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1 Introduction
If flx), g(x) = 0, such that 0 < [, f?(x)dx < oo and 0 < [;° g?(x)dx < oo, then we
have (cf. [1]):

1
[ [ F@s) [ e [ o] )
0[0/ ty dxdy < = O[f (x)dxofg (x)dx | .,

where the constant factor 7 is the best possible. Inequality (1) is well known as Hil-
bert’s integral inequality, which is important in Mathematical Analysis and its applica-
tions [2].

If p, r >1, ,+,=1, 1+!=12 >0, flx) glx) = 0, such that

0< [ xp(“bf”(x)dx < oo and, g < e xq(“/s\)gq(x)dx < oo then we have [3]:

7 7 (minfx, y})"f (x)g(y)dxdy

00 ! 00 (2)
Ts (1+A)71 P q(1+)h)71 q !
< TP () de XM e (x)dx |,
0 0

where the constant factor } is the best possible. By using the way of weight func-
tions, we can get two Hilbert-type integral inequalities with non-homogeneous kernels
similar to (1) and (2) as follows [4,5]:
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[]tmes

1 1 (3)
< B3 / P03 f )d / KO- dx | (> 0),
f f (min{1, x))*f (x)g(y)dxdy
0 0
(4)

p o0 q
Ol()»—ot) /xp(1+a) 1fp(x)dx /xp(lm)*ng(x)dx (0<a <2).

Some inequalities with the non-homogenous kernels have been studied in [6-8].

In this paper, by using the way of weight functions and the technique of real analysis,
a new Hilbert-type integral inequality in the whole plane with the non-homogenous
kernel and a best constant factor is built. As applications, the equivalent forms, the

reverses and some particular cases are obtained.

2 Some lemmas
Lemma 1 If 0 < o4 < 0 < 71, define the weight functions w(y) and &(x)as follow:

[ min(1, | x| 1
w(y) = [min x |de (v € (o0, 00)), (5)
A \/1 +2xy cos a; + (xy)?
- T . min{1, | xy |} 1
o) = [ min v e (—00,00). (6)
IS \/1 +2xy cosa; + (xy)? Y
Then, we have w(y) = @(x) = k(x,y # 0) where
._ (65} (0%]
k.—2ln[(1+sec 2)(1+csc 2)] (7)
Proof. Setting u = x - |y| in (5), we find
T min{| u |, 1} 1
o(y) = min du. 8
) / i€{1,2}{\/u2+2u(y/|y|)cosai+1} | u | ®

—00

For y € (0, «), we have

1 -1 du
a)(y)=/ du+/
. \/u2+2ucosoe2+l u 7 \/u2+2ucosoe2+1
9)
du

/‘ du /‘ 1
+ + :
J VU2 +2ucosay + 1 1 Vu? +2ucosay +1 U
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Setting

-1

/ 1 —1
w1 = du,
Vu? +2ucosa, +1 U

—00

0
1
w) =/ du,
: \/u2+2ucosoz2+1
1
1
w3 =/ du,
4 Vu2 + 2ucosay + 1
o0
1 1
w4 =/ du,
J \/u2+2ucosa1+lu
we find

00
v=—u dv

w] =
1/u\/vz+2vcos(7‘r—ozz)+1
1
z=1/_y/ dz
J \/zz+21cos(n—a2)+1/

dv

1
o v::u/ o
2 = =)
4 V12 + 2vcos(m — ay) + 1 '

dz

1
z:l/uf
wg = = ws3.
) \/zz +2zcosag + 1

Then, we have

w(y) = 2(w1 + w3)

1 1
/ du / du

=2 +
4 VU2 + 2ucos(m —ap) + 1 J Vu? + 2ucosay + 1

1
1

= 2

0/ \/[u +cos(m — az)]? +sin? (7w — )

1

du

1
+ du}
0 \/(u+cosa1)2 +sin? )
= Z{In(l +¢sC a;)+ln(1 +sec 1121)}

(25} o
—2ln[(1 +sec )(1 +csc ) )} =k.

For y € (-o0, 0), we can obtain

—1 0

) /‘ 1 —du / du

w(y +

£ Vu? = 2ucosay +1 U 4 Vu2 = 2ucosary + 1

1 00
/ du / 1 du
+ +
J Vu2 = 2ucosa + 1 / Vu? = 2ucosay +1 U

2(wl +w3) =k.
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By the same way, we still can find that @(x) = w(y) = k(x,y #0). The lemma is

proved. O

Lemma 2 If p >1,;+1

tion in (-o0,0), then we have

1,0 < a; < ay < 7, f(x) is a nonnegative measurable func-

A L N R e VOt
ie{1,2}
e e \/1 + 2xycosa; + (xy)? (10)
o0
= ¥ [ P
—00
Proof. By Lemma 1 and Holder’s inequality [9], we have
- p
in{1,
/ min mint1, lxyl) f(x)dx
J e \/1 + 2xy cos a; + (xy)?
B K ) min{1, |xy|} —|x|1/q |}’|1/p
- ief1.2) 2 IVI”” |x| /4
N \/l +2xpcosa; + (xy)° | L
B o0
. 1/ p—1
< min | bl LR g (1)
et \/l +2xy cos a; + (xy)? i
L . i
. 1, q—1
. / min min{1, [xyl} W 4
e \/l +2xy cos a; + (xy)? Il
ol min{1, ) !
= ()| [ min gy [T
A \/1+2xycosai+(xy)2 Y
Then, by (6), (11) and Fubini theorem [10], it follows
9} 00 inf1, p—1
pzt [ [t R pac oy
ENES \/1 +2xy cosa; + (xy)?
oo o0
in(1, 1
! / / in min{1, | xy |} dy | | %717 (x)dx
o1 iefl.2) \/1 +2xycosa; + (xy)?
oo
~t [ e s
—00

=W/MWWMM

The lemma is proved. ©
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3 Main results and applications

Theorem 3 If p >1, 117+ =1, 0 < o) < ay < m, f (x), glx) = 0, satisfying

0 < % 17177 1g(y)dy < coand 0 < [ | yl"='g9(y)dy < 0o, then we have

rr min(1, | xy |}
f f min W f(®)g(y)dxdy
AR AN \/1+2xycosai+(xy)2
(12)
o0 P o0 q
k / | xP U (1) dx / gy |
o0 o0 p
. min{1,
J=/|y|‘1 /.mllrzl i f(x)dx | dy
S J et \/1 +2xy cos a; + (xp)? (13)

oo
<k / | x[P~ P (x)dx,
—o0

where the constant factors k and k¥ are the best possible (k is defined by (7)). Inequal-
ity (12) and (13) are equivalent.

Proof. If (11) takes the form of equality for a y € (-e0, 0) U (0, o), then there exists
constants M and N, such that they are not all zero, and

lxl qu( x) = |y|q/pa.e. in (—oo, 00).

[ x|
Hence, there exists a constant C, such that
M | xPfP(x) = N | y|? = Ca.e. in (—o0, 00).

We suppose M = 0 (otherwise N = M = 0). Then, it follows

| xlP~ P (x) =

C .
a.e. in (—oo, 00),
Mx|
which contradicts the fact that 0 < ffooc | x|P~1f?(x)dx < co. Hence, (11) takes the

form of strict sign-inequality; so does (10), and we have (13).
By Holder’s inequality [9], we have

< a7 . 1
= e [ ™ a [| ng(y)dy}
A AR ietl.2) \/1+2xycosa +(xy)

1 (14)

q

/ | y1*~ g% (y)dy
o0
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By (13), we have (12). On the other hand, suppose that (12) is valid. Setting

00 =1
s =0 | [mind T A an]
% ! \/1 +2xy cosa; + (xp)?

o0
then J = [ |yl971¢%(y)dy. By (10), it follows J <. If J = 0, then (13) is naturally
—00

valid. Assuming that 0 < J <o, by (12), we obtain

1 1
e} o'} P 00 q
f |y|"—lgq(y)dy=1=1<k(/ lep_lfp(x)dx) ( |y|f’—1g"(y)dy) , (19

1 1
o0 p 00 p
=( |y|“g“(y)dy) <k(f |x|”1f”(x)dx) _ (16)

Hence, we have (13), which is equivalent to (12).
If the constant factor k in (12) is not the best possible, then there exists a positive
constant K with K < k, such that (12) is still valid as we replace k by K, then we have

1 1
I<K(/ 'xl“f“(x)dx) (f |y|“gq(y)dy) : (17)

For ¢ >0, define functions f(x),g(y) as follows:

72871
_ x 7, x € (1,00),
f(x): =40, xe|[-1,1],
72871
(—=x) ?» ,xe(—o00,—1),
yil, re(),
3y : =10 y € (—o0,—1]U[1, 00),
2¢
-1
(=7 ,ye(=1,0).

Replacing flx), g(y) by f(x), &(y) in (17), we obtain

e [ [t ™D gy
AR 001{ \/1+2xycosa1+(xy)

s b /oo ; (18)
<K([|x|p_lfp(x)dx) (/I)’Iq_lgq(}’)d)’)

o0

K

- ’

&
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oo 00 1 3
) _ min{1, | xy [} f(x)2
i [ [ min I gy = 3, 1
—00 —00 \/1 + 23(“}/ Cos @ + (x)/) a
where,
. . . ) 2e
e ot / min min(1, | xy |} (—x) » 'dx|dy
J J ie{1,2) \/1 + 2Xxy COs aj + (JW)2
O B o0
bes [ | [ i LS,
J K ie{1,2} \/1 + 2xy cos o + (xy)Z
1 } . ) 2¢
o= fyo | [t I ey e gy
J K ie(1,2) \/1 + 2xy cos a; + (xy)?
1 B o0
I: = /.)/2[78_1 f min min{1, | xy [} x_zps_ldx dy
J K ie{1,2} \/1+2xy€03051+(xy)

By Fubini theorem [10], we obtain

o0

1
28 inf1 _2e_
N S e S P
5 \/ 1 + 2xycosary + (xp)?

1 00 -
min{u, 1 _28_
/YZE ! / 1) w » " du | dy
, \/u2 + 2ucosa; + 1

1
/.yZS 1 / du d}/
/ \/u2 + 2ucosay + 1

1

2e—1
+ [y / du | dy
./ \/uz + 2ucosa; + 1

0
1 u _
_ / ‘/‘yZafldy u p du p
s\ VU2 + 2ucosay + 1 7—8 \/uz + 2ucosay + 1

0l
<

1 2e
= ! / i du+/ du |,
2¢ |:0 VU2 + 2ucosay + 1 \/uz + 2ucosay + 1
l 264 T min{1, xy} _2_4
12=I3=/y‘1 / x P dx|dy
5 \/ 1 — 2xycosa + (xy)?

2e oo 2 -1

1
1 ud u b

f du +f du
2¢e ) Vu? — 2ucosa; + 1 / Vu2 — 2ucosa; + 1
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In view of the above results, by using (18) and (19), it follows

28

du

/ du+/
\/u2+2ucosa1+1 \/u2+2ucosa1+1

2e 1 (20)

TN
/ du+/ du
\/u2 2ucosay + 1 A Vu2 = 2ucosa; + 1

=el<eg- =K.
&

By Fatou lemma [10] and (20), we find

k= o(y) = /‘ min{u, 1}du /oo min{u, 1}du

u\/u2 + 2ucosa; + 1 u\/u2 — 2ucosoy + 1
1 00 2¢
u ‘1 du . u P du
= lim + | lim
s e=>0° /12 4 Qucosay + 1 J e=>0" /2 4 ducosay + 1
1 2¢e 00 2e

u 9 du ur N du
/ lim f lim (21)

£—>0* \/ u2 — 2ucosay + 1 £—0* \/ u2 — 2ucosay + 1

Ji [/ u ‘1 du /
im,_ .
e0 \/u2 + 2ucosa; + 1 \/u2 + 2ucosa; + 1

u ‘1 du u p du
2 2 =K
\/ us — 2ucosoy + 1 \/ u® — 2ucosay + 1

which contradicts the fact that K < k. Hence, the constant factor k in (12) is the best
possible.

If the constant factor in (13) is not the best possible, then by (14), we may get a con-
tradiction that the constant factor in (12) is not the best possible. Thus, the theorem is
proved. O

Theorem 4 As the assumptions of Theorem 3, replacing p >1 by 0 < p <1, we have
the equivalent reverse of (12) and (13) with the best constant factors.

Proof. The way of proving of Theorem 4 is similar to Theorem 3. By the reverse
Holder’s inequality [9], we have the reverse of (10) and (14). It is easy to obtain the
reverse of (13). In view of the reverses of (13) and (14), we obtain the reverse of (12).
On the other hand, suppose that the reverse of (12) is valid. Setting the same g(y) as
theorem 3, by the reverse of (10), we have / >0. If ] = «, then the reverse of (13) is
obvious value; if J <o, then by the reverse of (12), we obtain the reverses of (15) and
(16). Hence, we have the reverse of (13), which is equivalent to the reverse of (12).

If the constant factor k in the reverse of (12) is not the best possible, then there

exists a positive constant K (with K> k), such that the reverse of (12) is still valid as

we replace k by K. By the reverse of (20), we have

Page 8 of 11
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1

1 2¢e
/ uddu
s \/u2+2ucoso¢1 +1 \/u2 —2ucosay + 1

(22)

+

= 2
1 1 -t
/ + u P du
/ Vu2 +2ucosay +1  /u? —2ucosay + 1
> K.
For 0<£0<|;‘, we have 2;">—1. For 0 < & < &, we obtain

2¢ 2¢0 d
ud <ud (ue(0,1])

1
1 1

/ + uzsodu

J Vu? +2ucosar +1  u2 —2ucosay + 1

1
1 1 1 1 1
< . + . /uzg‘)du= . + . < 0
~ \sina; sino; q siney;  sinay /) 1+ (2¢0)/g
0

Then, by Lebesgue control convergence theorem [10], we have for ¢ — 0" that

1
1 1 2e
/ + u 9 du
\/u2+2ucosoz1+1 \/uz—zucosa2+1

1 (23)
1 1
= / + du +o(1).
4 Vu? +2ucosay +1  Ju2 —2ucosay + 1
By Levi’s theorem [10], we find for ¢ — 0" that
< 2e
1 1 _2e_
/ + u N du
/ Vu2+2ucosay +1  /u2 —2ucosa; + 1
(24)

oo
1 1 ~
=/ + u'du+0(1).
1 Vu2+2ucosar +1  Ju? —2ucosay + 1

By (22), (23) and (24), for ¢ — 0" in (22), we have k > K, which contradicts the fact
that ;, < K. Hence, the constant factor k in the reverse of (12) is the best possible.

If the constant factor in reverse of (13) is not the best possible, then by the reverse of
(14), we may get a contradiction that the constant factor in the reverse of (12) is not
the best possible. Thus, the theorem is proved. O

Remark 1 For o = o, = oo € (0, ) in (12) and (13), we have the following equiva-
lent inequalities:

[] LY () dady

50 —00 \/1 +2xy cosa + (xy)?
(25)

o0 p o0 q
/ PP () d / g1 ()dy |
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p

flyI*1 f min{L, | xp [} f(x)dx | dy

\/1+2xycosa+(xy)2 (26)

o0

<t [ 1t @as

where the constant factors ko :=2In[(1+sec$)(1+csc$)|and Kyare the best

possible.

Remark 2 For a1 =y = 5, p = q = 2 in (12) and (13), we have the following equiva-

lent inequalities:

7 fw IRt D ()

Lol ey (o)
1 (27)
2

< 2In(3 +2v/3) /lxlfz(x)dx/ ly1gMdr| .

2
[ [T rac] o
o S \/ 1+xy+ (xp)° (28)
< 2%[In(3 + 2+/3)]? / | x | f2(x)dx.
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