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Abstract The notion of adequate subgroups was introduced by Thorne (J Inst Math
Jussieu. arXiv:1107.5989, to appear). It is a weakening of the notion of big subgroup
used by Wiles and Taylor in proving automorphy lifting theorems for certain Galois
representations. Using this idea, Thorne was able to prove some new lifting theorems.
It was shown in Guralnick et al. (J Inst Math Jussieu. arXiv:1107.5993, to appear)
that certain groups were adequate. One of the key aspects was the question of whether
the span of the semisimple elements in the group is the full endomorphism ring of an
absolutely irreducible module. We show that this is the case in prime characteristic p
for p-solvable groups as long the dimension is not divisible by p. We also observe that
the condition holds for certain infinite groups. Finally, we present the first examples
showing that this condition need not hold and give a negative answer to a question of
Richard Taylor.

Keywords Burnside’s lemma · Irreducible representation · p-Solvable group ·
Galois representations
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1 Introduction

Let k be a field of characteristic p and let V be a finite dimensional vector space over
k. Let ρ : G → GL(V ) be an absolutely irreducible representation. Following [12],
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194 R. Guralnick

we say (G, V ) is adequate if the following conditions hold (we rephrase the conditions
slightly):

(1) H1(G, k) = 0;
(2) p does not divide dim V ;
(3) H1(G, V ⊗ V ∗) = 0; and
(4) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

If G is a finite group of order prime to p (or G is an algebraic or Lie group in
characteristic zero), then it is well known that (G, V ) is adequate. In this case, con-
dition (4) is often referred to as Burnside’s lemma. It is a trivial consequence of the
Artin–Wedderburn Theorem.

These conditions are a weakening of the conditions used by Wiles and Taylor in
studying the automorphic lifts of certain Galois representations. Thorne [12] general-
ized various results assuming these hypotheses. We refer the reader to [12] for more
references and details.

In particular, it was shown in [6, Theorem 9] that:

Theorem 1.1 Let k be a field of characteristic p and G a finite group. Let V be
an absolutely irreducible faithful kG-module. If p ≥ 2 dim V + 2, then (G, V ) is
adequate.

The proof depends on the classification of finite simple groups. The main ingredi-
ents include a result of the author [5] that reduces to the problem to the case that the
subgroup of G generated by elements of order p is a central product of quasisimple
finite groups of Lie type in characteristic p, a result of Serre [10] about complete
reducibility of tensor products and results on the representation theory of the groups
of Lie type in the natural characteristic [9].

In this note, we consider (4) and show that this holds under some conditions (none
of these results depend upon the classification of finite simple groups). We say that
(G, V ) is weakly adequate if (4) holds.

Recall that a finite group is called p-solvable if every composition factor of G either
has order p or order prime to p. It is known (cf. [8, Theorem B]) that if G is p-solvable
and V is an absolutely irreducible G-module in characteristic p, then G contains an
absolutely irreducible p′-subgroup, whence Burnside’s lemma immediately implies:

Theorem 1.2 Let G be a p-solvable subgroup, k a field of characteristic p and V an
absolutely irreducible kG-module. If p does not divide dim V, then (G, V ) is weakly
adequate.

This allows us to answer in the affirmative a question of R. Taylor for p-solvable
groups.

Corollary 1.3 Let G be a p-solvable subgroup, k a field of characteristic p and V
an absolutely irreducible kG-module. If (G, V ) satisfies conditions (1), (2) and (3)
above, then (G, V ) is adequate.

Recall that a kG-module V is called primitive if G preserves no nontrivial direct
sum decomposition of V .

We can also show:
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Adequate subgroups II 195

Theorem 1.4 Let G be a p-solvable subgroup, k a field of characteristic p and V an
absolutely irreducible kG-module. If V is primitive, then (G, V ) is weakly adequate.

Note that if dim V is a multiple of p, then no p′-subgroup can act irreducibly. We
also can obtain some results for possibly infinite groups.

Theorem 1.5 Let k be algebraically closed of characteristic p. Let V be finite dimen-
sional over k. Let � be an irreducible subgroup of GL(V ) with Zariski closure G. Let
G0 be the connected component of G and �0 = G0 ∩ �. Assume that either:

(1) [� : �0] is not a multiple of p; or
(2) dim V is not a multiple of p and G/G0 is p-solvable.
(3) V is primitive and G/G0 is p-solvable.

Then (G, V ) is weakly adequate.

The only condition that is difficult to check for adequacy in the previous results is
Condition (3). We do improve Theorem 1.1 for p-solvable groups. We first observe a
result from [5].

Theorem 1.6 Let k be a field of characteristic p. Let G be a finite subgroup of
GLn(k) = GL(V ). Assume that V is a completely reducible kG-module. If p > n and
is not a Fermat prime or p > n + 1, then G has no composition factors of order p.

It is not difficult to extend this to the case of Zariski closed subgroups. Also, the
complete reducibility hypothesis can be relaxed—all we need to assume is that G
has no nontrivial normal subgroup consisting of unipotent elements. This result is not
explicitly stated in [5] there but it is proved there. The result does depend upon the
classification of finite simple groups (however, for p-solvable groups, it does not).

It now easily follows that if G is p-solvable and V is a completely reducible
kG-module of small dimension, then G is in fact a p′-group and this gives:

Theorem 1.7 Let k be an algebraically closed field of characteristic p. Let G be a
p-solvable group. Let V be an irreducible kG-module. Then (G, V ) is adequate if:

(1) p > dim V with p not a Fermat prime; or
(2) p > dim V + 1.

On the other hand, we present an infinite family of examples of imprimitive abso-
lutely irreducible G-modules in characteristic p with dim V a multiple of p (including
cases where G is p-solvable) with (G, V ) not weakly adequate. These are generaliza-
tions of examples of Capdeboscq and Guralnick.

In order for this construction to give such examples where p does not divide dim V,

we were led to prove the following result in [4]:

Theorem 1.8 Let p be a prime. There exists a finite simple group G with a nontrivial
Sylow p-subgroup P such that some coset of P contains no p′-elements.

Thompson [11] verified this for p = 2 in response to a question of Paige.
Using a variation of the Theorem 1.8, we show that for any prime p, Taylor’s

question fails [i.e. (1), (2) and (3) do not necessarily imply (4)].
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196 R. Guralnick

Note that another way to produce examples with (G, V ) not weakly adequate is
to find absolutely irreducible G-modules in characteristic p such that (dim V )2 is
larger than the number of p′-elements in G. These examples are not so easy come
by. The only primitive example we know is with G = 2 F4(2)′ (the Tits group) and
V the irreducible module of dimension 2048 in characteristic 2. The number of ele-
ments of odd order in G is 3,290,625 < (2048)2. So (G, V ) is not weakly adequate.
It is easy to see that V is a primitive module (since G contains no proper subgroups
of index dividing 2048).

This suggests the following variant of the problem:

Question 1.9 Let G be a quasisimple finite group and p a prime. Classify all abso-
lutely irreducible G-modules in characteristic p such that the number of p′-elements
in G is less than (dim V )2.

In particular, (G, V ) cannot be weakly adequate. We suspect that there are very few
such examples.

The paper is organized as follows. In the next section, we discuss p-solvable groups
and prove Theorems 1.2 and 1.4. In the following sections we prove Theorems 1.5,
1.6 and 1.7. In the last section, we consider necessary conditions for induced modules
to be weakly adequate. This allows us to construct many examples that are not weakly
adequate including some whose dimension is not a multiple of the characteristic. In
particular, this allows us to give a negative answer to Taylor’s question.

2 p-Solvable groups

We prove Theorems 1.2 and 1.4. As noted above, the first result follows by [8, The-
orem B] (see also [3]). We sketch an elementary proof of a slight generalization of
what we require.

We first prove a lemma about tensor products. The first statement is well known.

Lemma 2.1 Let G be a group with a normal subgroup N . Let k be an algebraically
closed field. Let V = U ⊗k W be a finite dimensional kG-module where U and W are
irreducible kG-modules. Assume that N acts irreducibly on U and trivially on W.

(1) V is an irreducible kG-module; and
(2) If N consists of semisimple elements and (G, W ) is weakly adequate, then (G, V )

is weakly adequate.

Proof We prove both statements simultaneously. By assumption, End(U ) ⊗ k I is the
linear span of the images of N in GL(U ) ⊗ k I.

Since W is kG-irreducible, we can choose elements gi ∈ G such that gi acts as
ai ⊗ bi ∈ GL(U ) ⊗ GL(W ) where the bi form a basis for End(W ). If (G, W ) is
weakly adequate, we can furthermore assume that the gi are semisimple elements.

Thus, the images of the elements Ngi span End(U ) ⊗ End(W ) = End(V ). This
shows that V is an irreducible kG-module and that (G, V ) is weakly adequate if N
consists of semisimple elements and the gi are semisimple (because then Ngi consists
of semisimple elements). 	
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Adequate subgroups II 197

Note that in (2) above, (G, V ) weakly adequate implies that (G, W ) is weakly
adequate.

If p is a prime dividing |G|, a subgroup H is called a p-complement if p does not
divide |H | but [G : H ] is a power of p. It is an easy exercise to see that the follow-
ing holds (just choose a minimal normal subgroup and apply the Schur–Zassenhaus
result):

Lemma 2.2 Let G be a p-solvable group. Any p′-subgroup of G is contained in a
p-complement and all p-complements are conjugate.

We state the next result for irreducible groups rather than absolutely irreducible
groups. Most results in the literature assume the latter.

Lemma 2.3 Let G be a p-solvable group, k a field of characteristic p and V an
irreducible kG-module. Let F = EndG(V ). Assume that p does not divide dimF V .

Then a p′-complement H of G acts irreducibly on V and F = EndH (V ).

Proof First suppose that k = F (i.e. V is absolutely irreducible). So we may assume
that k is algebraically closed. We may also assume that Op(G) = 1 (since this acts
trivially on V ). Let N be a minimal normal subgroup of G. So N is a p′-group. First
suppose that N does not act homogeneously on V (i.e. N has at least two nonisomorphic
simple submodules on V ). Then we can write V = ⊕t

i=1Vi , where the Vi are the homo-
geneous components of N . Let S be the stabilizer of V1. Since dim V = t dim V1, p is
prime to both dim V1 and t. Let K be a p-complement in S and H ≥ K a p-comple-
ment of G. By induction, K is irreducible on V1. Since G = SH (since [G : S] = t
is prime to p), H acts transitively on the set of Vi .

Let W be a nonzero H -submodule of V . Since N ≤ H, W = ⊕(W ∩ Vi ) and
since H is transitive on the Vi , we see that W ∩ V1 = 0. Since K acts irreducibly on
V1, V1 ≤ W and since H is transitive on the Vi , W = V, whence the result.

Suppose that N acts homogeneously. It follows (cf. [2, Theorem 51.7]) that (pass-
ing to a p′-central cover if necessary), V ∼= U ⊗k W where U, W are irreducible
kG-modules with N irreducible on U and trivial on W. If H is a p-complement, then
by induction, U and W are irreducible k H -modules. By Lemma 2.1, this implies that
H acts irreducibly on V .

Now suppose that k is not F. Since G is finite, we can assume that k is a finite
field. We can view V as an absolutely irreducible FG-module, By the proof above,
V is absolutely irreducible as an F H -module. Thus, F = EndH (V ). Since V is a
semisimple k H -module (by Maschke’s theorem) with endomorphism ring a field, V
is an irreducible k H -module. 	


Of course, if p does divide dimF V, then V cannot possibly be irreducible restricted
to H, since the dimension of any absolutely irreducible H -module in characteristic p
divides |H |. Isaacs [8] proves much more than we do above and in particular studies
the restriction of V to H in all cases. These ideas are related to the Fong–Swan the-
orem: every absolutely irreducible G-module is the reduction of a characteristic zero
module.

Theorem 1.2 now follows by Burnside’s lemma. Theorem 1.4 now follows from
the following observation:
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198 R. Guralnick

Lemma 2.4 Let G be a p-solvable group with k algebraically closed of characteristic
p. If V is a primitive kG-module, then p does not divide dim V .

Proof As above, we may assume that Op(G) = 1. Let N be a minimal normal non-
central subgroup of G. Then N is a p′-group and acts homogeneously on V . If N acts
irreducibly, then dim V divides |N | and the result holds. Otherwise, V = U ⊗k W
where U and W are primitive kG-modules, whence the result follows by induction on
dimension. 	


We now give an example to show that conditions (1), (2) and (4) do not guarantee
that condition (3) holds (even for solvable groups).

Let r = p be an odd prime. Let R be an extraspecial r -group of exponent r and
order r1+2a . Let s be a prime distinct from p and r. Let S be an s-group with a faithful
absolutely irreducible Fp S module W. Let X be an irreducible Fp S-submodule of the
semisimple module W ⊗ W ∗. Set K = X S, a semidirect product. We can choose a
sufficiently large so that K embeds in Sp(2a, r) and so K acts as a group of auto-
morphisms of R. Then RK ≤ RSp(2a, r) has an irreducible module U over k of
dimension pa . Set V = U ⊗k W (where we extend scalars and view W over k). Then
V ⊗ V ∗ ∼= (U ⊗U∗)⊗ (W ⊗ W ∗). Note that V = V R ⊕[R, V ]. and V R ∼= W ⊗ W ∗.
Thus, H1(G, V ⊗ V ∗) = H1(G/R, W ⊗ W ∗) ∼= HomS(X, W ⊗ W ∗) = 0.

3 Infinite groups

Let k be an algebraically closed field of characteristic p ≥ 0. Let � be an absolutely
irreducible subgroup of GLd(k) = GL(V ). Let G be the Zariski closure of �. Let G0

denote the connected component of 1 in G. Set �0 = � ∩ G0. Note that G = �G0,

whence G/G0 ∼= �/�0.

We first note:

Lemma 3.1 Let G be a reductive algebraic group over k (i.e. G0 is reductive). Let
gi ∈ G, 1 ≤ i ≤ r be such that the order of gi G0/G0 is not a multiple of p. Then
X := {x ∈ G0| gix is semisimple} contains a Zariski open dense subset of G0.

Proof Since the intersection of finitely many open dense sets is open and dense, it
suffices to proves this for r = 1. A straightforward argument reduces this to the case
that G0 is a simple algebraic group and g1 is either inner or is in the coset of a graph
automorphism. If g1 is inner, the result follows since the set of regular semisimple
elements is open and dense. If g1 is a graph automorphism, the same is true—see
[7, Lemma 6.8]. 	


Applying this to the Zariski closure of �, we immediately obtain:

Corollary 3.2 Let gi be a finite set of elements of � such that none of the orders of
gi�

0 in �/�0 are a multiple of p. Then X := {x ∈ �0| gix is semisimple} is Zariski
dense in G0.

In particular, this implies:
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Adequate subgroups II 199

Corollary 3.3 If k is algebraically closed of characteristic 0 and V is an irreducible
finite dimensional k�-module, then (�, V ) is weakly adequate.

Lemma 3.4 Suppose that V = U ⊗k W where U and W are irreducible finite dimen-
sional k�-modules and that �0 acts irreducibly on U and trivially on W. If (�, W ) is
weakly adequate, then (�, V ) is weakly adequate.

Proof If (�, W ) is weakly adequate, then we can choose finitely many gi ∈ � semi-
simple with gi = ai ⊗bi ∈ GL(U )⊗GL(W ) where the span of the bi is End(W ). Let
X be the subset of �0 consisting of all elements x such that gix is semisimple for all gi

(take g1 = 1). By Corollary 3.2, X is Zariski dense in G0. Thus, the linear span of X is
Zariski dense in the linear span of G0 which is precisely End(U )⊗k I. Thus, ∪gi X con-
sists of semisimple elements and contains a basis for End(V ) = End(U ) ⊗ End(W ).

	

We now prove Theorem 1.5.

Proof First suppose that p does not divide [� : �0]. It follows by Corollary 3.2 that
the set of semisimple elements of � contain a Zariski dense subset of G. Thus, the
linear span of the semisimple elements of � is Zariski dense in the linear span of G.

Since linear spaces are closed, it follows that the two sets have the same linear span,
whence the result.

Next suppose that p does not divide d and G/G0 is p-solvable. Let H/G0 be a
p-complement in G/G0. The exact same proof as in the previous section shows that
H is irreducible on V . Thus, � ∩ H (which is Zariski dense in H ) is also irreducible
on V . Now apply (1) to � ∩ H.

Finally consider (3). Since V is primitive, �0 acts homogeneously on V . Thus,
V = U ⊗k W, where U and W are irreducible k�-modules, � acts irreducibly on U
and trivially on W. Since �/�0 is p-solvable and �0 is trivial on W, (�, W ) is weakly
adequate by Theorem 1.4. Now apply Lemma 3.4. 	


4 Composition factors

We first prove Theorem 1.6. As we noted this is essentially in [5]. We sketch the proof
indicating in particular how the classification is not required for the case of p-solvable
groups.

Theorem 4.1 Let G be a completely reducible finite subgroup of GLn(k) = GL(V )

with k a field of characteristic p. If H1(G, k) = 0, then either n ≥ p or p is a Fermat
prime and n = p − 1.

Proof If p ≤ 3, then all we are asserting is that n ≥ 2 and the result is clear. So
assume that p ≥ 5 and p > n with H1(G, k) = 0.

Let N be the normal subgroup generated by elements of order p. Then H1G, k)

embeds into H1(N , k) and so we may assume that N = G. Let A be a minimal normal
noncentral subgroup of G. We consider four cases:
Case 1 A is an elementary abelian r -group for some prime r = p.
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200 R. Guralnick

Then G permutes the weight spaces of A and since G is generated by elements of
order p, some element of order p does not centralize A, whence it must have an orbit
of size p and so n ≥ p.

Case 2 A is of symplectic type (i.e A/Z(A) is elementary abelian of order r2a for some
prime r = p with Z(A) of order r if r is odd or of order 2 or 4 if r = 2; moreover, A
has exponent r is r is odd and has exponent 4 if r = 2).

Again, some element g of order p acts nontrivial on A. Thus, g embeds in Sp(2a, r),

whence p ≤ ra + 1 with equality if and only r = 2 and p is a Fermat prime. Since
the minimal faithful representation of A in characteristic p is ra, the result follows.
Case 3 A is a central quotient of a direct product of quasisimple subgroups and p does
not divide |A|.

Again some element g of order p acts nontrivially on A. If g does not preserve
each quasisimple factor of A, then there are least p such factors and we easily see that
n ≥ 2p. So g normalizes each factor of A. Thus, A is quasisimple. We can assume
that A acts homogeneously (and nontrivially) on V (otherwise, we may assume that g
permutes the homogeneous factors and so there would be at least p of them, whence
n ≥ 2p). Since p does not divide |A|, it follows by Sylow’s theorem, that g will
normalize a Sylow r -subgroup of A for each prime r dividing |A|. Thus, g will act
nontrivially on some Sylow r -subgroup of G and the result follows from cases 1 and 2.
Case 4 A is a central quotient of a direct product of quasisimple subgroups and p does
divide |A|.

Unfortunately, we do not have a proof without the classification (although we sus-
pect there is one). We argue as in case 3. Now apply [5, Theorem B] to conclude that
A is of Lie type in characteristic p. It follows that g must induce a field automorphism
and this forces n ≥ 2p (one further possibility is that A = J1 with p = 11, but then
A has no outer automorphisms of odd order). 	


Now Theorem 1.6 follows immediately (if there is a composition factor of order p,

there will be a normal subgroup N of G with H1(N , k) = 0 and N is still completely
reducible).

An immediate corollary is:

Corollary 4.2 Let G be a completely reducible p-solvable subgroup of GLn(k) =
GL(V ) with k a field of characteristic p. If p divides |G|, then either n ≥ p or
n = p − 1 with p a Fermat prime.

We now prove Theorem 1.7.

Proof Assume that p > dim V (or p > dim V + 1 if p is a Fermat prime) and that
G is an irreducible subgroup of GL(V ) as in the hypotheses. By the corollary G is in
fact a p′-group, whence (G, V ) is adequate. 	


5 Induced modules

Let k be an algebraically closed field of characteristic p > 0. Suppose that V =
IndG

K (W ). Let gi be a set of coset representatives for the cosets of K in G. So we can
write V = W1 ⊕ · · · ⊕ Wm where m = [G : K ] and Wi = gi ⊗ W.
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So End(V ) = ⊕i j Hom(Wi , W j ). Let πi j be the corresponding projection from
End(V ) to Hom(Wi , W j ). Note that the set of g ∈ G such that π1 j (g) = 0 is g j K .

This observation yields:

Lemma 5.1 If (G, V ) is weakly adequate, then π1 j maps the set of p′-elements of
g j K to a spanning set of Hom(W1, W j ). In particular, if some coset g j K contains no
p′-elements, then (G, V ) is not weakly adequate.

Using this criterion, we can produce many examples (G, V ) which are not weakly
adequate. Of course, we want V to be irreducible and we also want G to be generated
by p′-elements.

Here is our first family of examples.
Let H be any finite group whose order is divisible by p with H generated by its

p′-elements. Let r be a prime not equal to p and let A be an irreducible H -module
such that H has a regular orbit on Hom(A, k∗) (this can be easily arranged—if r is
sufficiently large, then any faithful irreducible module A will have this property). Set
G = AH, a semidirect product.

Let W be a 1-dimensional k A-module with character λ ∈ Hom(A, k∗) so that λ

is in a regular G-orbit. Set V = W G
A . We note that V is an irreducible kG-module

of dimension equal to |H | (since V is a direct sum of 1-dimensional non-isomorphic
k A-modules permuted transitively by H ). Clearly, G is generated by its p′-elements.
If g ∈ G has order divisible by p the coset gA has no p′-elements, whence:

Theorem 5.2 (G, V ) is not weakly adequate.

In particular, we can take G = AS3 where A is elementary abelian of order 25 with
p = 3 and dim V = 6.

In fact, we can generalize these examples. Here is the setup:

(1) Let L and T be finite groups each generated by p′-elements.
(2) Let W be an absolutely irreducible faithful kL-module.
(3) Let T1 be a subgroup of T of index t such that T1 contains no nontrivial normal

subgroup of T and such that some coset xT1 of T1 in T contains no p′-elements
(eg, if T1 is a proper subgroup of a Sylow p-subgroup P of T, then let x ∈ P\T1).

Set G = L � T = N T, where N = L1 × · · · × Lm with Li ∼= L and m = [T1 : T ]
Then G acts on V := W1 ⊕· · ·⊕ Wt where Wi ∼= W (Li acts as L on Wi and trivially
on W j with j = i and T permutes the Wi as it does the coset of T1). We can also
describe V as IndG

K (W1) where K = N T1 with L1 acting on W1 as L does on W and
(L2 × · · · Lt )T1 acting trivially on W1).

Theorem 5.3 With notation as above, V is a faithful irreducible kG-module of dimen-
sion equal to m dim W, G is generated by p′-elements and (G, V ) is not weakly ade-
quate.

Proof Since the Wi are nonisomorphic irreducible k N -modules and T permutes them
transitively, V is irreducible. Since L and T are generated by p′-elements, so is G.

Since T1 contains no nontrivial normal subgroup of T, the kernel of this representation
would be contained in N . Clearly N acts faithfully. Since the coset xT1 N contains no
p′-elements, the result follows. 	
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202 R. Guralnick

Using the result of [4] for any odd prime p, we can find a sufficiently large q with
p exactly dividing q − 1 so that for T = L2(q) and T1 a dihedral subgroup of order
2p, we can find a t ∈ T with tT1 containing no p′-elements.

This allows us to give a negative answer to Richard Taylor’s question.

Theorem 5.4 Let k be an algebraically closed field of characteristic p. Let T = L2(q)

and let T1 be a subgroup of T isomorphic to a dihedral group of order 2p as above.
Let L be a cyclic group order 2 and let W be the nontrivial 1-dimensional kL-module.
Set G = L �T1 T, N = L × · · ·× L of order 2m with m = [T1 : T ]. Let T1 act trivially
on W. Set V = IndG

K (W ) where K = N T1 Then

(1) V is an absolutely irreducible kG-module of dimension m (and so prime to p);
(2) G satisfies conditions (1), (2) and (3) of the introduction; and
(3) G is not adequate.

Proof As we have seen above, the first condition holds and (G, V ) is not weakly
adequate by the construction Clearly p does not divide m = dim V . By construction
G is generated by p′-elements. So it remains to that show H1(G, V ⊗ V ∗) = 0.

Set U = V ⊗V ∗.Since N is a normal p′-group, it follows that U = CU (N )⊕[N , U ]
where CU (N ) are the fixed points of N on U and [N , U ] is the submodule generated
by all nontrivial irreducible N -submodules. By the inflation restriction sequence, it
follows that H1(G, [N , U ]) = 0. Note that dim CU (N ) = m and indeed CU (N ) con-
tains U1 := W ⊗ W ∗ and the stabilizer of U1 in G is N T1. Thus, CU (N ) ∼= IndG

K (k).

So by Shapiro’s lemma, H1(G, CU (N )) ∼= H1(K , k) ∼= H1(T1, k) = 0. 	

One can also produce examples showing that Taylor’s question has a negative

answer with p = 2 as well. For example, we can take T = L2(137) and T1 = A4 ≤ T
and L cyclic of order 3 with W a 1-dimensional nontrivial L-module.

Here is a variation of Taylor’s question:

Question 5.5 Let V be an absolutely irreducible primitive kG-module. If (G, V ) sat-
isfies (1), (2) and (3) of the introduction, is (G, V ) adequate?

Now suppose that G is p-solvable. Let V be an irreducible kG-module. If N is a
noncentral normal p′-subgroup of G that acts homogeneously, then as usual we can
write V = U ⊗k W. By Lemma 2.1 and the remark following it, (G, V ) is weakly
adequate if and only if (G/N , W ) is. Thus, if this is the case, the problem reduces
to a smaller module. So we may assume that no noncentral normal p′-subgroup acts
homogeneously. In this case, set N = Op′(G) (the largest normal p′-subgroup). Then
V = V1 ⊕ · · · ⊕ Vm with m > 1 where the Vi are the k N -components of V . Thus,
V = IndG

K (V1) where N ≤ K . We ask:

Question 5.6 If G is p-solvable and every coset gK of K contains a semisimple
element, is (G, V ) weakly adequate?

If the answer is yes, then we have an essentially complete answer as to when an
absolutely irreducible kG-module V is weakly adequate for G a p-solvable group.
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