum sealed-bid auction [8], or
quantum email protocol, since only authorized users can send, confirm, and read the
quantummessage. Furthermore, with the proposed schemes, we study the key question
of finding minimal resources required to split and reconstruct a quantum state, and to
transfer arbitrary quantum information sequentially.

Let us briefly review the quantum one-time pad or private quantum channel (PQC).
Ambainis et al. [9] first proposed a quantum primitive known as a private quantum
channel for secure transmission of quantum states, and already proved its security
including the optimality [10,11]. The complete randomization method naturally gave
birth to approximate approaches for randomizing quantum states [12–14]. We here
adopt an approximate version of the Dickinson and Nayak’s PQC [14], which has
relatively few Pauli operations on multi-qubit encodings. Using conventions and def-
initions in Sect. 1.1, we construct a quantum communication protocol that is efficient
and secure with a small information leakages (ε � 1) notwithstanding minimal
use of resources. But, in this paper, we mainly focus our attention on constructing
the mathematical structure of the ε-secure quantum sequential transmission scheme
(QST).

Before finishing the section, we introduce the basic concept of (approximate) PQC
or ε-randomizing map (or also known as random unitary channel). Moreover, we
comment on security analysis from Holevo bound and the correspondence between
(classical) keys and Pauli operations. In Sect. 2, we focus on our main construc-
tion of QST protocol, which is one step more advanced form of the well-known
three-party QSS, on multi-party system. In Sect. 3, we summarize and conclude our
work.
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1.1 Background

For a given d-dimensional Hilbert space C
d , B(Cd) denotes the space of bounded

linear operators on the space Cd , and U (d) ⊂ B(Cd) the unitary group on the space.
We make use of a quantum map from B(Cd) to itself generally known as a quantum
channel. Then, we can define a private quantum channel: For any ε ≥ 0, a completely
positive and trace preserving (CPTP) map R : B(Cd) → B(Cd) is said to be ε-
randomizing with respect to the trace norm if, for all quantum state ρ ∈ B(Cd),

∥
∥
∥
∥
R(ρ) − 1d

d

∥
∥
∥
∥
1

≤ ε, (1)

where1d denotes the identitymatrix of a given dimension d. The input quantum source
ρ is a d-dimensional density matrix. The mapR satisfying Eq. (1) is the approximate
private quantum channel (APQC), and ‖M‖1 := tr

√
M†M denotes the trace norm for

any matrix M . Note that the mapping R is perfect (or complete) randomizing map if
ε = 0. The definition with the security parameter ε always implies perfect PQC, and
gives us the informational security rather than a security based on the computational
complexity.

A simple way to create such an invertible encoding map is to choose a certain
sequence of unitary operatorsU1, . . . ,Us≤d2 ∈ U (d) and define the encoding map as

R : ρ → 1

s

s
∑

i=1

UiρU
†
i . (2)

The index i corresponds to the number of shared secret bits that all communicating
parties share. We here assume that the secret bits are unknown to any eavesdroppers
or unauthorized parties. With a suitable choice of s unitary operators not more than
d2, the mapping R satisfies to be an approximate private quantum channel. In fact,
any orthogonal set of d2 unitary operations form a perfect private quantum channel.
Notice that the dimension d of our case is fixed to 2n to accommodate the Hilbert
space of n qubits.

If that is the case, how can we analyze the security of approximate private quantum
channels? Roughly speaking, the accessible information to any attackers, for any
quantum states ρ = ∑

i piρi supported on C
d and dε < 1, is bounded above by

Holevo information [15]

χ{pi ,R(ρi )} = S

(
d

∑

i=1

piR(ρi )

)

−
d

∑

i=1

pi S(R(ρi ))

≤ log(1 + dε) < dε,

where {pi ,R(ρi )} represents an ensemble of ρi ’s with probability pi ’s through the
quantum channel R, and S(ρ) := −trρ log ρ, the von Neumann entropy. The above
inequality is true because the definition of the ε-randomizing map with respect to the
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trace norm in Eq. (1) implies that the eigenvalues of the channel output are almost
uniformly distributed such thatR(ρi ) 
 (1+dε)1d/d. This also means that attackers
cannot obtain any information about the information of the ensemble {pi ,R(ρi )}
under the condition dε < 1.

Finally, a relation between keys and Pauli operators is crucial in the proof of fol-
lowing protocol, so we carefully investigate the key correspondence. An explicit
construction for Eq. (2) depends on unitary operators chosen at random from the
set of n-qubit Pauli matrices. For two n-bit strings a and b, let a ∗ b = ∑n

j=1 a jb j

mod 2 denotes the standard inner product on Z
n
2. We represent a tensor product of n

single-qubit Pauli operators by a string of 2n-bit K , (a, b) ∈ {0, 1}2n , by using the
following correspondence

K = (a, b) : ιa∗bXa Zb, (3)

where Xa Zb = Xa1 Zb1 ⊗ · · · ⊗ Xan Zbn with X =
(

0 1
1 0

)

and Z =
(

1 0
0 −1

)

, and

ι = √−1 the imaginary number. Now, we define a set Pn as

{

ιa∗bXa Zb:(a, b) ∈ {0, 1}2n
}

⊂ U (2n)

for all tensor products of n single-qubit Pauli operators. Then, the set Pn forms a basis
for the 2n ×2n complex matrices. (Note that the set P1 = {12, X, ιX Z , Z} is the usual
Pauli operators on single qubit.) For convenience we substitute Pn to PK under the
correspondence in Eq. (3) to emphasize a classical key K .

As we mentioned above, n-qubit Pauli operators form a basis for the set of all
2n × 2n matrices. So, for a given density matrix ρ, we can construct that

ρ = 1

2n
∑

(a,b)∈{0,1}2n
ca,bX

a Zb, (4)

where ca,b is an element of a vector (ca,b) in C
2n with ‖ca,b‖22 ≤ 2n , and ‖X‖2 :=√

trX†X is the Frobenius (or Hilbert–Schmidt) norm on the space.

2 Quantum sequential transmission scheme

With additional modification of QSS [1,16,17] and approximate private quantum
channels, we now propose a quantum transmission protocol of so-called ε-secure
QST scheme. The main objective of our task is to send a unknown quantum infor-
mation from a sender to a receiver when several authorized intermediate nodes exist.
Although the quantum information is transmitted sequential ways on concatenated
quantum channels, the crucial advantage of this protocol is to preserving its explicit
security and efficiency. In the sequential structure, we take the generalized n-qubit
Pauli commutation relations on any input quantum signal, and prove the mathematical
consistency and security of the chained ε-randomizing maps.

As in three-party QSS protocol, suppose that, for all i-th position, Alice, Bob,
and Charlie share a correlation key such that kAi ⊕ kBi ⊕ kCi = αi mod 2, where
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αi is fixed to 0 under the mod 2 operation. The main purpose of this protocol is to
securely transmit a quantum state from Alice to Charlie through a middle party Bob.
The transmitted state between Alice and Charlie is asymptotically secure since the 2n-
bit-key-based PQC makes arbitrary n-qubit state into a near maximally mixed state
(in three-party scenario). Extending the idea of three-party protocol, we can directly
generalize it to an m-party concatenated-transmission protocol within n-qubit Pauli
commutation relations.

First, we simply take account of three-party protocol for sequential quantum state
transmission. Alice prepares an n-qubit quantum state |Φ〉 ∈ B(C2n ) and encodes
the state to PK A |Φ〉 which will be transmitted to Bob. (Consideration of only pure
states is enough since the convexity of trace norm ensures the previous statement.)
Bob also encodes the state, by using the correlation key K B , to PK B ◦ PK A |Φ〉, where
◦ denotes a composition of two Pauli sets, and sends the state to the third party Charlie.
Remember that kAi ⊕ kBi ⊕ kCi = αi , so the receiver Charlie efficiently decodes the
state to original quantum information

PKC ◦ PK B ◦ PK A |Φ〉 = |Φ〉. (5)

In Eq. (5), we use the following identity, for any Pauli operators,

PKC ◦ PK B ◦ PK A = PKC⊕K B⊕K A mod 2 = P0 := 12n . (6)

This condition for (complete) private quantum channel needs exactly 2n secret bits.
But if we use the approximate case of PQC, then we need about half-size (≈ n-bit)
keys only instead of 2n-bit keys [12,14], i.e., for sufficiently large d it satisfies our
security level with small ε.

As shown in Fig. 1, m-party extension (m ≥ 3) of QST scheme is simple and
natural, but we need some technical calculations as shown below. We note that every
intermediate user also accomplishes the role of sender and receiver. Before describing
the m-party scenario, we define a bias of a set of 2n-bit strings. For a given subset of
E ⊂ {0, 1}2n , if

0

Fig. 1 Approximate m-party quantum sequential transmission protocol: By using a secret classical infor-
mation K , a sender transmits any quantum stateρ securely to final node through them−1 and ε-randomizing
mapsRE j for all j . Boxes with PK represent the n-qubit Pauli operations corresponding a key K
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Bias(E, (a, b)) =
∣
∣
∣Ex∈E (−1)x∗(a,b)

∣
∣
∣ , (7)

then we call the set E is biased with respect to a string (a, b) ∈ {0, 1}2n [14,18],
where E is an expectation value for some variable in E . Note that ∗ is also the inner
product, and the bias is equal to 2EE [x ∗ (a, b)] − 1 under the modulo 2 operations.
When, for all (a, b) �= 02n , Bias(E, (a, b)) ≤ β, we call the subset E ⊂ {0, 1}2n to
be β-biased.

A subset E ⊂ {0, 1}2n defines a CPTP map on n-qubit as follows,

RE (ρ) = 1

|E |
∑

(u,v)∈E
Xu ZvρZvXu

= 1

2n|E |
∑

(u,v),(a,b)

ca,bX
u Zv(Xa Zb)ZvXu

= 1

2n
∑

(a,b)∈{0,1}2n
ca,bβa,bX

a Zb, (8)

where a real number |βa,b| is equal to the Bias(E, (a, b)) in Eq. (7). The modulus of
E , |E |, corresponds to some number s(≤ 22n) of n-qubit Pauli operations used in the
map RE . By using commutation relations on Pauli matrices, above equations can be
derived from

Xu Zv(Xa Zb)ZvXu = (−1)a∗v+b∗u Xa Zb

=: βa,bX
a Zb. (9)

If we choose E = {0, 1}2n , then we have a completely randomizing map. It is known
that there exists a map RE an ε-randomizing map with respect to the trace norm for
n-qubit states, when the subset E ⊂ {0, 1}2n be a set with bias at most ε · 2−n/2. (See
also the proof in Ref. [13].)

From the existence of small β-biased subset E , the Frobenius norm of the random-
ized state is almost concentrated at the maximally mixed state, that is,

‖RE (ρ)‖22 ≤ 1 + ε2

2n
. (10)

This inequality can be directly calculated from the Eq. (8) of ε · 2−n/2-biasedness and
the bound ‖ca,b‖22 ≤ 2n .

Moreover, for any densitymatrix N ∈ B(C2n ), the inequalities ‖N‖1 ≤ √
2n ·‖N‖2

and
∥
∥
∥N − �2n

2n

∥
∥
∥

2

1
≤ 2n · ‖N‖22 − 1 always hold. (See proof details in the appendix A

of Ref. [14].) Thus, we obtain the following chain bounds

∥
∥
∥
∥
RE (ρ) − 12n

2n

∥
∥
∥
∥
1

≤
√

2n‖RE (ρ)‖22 − 1 ≤ ε. (11)
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Thus, if we can choose a suitable subset E with β-biasedness, then we can always
create ε-randomizing map or APQC in trace norm. The above equation, Eq. (11), is
intrinsically identical to the Eq. (1); therefore, the security is well preserved.

Finally, we show that multi-party approximate private quantum channel and multi-
party QST protocol are secure and efficient, i.e., we claim that nDN := n+2 log 1

ε
+4

classical keys are sufficient for the m-party QST scheme. By choosing a dense subset
E , we can initialize a subset E j ⊂ {0, 1}2n to be a set with bias at most ε1/m · 2−n/2m

for each j [19]. Then, we assert that there exists an m-party ε-randomizing map with
respect to the trace norm for n-qubit states: For any density matrix ρ ∈ B(C2n ), we
have ∥

∥
∥
∥
REm ◦ REm−1 ◦ · · · ◦ RE1(ρ) − 12n

2n

∥
∥
∥
∥
1

≤ ε. (12)

Wehere denote thatRT = REm ◦· · ·◦RE1 for convenience. Since them-user encoding
and transmitting for a quantum state under m-APQC form an m-party QST protocol,
and it can be directly derived from the following commutation relation

Xum Zvm · · · (Xu1 Zv1(Xa Zb)Zv1Xu1) · · · Zvm Xum = (−1)
∑m

j=1 a∗v j+b∗u j Xa Zb.

(13)
This equation is just a generalization of Eq. (9). Suppose that, for every quantum state
ρ ∈ B(C2n ), each ε-randomizing map between two nodes ( j, j + 1) satisfies

∥
∥
∥
∥
R j (ρ) − 12n

2n

∥
∥
∥
∥
1

≤ ε
1
m ; (14)

then, we can always construct multi-user QST protocol via approximate private quan-
tum channels with ∥

∥
∥
∥
RT (ρ) − 12n

2n

∥
∥
∥
∥
1

≤ ε, (15)

and consume about n bits of secret classical keys satisfying
⊕m

i=1 K
Ai = 0. This

result implies that QST based on sequential private quantum channels is secure. The
estimation of Eq. (15) for every ε promises to use the classical key of n + 2 log 1

ε
+ 4

bits [14]. Notice that Dickinson andNayak’s efficient construction for the approximate
PQC on n-qubit situation relies onMcDiarmid’s inequality in probability analysis and
a net argument on discretizing pure quantum states. Strict security analysis for the
approximate private quantum channel in security parameter ε is reported at Ref. [11],
and see also Ref. [20].

3 Conclusion

In summary, we constructed a quantum communication protocol for quantum sequen-
tial and ε-secure transmission scheme via the extension of three-party QSS task. This
scheme makes use of a relatively small (correlated) classical secret information of
about nDN 
 n bits, just half of the size or the perfect private quantum channel of
2n-bit, and transmit any n-qubit states securely, so we say that the protocol is efficient.
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The security argument only depends on the small security parameter ε in which an
approximate private quantum channel guarantee its security. In fact, it is a small value
(ε < 1) for sufficiently large d dimension of Hilbert space Cd .

Beyond the mathematical construction of the quantum sequential transmission
scheme, we need to exploit this type of communication protocols for potential future
applications such as quantum (key) repeater, auction, and email scheme. So, the analy-
sis of these protocols in quantum regime is significant and necessary. We finally point
out that the security of the QST protocol must be systematically analyzed for several
cases of attackers, and further study is needed for mathematical generalization in p-
norm cases (for all p > 1). We hope that the quantum sequential transmission, QST,
can be used for the realization of practical quantum communication networks.
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